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Abstract

Some semi-empirical compressor models are claimed to be more accurate at extrapolation
conditions than their empirical counterparts which has a long history of industrial applications
due to their uses of physical principles, but it is unknown how much improvement the principles
can bring to the modeling of extrapolation scenarios quantitatively. This paper studies the effect
of the number of empirical coefficients and physical principles on model accuracy and
uncertainty by comparing the estimation of five regression models of compressor mass flow
rates. The choice of model training data follows the industrial norm, and model accuracy and
uncertainty are calculated. The quantitative results show that the use of neither empirical
coefficients nor physical principles guarantees good accuracy and reliability. If a coefficient is
redundant to explain the behavior of the phenomenon, regardless of its empirical or physical

origin, it should be removed to reduce model inaccuracy in extrapolation scenarios.
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Highlights
- Models with different number of empirical coefficients are compared
- Changes of model performance with the use of empirical coefficients is quantified
- Redundant coefficients reduce model reliability regardless of their physical origins

- Extrapolation effect is not only dependent on the number of physical rules involved

Nomenclature
Cp Isobaric heat capacity [JkgK™]
Cy Isochoric heat capacity [JkgK™]
eis Compression exponent
f Rotational frequency [Hz]
h Threshold in numerical methods [dimensionless]
H Hessian matrix [unit varies]
Jrev Jacobian leverage [dimensionless]
] Jacobian matrix [unit varies]

Meomp Compressor mass flow rate [kgs™]

n Number of data points [dimensionless]

P Pressure [Pa]

q Number of regression coefficients in a model [dimensionless]
s Specific entropy [Jkg™K™]

tnaim—q005 Student’s t value for a 95% confidence interval of estimates from equations

with n training data points and q coefficients [dimensionless]

T Temperature [K]

v Specific volume [m®kg™]

V4 Displacement volume [m®]
Greek

B Regression coefficient [unit varies]

y Adjustment factor in Richardson Extrapolation [dimensionless]
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Threshold multiplier in Richardson Extrapolation [dimensionless]
A Uncertainty [unit varies]
Nwor  VOlumetric efficiency [dimensionless]
0 Arbitrary functions [unit varies]
Order of accuracy of numerical methods [dimensionless]

Density [kgm™]

€ o 0~

Arbitrary variable [unit varies]

Accents

estimated

Subscripts

dew  dewpoint

dis compressor discharge
disc discretization

EOS  equation of state

exp expanded

input  input

it iteration
I Model |
I Model Il
i Model 111

v Model 1V

model model random error
num numerical method
output output

rat rated

suc compressor suction

train  training data
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1. Introduction

Various types of compressor models have been used in the computational models of vapor
compression systems and other applications involving prediction of compressor performance
[1]-[4]. They should be designed to be accurate and reliable to give correct prediction
consistently for reliable engineering designs. In practice, the models are mostly semi-empirical:
the empirical part of the model is formulated by best-fitted curves without acknowledging any
physics behind the compression mechanism, while some physical rules are used to explain the
compression mechanism and to formulate the rest of the model. They contain unknown
coefficients that must be predicted with experimental observations of the compressor operation
before their applications. The prediction of these coefficients is usually conducted by regression
with some performance data from compressor calorimeter experiments. These performance data

are called training data.

Some researchers aimed at improving the accuracy and the speed of the models and
recommended using more empirical coefficients in the compressor models. Rasmussen and
Jakobsen [1] described different types of polynomial models for compressor modeling, including
the 10-coefficient cubic polynomial for compressor mass flow rate and power consumption in
ANSI/AHRI Standard 540-2004 [5] and quadratic polynomials to estimate compressor isentropic
efficiency and volumetric efficiency. Shao et al. [6] used a quadratic polynomial of compressor
rotational frequency to adjust the 10-coefficient polynomial to model the performance of
variable-speed compressors. Shen [7] used an adjustment multiplier calculated from
experimental data to tune any bias in the 10-coefficient polynomial in ANSI/AHRI Standard
540-2004 [5]. Yang et al. [8] used multiple empirical linear equations to form a neural network

to model compressor volumetric efficiency.

Other researchers argued that the use of empirical coefficients in the compressor models reduced
the accuracy of the models to predict compressor performance at some operating conditions.
They claimed that the use of empirical coefficients might not obey physics and reduced the
accuracy of the models to predict compressor performance under conditions that are different
from that of the training data (i.e. extrapolation). They tried to improve the models’ extrapolation
capability by including more physical rules and create semi-empirical compressor models. For

example, Jahnig et al. [9] introduced pressure drop at the compressor suction in its adiabatic
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compression model to model the mass flow rate of reciprocating compressors. Kim and Bullard
[10] used Newton’s law of cooling to model compressor heat loss. Winandy et al. [11] used
under- and over- compression mechanisms to adjust the power consumption estimated by
adiabatic compression. Navarro et al. [12] considered various types of flow leakages in
compressors as flows across valves to estimate compressor mass flow rate. Duprez et al. [13]
suggested the use of compressor suction valve mechanism instead of the compression
mechanism to model compressor mass flow rate. Aprora [14] and Zakula et al. [15] included
mathematical formula representing re-expansion and back leakage losses in their compressor
model. Cheung and Braun [16] considered air-side natural convection and refrigerant-side forced
convection to model the heat loss of compressor. Negrdo et al. [17] simplified the models of
leakages and heat loss by modeling their effect to volumetric efficiency with a linear relationship

with pressure ratio only.

To justify if physical rules improve the accuracy of the compressor models, some researchers
moved on to test their models at extrapolation conditions. Both Jahnig et al. [9] and Li [18]
validated their models model’s ability to extrapolate by examining the accuracy of the model
with data in addition to their training data. Aute et al. [19], [20] did similar research with
multiple semi-empirical and empirical models and found that the uses of more empirical
coefficients in compressor models and the current industrial practice to select training data points
in the industry did not inhibit model accuracy at extrapolation significantly. Cheung et al. [21]
examined how extrapolation reduced the accuracy of the estimation of compressor mass flow

rate and power consumption of the 10-coefficient compressor model [5].

While it is well known that the reliability of predicted models can be calculated by uncertainty of
the models [22]-[24], the literature on compressor modeling focused exclusively on improving
the accuracy of the models, including the accuracy of the models at extrapolation. They did not
study how the use of empirical coefficients or introduction of new physical principles in the
models affected the uncertainty and the reliability of the prediction. For example, it is unknown
if the use of equations of state (EoS) for refrigerant property calculation, which usually contains
more empirical coefficients than the compressor models being studied, introduce extra
uncertainties of EoS and reduce the reliability of the prediction. It is also unknown if the addition
of an extra cubic term to a compressor model overfits the training data and hence reduce the
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reliability of the prediction. While Aute et al. [19], [20] and Cheung et al. [21] calculated the
uncertainty of the 10-coefficient compressor model [5] which models the compressor power
consumption, they did not move forward to investigate the change of uncertainties due to a
change in model structure and numerical stability. In general, the change of the extrapolation
capability of a compressor model by introducing extra empirical coefficients or physical

principles in its modeling process is not well understood.

This paper studies the change of compressor model accuracy and reliability with number of
empirical coefficients and physical principles by calculating the uncertainties of various semi-
empirical compressor models and comparing their estimates with experimental data. Compressor
mass flow rate models having different model structure are selected for the comparison. Data of
two compressors with a comprehensive experimental data across their operating ranges are used
to train the models to conduct the comparison. Their model output uncertainties are calculated
primarily based on the uncertainty calculation method in with adjustment for the use of nonlinear
equations and numerical methods in the models [21]. The changes of the model output
uncertainties and accuracy with the uses of empirical coefficients and physical principles in the
models are studied. Recommendations on the number of empirical coefficients and physical
principles in semi-empirical models to model compressors with reasonable model reliability are

given based on the results.

2. General calculation method of model uncertainty

Cheung et al. [21] introduced a scheme to calculate the uncertainty of the estimated compressor
power consumption of the AHRI 10-coefficient polynomial [5] to the true value of the
compressor power consumption. They described how uncertainty of the polynomial can be
calculated from 4 main sources: uncertainty due to inputs, uncertainty due to outputs, uncertainty
due to training data and uncertainty due to model random error. They neglected uncertainty due
to numerical methods and manufacturing and ageing due to the absence of numerical methods in
the study. However, since estimation of regression coefficients of semi-empirical models often
involves numerical methods, uncertainty due to numerical methods is needed in this study.
Hence this study only neglects the uncertainty due to manufacturing and ageing. The overall
uncertainty of the estimated compressor mass flow rate in this study is calculated from the sum

of squares of the components as shown in Equation (1).
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Equation (1) shows that the uncertainties can be decoupled into 5 parts: the uncertainty due to

inputs, the uncertainty due to outputs, the uncertainty due to training data, the uncertainty due to

model random error and the uncertainty due to numerical error. They are presented in Equation

(1) in standard uncertainty forms according to ASME Performance Test Codes 19.1-2003 [24].

When they are calculated based on the 95% confidence level as expanded uncertainties, they

should be calculated with the Student’s t value as shown in Equation (2).
Aﬁ\lcomp,e;vcp = tntmin—q,o.%Afr\lcomp (2)

The following subsections describe the definition of each component of the uncertainty.

2.1 Uncertainty due to inputs

Uncertainty due to inputs are uncertainty propagated from the input variables to the model.
When the models predict their outputs, they acquire input variables that carry uncertainties such
as measurement uncertainties from sensors. The uncertainty of the input variables form part of
the uncertainty of the predicted variables called uncertainty due to inputs, and its calculation
method is originated from Kline and McClintock [25].

2.2 Uncertainty due to outputs

Uncertainty due to outputs is a result of using measured values of model output variables instead
of their true values to estimate the coefficients of the models. While the model should be used to
estimate the true values of the output variable, it is trained by measured values and hence
estimates the measured value of the output variables instead with a difference to the true value of
the output variable. This difference is quantified by the uncertainty due to outputs, and their
values depend on the magnitude of the model estimation and the uncertainty of the sensor that

measures the model output variables used in the training data.

2.3 Uncertainty due to training data

Uncertainty due to training data is the propagation of uncertainties of the variables in the training
data through the estimated coefficients to the model prediction results. It differs from the
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uncertainty due to inputs that the uncertainty due to inputs propagates to the model prediction
result directly without propagating through the estimated coefficients. It is calculated by
multiplying the derivatives of the model prediction output with the regression coefficients with
the uncertainties of the measurement in the training data. However, regression coefficients in
semi-empirical models are usually estimated by implicit numerical solvers that cannot be
differentiated analytically, and the uncertainty due to training data is calculated by estimating the

derivatives by finite difference method [26].

2.4 Uncertainty due to model random error

Cheung et al. [21] described the uncertainty due to model random error as the uncertainty
propagated from the uncertainty between the true values and estimated values of the regression
coefficients. If the training data point includes all possible inputs to the model, the uncertainty
due to model random error is the accuracy of the model. However, the number of training data
points in this case will be infinite and the data set will become impossible to obtain. Hence one
can only obtain a sample of the population as the training data to estimate the regression
coefficients. The model random error hence consists of uncertainty due to the
incomprehensiveness of the training data and the accuracy of the model at the training data
points. This uncertainty component is necessary to quantify the effect of extrapolation on model
uncertainty as shown in [21].

2.5 Uncertainty due to numerical method

The uncertainty due to numerical method is usually neglected in linear equations because linear
equations do not involve any numerical methods. However, estimation of regression coefficients
in semi-empirical models often involves implicit numerical methods that iterates to convergence.
Hence the estimated regression coefficients carry an uncertainty due to iteration that can be
calculated by the Eigenvalue method [27]. If the estimation process involves discretization such
as finite difference method, the uncertainty due to discretization of the regression coefficients is
also needed and is calculated by Richardson extrapolation [27]. Both the uncertainty due to
iteration and the uncertainty due to discretization are propagated to the model prediction by the
uncertainty propagation method in [25].
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3. Compressor mass flow rate models

In this study, five different models representing different levels of applications of empirical
coefficients and physical principles are selected. The selection is limited to models that only use
compressor suction temperature, compressor suction pressure and compressor discharge pressure
as their model inputs for a fair comparison. Since all of them are all more non-linear than the
model evaluated in [21] to account for uncertainty due to superheat correction and nonlinear
regression, the mathematical formula of the uncertainty calculation methods of these models are

slightly modified from that in [21] and are shown in the Appendix for reference.

3.1 Model I: 10-coefficient polynomial with superheat adjustment [5], [28]

ANSI/AHRI Standard 540-2004 [5] describes a 10-coefficient cubic polynomial to model

compressor mass flow rate as shown in Equation (3).

Meomprac = Bo + BiTaew,suc + BaTaew.ais + BsTdew suc + BaTaew sucTaew,ais (3)

+ BsTgew,ais + BeTdew,suc + BrTdew sucTaew,dis

+ BsTaew,sucTaew,ais + BoTdew,ais
Regression coefficients in Equation (3) can be estimated by linear regression with compressor
calorimeter data at a rated compression suction superheat (difference between the compressor
suction temperature and compressor suction dewpoint), and Equation (3) can be used to estimate
a rated compressor mass flow rate at the given compressor suction and discharge dewpoint
temperature. To estimate the mass flow rate at superheat values other than the rated value, Dabiri
and Rice [28] obtained an empirical relation Equation (4) to adjust the rated compressor mass

flow rate.

fi\lcomp,l = ﬁ\lcomp,rat (1 + 31001 (Tsucr Rsuc)) (4)

pS‘LLC (TS‘LLC' PS‘LLC) _ 1 (5)
psuc,rat (RS"U.C)

B, in Equation (4) was given as 0.75 in [28] though they reported that it ranged between 0.62

61 (Tsuc' Psuc) =

and 0.75. To facilitate the uncertainty propagation of the uncertainty of £, to the uncertainty of

the estimated mass flow rate, its value is taken as 0.685 with an uncertainty +0.065 in this paper.
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3.2 Model II: Model with volumetric efficiency estimated by a polynomial [1]

One of the simplest and most common methods to model compressor mass flow rate is to
consider the actual mass flow rate as a fraction of mass flow rate of an ideal compression process

as Equation (6).
ﬁ\lcomp = ﬁvolpsuchd (6)

Rasmussen and Jakobsen [1] described that the volumetric efficiency in Equation (6) can be
modeled by a quadratic polynomial of discharge and suction dew point temperature. By
considering the compressor displacement volume and rotational speed to be constant for single-
speed compressors, a model of mass flow rate can be written as Equation (7).

ﬁ\lcomp,ll = Psuc (Tsuw Psuc)ez (Tdew,suc' Tdew,dis) (7)
= Psuc (Tsucr Psuc)(.éo + .BAleew,suc + 32Tdew,dis + B3Tc%ew,suc

+ B4Tdew,suchew,dis + BSTc%ew,dis)
Regression coefficients in Equation (7) can be estimated by linear regression with the ratio of

mass flow rate to suction density as the dependent variable of the regression equation.

Model Il is a semi-empirical model and is less empirical than Model | due to its lower-order
polynomial structure and the use of the physical principle Equation (6) to account for the effect

of superheat.

3.3 Model III: Reciprocating compressor mass flow rate model based on
adiabatic compression [9]

Jahnig et al. [9] modeled the volumetric efficiency in Equation (6) by adiabatic compression and

the pressure drop at the compression suction. The resultant equation is Equation (8).

ﬁ\lcomp,lll (8)

2 (Cv(Tsuc:Psuc)/Cp (Tsuc:Psuc))
dis ) 1
Psuc ( 1- ﬁ 2) ] >

Constrained optimization is used to estimate the regression coefficients in Equation (8) which

= Psuc(Tsuc) Psuc)ﬁo <1 - Bl [(

minimizes the objective function Equation (9).
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1 Ntrain - ) 2
0= z (mcomp,i - mcomp,train,i) (9)

ntrainmcomp,rat i=1
where the rated mass flow rate in Equation (9) is the average of the measured mass flow rates in

the training data.

The objective function Equation (9) is a dimensionless average of the squared differences
between the estimated and measured mass flow rate, and a set of regression coefficients that
minimizes Equation (9) is presumed to be accurate to estimate the compressor mass flow rate by
Equation (8). Sequential Least Square (SLSQP) method [29], which is an implicit and iterative
constrained optimization method, is used to find the regression coefficients that minimizes

Equation (9) with initial guesses and constraints in Table 1.

Table 1 Initial guesses and constraints to the regression coefficients in model 111

Coefficients | Initial guess Constraints

A~

Lo Ratio of measured rated mass flow rate to | Greater than 0
average compressor suction density in the
training data

B, 0 Greater than O

B, 0 Between 0 and 0.1

The optimization process is set to terminate when Equation (9) change less than 102 kg?s

between iterations. The estimation process can be written as a function in Equation (10).

.8 = 93 (Tsuc,train' Psuc,train: Pdis,trainr h) (10)

Equation (10) shows an extra input h to the regression coefficient estimation process in addition
to the training data. This is a threshold used by the SLSQP method to estimate the derivatives of
Equation (9) with respect to the regression coefficients by finite difference method [26]. It is

determined by conducting a convergence analysis with Equation (10).

Model 111 is less empirical than Model Il because it includes adiabatic compression and suction

pressure drop in its modeling process.
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3.5 Model IV: Mass flow rate model based on adiabatic compression and back

leakage losses

Arora [14], Zakula et al. [15] and Cheung and Braun [16] noted that a back leakage loss term
could be added to compressor mass flow rate model. This idea was used to add a new physical
consideration to Model 111 to create a new compressor mass flow rate model, and the resultant
model is shown by Equation (11).

fﬁcomp,lv = psuc(Tsuc' Psuc)ﬁo 1- Bl

/Py
~Ps (P ls)
suc

The method to estimate the regression coefficients in Model 1V is the same as that of Model 111

( Pdis >(Cv(TsquPsuc)/Cp (Tsuc’Psuc)) 4 (11)
Psuc (1 - ﬁ 2)

with the exception that 5 in Equation (11) is restricted to be positive and its initial guess is zero.

Model 1V is less empirical than Model 111 because of its back leakage loss model in addition to

all physical principles considered in Model I1I.

3.6 Model V: Compressor mass flow rate model based on isentropic

compression

Zakula et al. [15] proposed another variant of Model I11 by assuming isentropic compression
instead of adiabatic compression to model compressor mass flow rate. To compare Model 111 and
V with the same number of physical principles, the model in Zakula et al. [15] was modified, and
the resultant model is shown by Equations (12), (13) and (14).

(L)W _ 1])] 12)
Psuc (1 - [?2)

In (%)/ (13)
In (@)

psuc

fﬁcomp,V = Psuc [ﬁo <1 - Bl

€is =
Psuc = p(Pdis» S = S(Tsyc Rﬁuc)) (14)

The method to estimate the regression coefficients in model 1V is the same as that of Model I11.
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3.7 Summary

To summarize the difference between the models, Table 2 is created.

Table 2 Summary of the characteristics of the compressor mass flow rate models

Model Number of Physical principles involved
regression

coefficients

Model | 11 a. Tuning of mass flow rate by compressor suction density
Model Il | 6 a. Definition of compressor volumetric efficiency
Model 1I1 |3 a. Definition of compressor volumetric efficiency

b. Adiabatic compression

c. Compressor suction pressure loss

Model IV |4 a. Definition of compressor volumetric efficiency
b. Adiabatic compression
c. Compressor suction pressure loss
d. Compressor back leakage loss

Model V|3 a. Definition of compressor volumetric efficiency

b. Isentropic compression

o

. Compressor suction pressure loss

In Table 2, it can be seen that model I is the most empirical model because it contains 11
regression coefficients to form a cubic polynomial. It is only supported by one physical principle
that governs the change of mass flow rate due to a change of compressor suction superheat.
Model 11 is the second most empirical model with a more comprehensive physical principle and
fewer regression coefficients than Model I. Models I11 and V are less empirical than Models |
and Il with more physical principles and fewer regression coefficients, and most of their
regression coefficients are related to the physical principles. Model 1V is the least empirical
model because it involves more physical principles than other models that it contains more

regression coefficients than Models 111 and V to account for the mechanism in the principles.
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4. Experimental data

To demonstrate how the reliability of the model outputs changes with the number of empirical
coefficients and physical principles in the compressor mass flow rate models, experimental data
of compressor performance that are comprehensively tested is needed for verification. However,
since it is unclear which data from the industrial catalog are being created by calorimeter tests
instead of Model | [19], only data that are documented with calorimeter testing procedure can be
used to avoid giving unfair advantages to Model 1. In this study, the calorimeter data of two

compressors were used [30], [31]. Their specification is shown in

Table 3.
Table 3 Specification of compressors in experimental setups
Compressor 1 Compressor 2

Type Hermetic scroll Hermetic scroll
Displacement volume 20.3 cm® rev’! 51.0 cm® rev'?
Rated power consumption | 2.17 kW 3.32 kW
Rated mass flow rate 0.0396 kgs™ 0.0624 kgs™
Refrigerant R410A R404A

The compressors were tested according to ANSI/ASHRAE Standard 23.1-2010 [32] under
various compressor suction and discharge dewpoint with compressor suction superheat at 11.1K

and 22.2K and compressor suction temperature at 18.3°C as shown in Figure 1.

65

g:n 60
© .
K- === Operating Range
g 55 /
T 50 /
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wv
o 45 /
)

e, 40
5
- 35
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g. 25 / and 22.2K and compressor
2 20 T . . suction temperature at
e 3

-15 5 5 15 18.3K

Dewpoint at compressor suction [°C]
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All data with compressor
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and 22.2K and compressor
suction temperature at
18.3°C

Figure 1 Illustration of compressor calorimeter operating conditions of (a) Compressor 1

and (b) Compressor 2

At each operating condition, its suction and discharge temperature, suction and discharge

pressure, refrigerant mass flow rate and power consumption are measured. The apparatus used to

conduct the measurement is tabulated in Table 4.

Table 4 Measurement apparatus in the compressor calorimeter test

Sensor Measurand Uncertainty
Resistance temperature Compressor suction and +0.2K
detector discharge temperature

Coriolis mass flowmeter Refrigerant mass flow rate +0.1%

Pressure transmitter with full
scale at 5,171kPa

Compressor discharge

pressure

+0.25% full scale

Pressure transmitter with full
scale at 1,378kPa

Compressor suction pressure

+0.25% full scale

Other details of the tests can be seen in [30], [31].
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5. Evaluation methodology

To compare the reliability between models, the models are first trained by training data selected
according to the rules of thumb of the compressor industry. The operating conditions of the

training data of the two compressors are given in Figure 2.

65
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Dewpoint at compressor discharge [°C]

(b)

Figure 2 Testing conditions of training data in demonstration scenarios of (a) Compressor
1 and (b) Compressor 2

Figure 2 shows 14 training data points with constant compressor suction superheat at 11.1K

scattered across the entire operating range of both compressors. Their compressor suction
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superheat was maintained at constant 11.1K to satisfy the training data requirement of constant
compressor suction superheat of model I, and only 14 data points were selected because this was
the minimum number of data points used by compressor manufacturers to create Model |
according to the survey in [19]. The selection of the operating data points in Figure 2 is arbitrary
with reference to the results in [19] so as to imitate how the compressor manufacturers choose

training data points for compressor models.

After selecting the training data, the regression coefficients of the compressor models are
estimated by methods specified in Section 3. The models are then used to estimate the
compressor mass flow rates and their uncertainties at all operating conditions in Figure 2. The
uncertainties calculated are compared with the accuracy of the models. This examines the impact
of the use of empirical coefficients and physical principles to the accuracy and reliability of the
model prediction. Further details of the effect of extrapolation on the accuracy of the models can

be found in the supplementary materials.

6. Results and discussion

To examine the change of uncertainties of various models, the expanded uncertainty components

and the overall uncertainty of various models at all operating conditions are plotted in Figure 3.

Uncertainty due to Uncertainty due to Uncertainty due to [ Uncertainty due to Uncertainty due to Uncertainty due to
inputs outputs iteration . nputs B outputs B2 teration
Uncertainty due to Uncertainty dueto ~ EEEE Overall uncertaint Uncertainty due to Uncertainty dueto BB Overall uncertainty
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Figure 3 Average expanded uncertainties and their components under all operating
conditions of (a) Compressor 1 and (b) Compressor 2
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Figure 3 shows that Model I yields the highest uncertainty for both compressors. Although
Model I is the most empirical model and should be mostly subjected to extrapolation with a high
uncertainty due to model random error among all models, its uncertainty due to model random
error is low comparing to other models. This is caused by its high accuracy at training data
points. However, it is less reliable than other models with higher overall uncertainty due to its
complex polynomial structure and hence high uncertainty due to inputs and training data. In
contrast, Model I1, which is a bi-quadratic equation, yields a much smaller uncertainty due to
inputs and training data for both compressors. Hence the use of too many regression coefficients

in compressor models reduces the reliability of its estimation.

Similar phenomenon of model redundancy also appears in models based on physical principles
as shown by the uncertainty of Model 11l and 1V in Figure 3. The overall uncertainty of Model
IV is higher than that of Model 111 for Compressor 1 but vice versa for Compressor 2. This can
be explained by the model accuracy as quantified in Table 5.

Table 5 Coefficients of determination (R?) of various models calculated based on data from
all operating conditions

Type Compressor 1 Compressor 2
Model | 0.9988 0.9976
Model 11 0.9991 0.9991
Model 111 0.9977 0.9983
Model IV 0.9977 0.9987
Model V 0.9982 0.9991

Coefficient of determination (R?) in Table 5 is commonly used to assess how accurate the
estimated mass flow rates are [33]. A smaller R means less accurate prediction, and it is

calculated by Equation (15).

—~

n . . 2
2 izl(mcomp,i - mcomp,i) (15)
R? =1- >
n . n s
i=1 (mcomp,i T n&i=1 mcomp,i)
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Table 5 shows that Model IV is as accurate as Model 111 for Compressor 1 but is more accurate
than Model 111 for Compressor 2. For Compressor 1, the additional physical rule about back
leakage loss in Model 1V cannot improve the accuracy of estimation for Compressor 1, and this
redundancy increases the uncertainty of its estimation. For Compressor 2, the additional physical
rule in Model IV improves the accuracy of the model and reduces the uncertainty due to training
data of Model IV for Compressor 2. This shows that physical rules that do not help explaining

the data are also redundant for the model and may reduce the reliability of the models.

Figure 3 also shows that nonlinear models with estimated regression coefficients do not suffer
from numerical issues. Despite the use of numerical methods to estimate regression coefficients
for Models I11, 1V and V, none of them show significant uncertainties due to discretization or
iteration in Figure 3. A more in-depth investigation shows that the maximum uncertainty due to
numerical methods is in the order of 108 kgs* which is much smaller than other uncertainty

components in Figure 3.

Figure 3 and Table 5 illustrate an issue about the calculation method of uncertainty in this study.
Model V is only less accurate than Model Il for Compressor 1 and is one of the most accurate
models for Compressor 2 according to Table 5, but its average uncertainty is only lower than that
of Model I according to Figure 3. As shown in Figure 3, the high uncertainty of Model V is
primarily because of its high uncertainty due to model random error whereas other uncertainty
components of Model V are similar to Model 11, 11l and IV. The reason for its high uncertainty
for Compressor 1 lies in its accuracy over the training data points as shown in Table 6.

Table 6 Coefficients of determination (R?) calculated based on data from operating
conditions of the training data

Type Compressor 1 Compressor 2
Model | 0.9999 0.9999
Model 11 0.9998 0.9995
Model 111 0.9991 0.9988
Model IV 0.9991 0.9989
Model V 0.9983 0.9990

Postprint to International Journal of Refrigeration 19|Page



Table 6 shows that the accuracy of Model V in Compressor 1 is much lower than other models.

This is different from that in Table 5 which shows that Model V is more accurate than Model 111
and IV when all experimental data points are considered. The low accuracy of Model V over its
training data points overestimates the uncertainty due to model random error of Model V in

Figure 3. Hence the overall uncertainty of Model V of Compressor 1 is overestimated.

The high uncertainty of Model V for Compressor 2 in Figure 3 can be studied by investigating
the uncertainty components of the models over the training data points only as shown in Figure
4.

lf:;sgamtyduem UﬂTﬁ:rutgmty due to L:tnecrggigwtydue to - Lll:;aréamtydueta vl LérLithlasmtyduem = L‘!tnec’(;lt'fg:‘tyduem
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Model | Model Il Model Il Model IV Model V Model I Model Il Model lll Model IV Model V

Figure 4 Average expanded uncertainties and their components under training data point
conditions of (a) Compressor 1 and (b) Compressor 2

Figure 4 shows that the uncertainties due to model random error of both Models I and V for
Compressor 2 are significantly lower than that in Figure 3. This shows that both models are
subjected to extrapolation issues in their estimation of mass flow rate of Compressor 2, and more
training data at different operating conditions are needed to ensure the reliability of the two
models. To verify this claim, the models of Compressor 2 are re-trained with extra data points at

the top-left handed corner of the operating range as shown in Figure 5.
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Figure 5 New testing conditions of training data with more data points on the top left-
handed corner than that in Figure 2 to re-train models of Compressor 2

The results of the re-training are shown in Figure 6.
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Figure 6 Average expanded uncertainties and their components under (a) training data
points only and (b) all operating conditions of Compressor 2 after re-training with training

data in Figure 5

Figure 6 shows that the differences of uncertainties of model random error between the training

data points and all data points after re-training are not as significant as that before re-training.

This shows that the new data points mitigate the potential extrapolation issues in both models.
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The most reliable model according to Figure 3 is Model Il for both compressors. Although it
does not contain as many empirical coefficients as Model | or as many physical principles as
Model 11, IV and V that are advocated in current inverse modeling research, it has the least
redundancy in the model structure and is complex enough to model the dependence of the mass
flow rate with the independent variables. This conclusion is reinforced by the results in Table 5
which Model Il is the most accurate model at all operating conditions of both compressors.
Hence Model 11 is the model that is least affected by the randomness in measurement and
extrapolation issues for these two compressors, and the calculation of the uncertainty at all
operating conditions can help to approximate which model has the best accuracy at all operating

conditions with measurement at limited operating conditions only.

1. Conclusions and recommendations

To conclude, the accuracy and reliability of various compressor mass flow rate models under
different number of empirical coefficients and physical principles are evaluated to understand
how the number of empirical coefficients and physical principles used in the models affect the
accuracy and reliability of the models. It is found that redundant model structure, regardless of
its empirical or physical origin, reduces the reliability of the models and may affect the accuracy
of the model over its operating range. Model accuracy and reliability are the best when the
models are constructed with a balance of the number of empirical coefficients and physical
principles. Both empirical and semi-empirical models are subjected to extrapolation as far as the
data are insufficient to explain the phenomenon reliably, and different model forms or extra data
can help to reduce the effect of insufficient data. Based on the quantitative analysis, the

following recommendations can be made:

a. Regression coefficients that do not help improving the model accuracy should be removed to
maintain model reliability, regardless of their physical or empirical origins;

b. Appropriate choices of training data relative to the applicable range of the model can reduce
the extrapolation effect on model reliability;

c. Models created by the same data set are subjected to extrapolation issues differently due to
their different model structure, and the effect of extrapolation to the reliability of the models

is independent of how many physical principles and empirical coefficient the models contain;
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d. Comparison of uncertainty of multiple models at all operating conditions can help to
approximate which model has the best accuracy over the entire operating range, and no

experimental measurement in addition to the training data is needed by using this method.
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Appendix Uncertainty calculation methods of different
compressor mass flow rate models

This appendix describes the modification made to the uncertainty calculation method in [21] in
order to calculate the uncertainty components of the estimated mass flow rate in various models.
These uncertainty components are summed together to calculate the standard uncertainty of the
predicted mass flow rate, which is multiplied with its Student’s t value according to the Student’s

t-distribution to calculate its expanded uncertainty.

A.1 Uncertainty calculation method of Model I

Although Cheung et al. [21] generally described the uncertainty calculation method of Model I, it
did not describe the uncertainty due to superheat correction method in [28] that is often used with
Model I. With the consideration of superheat, the uncertainty components of the predicted mass
flow rate can be written as Equations (16), (17), (18) and (19).

A"lcomzr),l,input (16)
2
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where the formula to calculate the uncertainty component of the rated mass flow rate and the
uncertainty due to equation of state are described in [21]. Since the method does not involve

numerical methods, its uncertainty due to numerical method is zero.

A.2 Uncertainty calculation method of Model II

The calculation method of uncertainty components in Model Il is similar to that of Model I, and
their expressions are shown in Equations (20), (21), (22) and (23).

2
dp (20)
I [psuc (Tsuc’ Psuc)AHZ mput] + [92 aTsuC ATsuc]
A -~ ] — | suc
Meomp,I1input I p
\i [62 = APsuc] + [Apsuc EOSHZ]
aPsuc

AT’i\lcomp,II,output = Psuc (Tsuc' Psuc)Aez,output (21)
ATli\lcomp,ll,train = Psuc (TS‘ILCI Psuc)Aez,train (22)
Aﬁlcomp,ll,model = Psuc (Tsuc' Psuc)Aez,model (23)

where the calculation of uncertainty components of the arbitrary function 8, follows the method
in [21].

A.3 Uncertainty calculation method of Model III

The uncertainty calculation of Model 111 differs from [21] that the mathematical model is a
nonlinear model with regression coefficients estimated by an implicit numerical method. The
formula to calculate the uncertainty components are derived as Equations (24), (25), (26), (27),
(28), (29), (30), (31), (32), (33), (34) and (35).
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The uncertainty due to training data in Equation (26) considers the measurement uncertainty of
the training data, the uncertainty due to equation of state in the training data and the correlation
of uncertainties between data as the same uncertainty source according to JCGM Guide of
Measurement 100-2008 [34]. While its derivatives of the estimated mass flow rate with respect
to the regression coefficients can be calculated analytically, the derivatives of the regression

coefficients with respect to the training data points are approximated by finite difference method.

The uncertainty due to model random error in Equation (27) considers Jacobian leverage instead
of tangential leverage [35] to calculate the uncertainty due to model random error in [21]. This
allows the nonlinearity of the mass flow rate model to be accounted for more accurately.
However, since the original Jacobian leverage is not restricted to be positive and it is impossible
for the uncertainty due to the incomprehensiveness of training data to offset the uncertainty due

to inaccuracy of the model, the Jacobian leverage is limited to be positive in Equation (27).

Equation (32) calculates the uncertainty due to numerical method from two sources: uncertainty

due to discretization in Equation (33) and uncertainty due to iteration in Equation (34).

Uncertainty due to discretization calculates the uncertainty as a result of using thresholds to
approximate derivatives numerically in Equation (10). It is calculated by Richarson
Extrapolation [27] and involves regression coefficients calculated by using a larger threshold and
the order of accuracy of the numerical method using threshold. In this study, the multiplier of the
threshold T is set to 2 and the order of accuracy A of the forward difference method to

approximate derivatives is found to be 1 [26].

Postprint to International Journal of Refrigeration 30|Page



Uncertainty due to iteration calculates the uncertainty as a result of using iterative methods.
Using the Eigenvalue method [27], regression coefficients calculated by fewer and more
iterations are used to calculate the uncertainty due to iteration as shown in Equations (34) and
(35).

A.4 Uncertainty calculation method of Model IV

The formula of the uncertainty calculation of Model IV is slightly different from that of Model
I11 due to the use of the forth coefficients in Equation (16). The difference lies in the calculation
of the Jacobian and Hessian matrices in Equations (29) and (30) to include the forth coefficients.

The new Jacobian and Hessian matrices for Model 1V are shown in Equations (36) and (37).
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A.4 Uncertainty calculation method of Model V

Uncertainty of Model V is calculated similarly as the uncertainty of Model 111 with exceptions
due to the use of the polytropic coefficient in Equations (12), (13) and (14). The difference lies in
the calculation of its uncertainty due to inputs and training data. Its uncertainty due to inputs,

including the uncertainty due to the use of the specific entropy, is calculated by Equation (38).
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The relative uncertainty of specific entropy is the same as that of specific heat capacity according

to their relationship derived from the first and second law of thermodynamics in Equation (39)

[36].

dT Pdv
dS=CvT+T

Its uncertainty due to training data is also modified from E

(39)

quation (26) to include the uncertainty

of the equation of state of the specific entropy, and the resultant formula is Equation (40).
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Effect of extrapolation on the accuracy of the models

While Cheung et al. provides detailed information on how the accuracy of the empirical
compressor map from ANSI/AHRI Standard 540-2004 [1] is reduced by extrapolation [2] and it
is generally understood that extrapolation leads to inaccuracy, the effects of extrapolation to the
accuracy models studied in the paper for the two compressors are not well quantified in the
paper. This section in the supplementary materials discusses the effect of extrapolation of the

models of the two compressors.

Extrapolation of a regression model is the use of the model at operating conditions deviated from
that of the training data. To understand how a compressor model of Compressor 1 and 2 in the
paper extrapolates, the position of the training data points of the compressor mass flow rate

models within the range of available data is shown in Figure 1.
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Figure 1 Hlustration of compressor calorimeter operating conditions of (a) Compressor 1 and
(b) Compressor 2 (identical to Figure 2 in the paper)

If extrapolation reduces the accuracy of a model, the accuracy of the models under the conditions
on the blue solid line in Figure 1 should be less than the accuracy of the models under the
conditions around the center of Figure 1(a) and Figure 1(b). The accuracy of the models at
different data points is quantified by Equation (1).

>

m —m
Relative deviation = ———2 comp 1)

Meomp
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Equation (1) shows the calculation of relative deviation at a data point. The larger the relative

deviation, the less accurate a model is at the specified condition of the data point.

To illustrate the effect of extrapolation on the accuracy of different models, the relative
deviations of different maps at different data points with compressor suction superheat at 11.1K

are plotted in Figure 2.
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Figure 2 Relative deviations of estimation of different models under suction superheat at
11.1K and different compressor suction and discharge dewpoint for Compressor 1
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Figure 3 Relative deviations of estimation of different models under suction superheat at
11.1K and different compressor suction and discharge dewpoint for Compressor 2

At first glance, not much significant deviation can be found in models of Compressor 2 in Figure
3 and only large relative deviations can be found at the edges of Figure 2. However, a close
observation to Figure 3 reveals that large errors always occur at compressor suction temperature

that is absent in the training data points of models of Compressor 2 in Figure 1. This shows that
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the deterioration of model accuracy due to extrapolation occurs in all models of both

compressors.

References
[1] AHRI, ANSI/AHRI Standard 540: 2004 Standard For Performance Rating Of Positive

Displacement Refrigerant Compressors And Compressor Units. Arlington, VA: Air-

Conditioning, Heating and Refrigeration Institute, 2004.

[2] H. Cheung, S. Omer, and C. K. Bach, “A Method to Calculate Uncertainty of Empirical
Compressor Maps with the Consideration of Extrapolation Effect and Choice of Training Data,”

Sci. Technol. Built Environ., 2017.

International Journal of Refrigeration 8|Page





