This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/JTEPBS.0000108.

TE4472

Two-Stage Bicycle Traffic Assignment Model

Seungkyu Ryu ^a, Anthony Chen ^b, Jacqueline Su ^c, Keechoo Choi ^d

ABSTRACT

Cycling has been considered as a healthy, environmentally friendly, and economical alternative mode of travel to motorized vehicles (especially private motorized vehicles). However, bicycles have often been neglected in the transportation planning and travel demand forecasting modeling processes. The current practice in modeling bicycle trips in a network is either non-existent or too simplistic. Current practices are simply based on the all-or-nothing (AON) assignment method using single attributes such as distance, safety, or a composite measure of safety multiplied by distance. The purpose of this paper is to develop a two-stage traffic assignment model by considering key factors (or criteria) in cyclist route choice behavior. As an initial effort, the first stage considers two key criteria (distance-related attributes and safety-related attributes) to generate a set of non-dominated (or efficient) paths. These two criteria are a composite function of subcriteria. Route distance consists of link distances and intersection turning penalties combined to give the distance-related attribute, while route safety makes use of the bicycle level of service (BLOS) measure developed by the Highway Capacity Manual (HCM) to determine the safetyrelated attribute. Efficient paths are generated based on the above two key criteria with a biobjective shortest path algorithm. The second stage determines the flow allocation to the set of efficient paths. Several traffic assignment methods are adopted to determine the flow allocations

^a Department of Transportation Engineering Ajou University, Suwon, 442-749, Korea

^b Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong. Corresponding author: Tel.: 852 3400-8327; Email: anthony.chen@polyu.edu.hk

^c Department of Urban Planning, University of California Los Angeles, Los Angeles, 90095-1656, USA

^d Department of Transportation Engineering Ajou University, Suwon, 442-749, Korea

in a network. Numerical experiments are then conducted to demonstrate the two-stage approach for bicycle traffic assignment. Overall, the results of the Winnipeg network demonstrate the applicability of the two-stage bicycle traffic assignment procedure with the flexibility of using different criteria in the first stage to generate efficient paths and different traffic assignment methods in the second stage to allocate flows.

Keywords: Traffic assignment; bi-objective shortest path; non-dominated (or efficient) routes; cyclist route choice; bicycle

Introduction

Non-motorized modes such as bicycles constitute an important part of a community's transportation system and are vital to the success of transit-oriented developments (TODs). Yet, they have often been ignored in transportation planning and travel demand forecasting modeling, or were at best treated as a byproduct in the planning process. Many cities have begun to invest in and to promote cycling as a healthy, environmentally friendly, and economical alternative mode of travel to motorized vehicles (especially private motorized vehicles) (Northrop, 2011). However, the current practice in modeling bicycle trips in a network is inadequate, in part because cyclist behavior is not yet fully understood. While auto route choice decisions are governed by a single dominate "travel time" factor (as given by the Wardrop's principle (1952)), cyclist route choice decisions are governed by many influential factors.

Many empirical studies on bicycle route choice analysis indicate that cyclists choose routes based on several criteria (e.g., distance, number of intersections, road grade, bike facility, safety, etc.). Stinson and Bhat (2003), Hunt and Abraham (2007), and Broach et al. (2011) found that cyclists are concerned with travel distance or time when making route choice decisions, while Hopkinson and Wardman (1996), Akar and Clifton (2009), Dill and Carr (2003), Winters et al.

(2011) and Lee et al. (2015) indicated that safety played an important role in a cyclist's route decision-making process. Sener et al. (2009) also found that travel distance/time and safety were important factors in cyclists' route choices. Mekuria et al. (2012) suggested that stress is an important factor in the bicycle trip-making behavior. Using Global Positioning System (GPS) tracking data, Hood et al. (2011) developed a path-size logit model (Ben-Akiva and Birelaire, 1999) as a cyclist route choice model and performed the bicycle traffic assignment on a pre-enumerated route set generated by the doubly stochastic method (Bovy and Fiorenzo Catalano, 2007).

Due to the diverse set of influential factors in bicycle travel, many route planners provide a variety of bicycle routes based on different factors (e.g., least elevation gain route, shortest distance route, safest route, least accident route, bike-friendly route, lowest pollution route, route with green space, etc.) to satisfy the requirements of different cyclists (see Table 1 for a list of selected online bicycle trip planners).

Note that all the routes provided by the online bicycle trip planners are based on a single objective to suit individual cyclists' level of biking experience and on a single-dominate criterion affecting the bicycle route choice decision (i.e., shortest route based on distance or safest route based on some measure of safety). These single-criterion routes are not suitable for bicycle traffic assignment because cyclists do not all travel on any one route, but rather on many routes based on different influential factors that can affect cyclist route choice decisions. Currently only a few research efforts focus on network analysis for bicycle trips (e.g., Klobucar and Fricker, 2007; Hood et al., 2011; Mekuria et al., 2012). These methods provide an initial effort to develop a traffic assignment method for bicycle trips, but they are too simplistic. They are simply based on the all-or-nothing (AON) assignment method that uses single attributes such as distance, safety, or a composite measure of safety multiplied by distance.

The purpose of this paper is to develop a two-stage traffic assignment model by considering key factors (or criteria) in cyclist route choice behavior. As an initial effort, the first stage considers two key criteria (distance-related attributes and safety-related attributes) to generate a set of nondominated (or efficient) routes. These two criteria are a composite function of subcriteria (i.e., route distance consists of link distances and intersection delays combined to give the distance related attribute, while route safety makes use of the Highway Capacity Manual (HCM, 2010) bicycle level of service (BLOS) measure which consists of many subcriteria to determine the safety-related attribute. Non-dominated routes are generated based on the above two key criteria in this first stage with a bi-objective shortest path algorithm. The second stage determines the flow allocation to the set of non-dominated routes. Several traffic assignment methods (i.e., equal share assignment, travel distance per benefit of BLOS assignment, reference point assignment, and dominated area assignment) recently adapted by Raith et al. (2014) from operations research for solving the multi-objective traffic assignment problem are adopted to determine the flow allocations in a bicycle network. In addition, the path-size logit model (i.e., a widely adopted random utility model for discrete choice analysis) is modified as a multi-path assignment for the bicycle traffic assignment problem.

This two-stage process is similar to some existing methods (e.g., Hood et al., 2011) that use empirical data for bicycle route generation as a pre-process procedure (i.e., a pre-enumerated route set generated using different route generation methods such as the doubly stochastic method by Bovy and Fiorenzo Catalano (2007) or the breadth-first search link elimination approach by Menghini et al. (2008)) and a standard traffic assignment procedure (i.e., all-ornothing assignment or multi-path assignment) for flow allocation. The two-stage approach adopts a bi-objective shortest path problem based on two key attributes to generate non-dominated routes

and various traffic assignment methods for flow allocation to the non-dominated route sets for each origin-destination pair.

The remainder of this paper is organized as follows. After the introduction, the two-stage bicycle traffic assignment procedure is presented, followed by two numerical experiments to demonstrate the features and applicability of the proposed two-stage procedure, and some concluding remarks.

Two-Stage Bicycle Traffic Assignment Procedure

This section describes the proposed two-stage procedure for bicycle traffic assignment as shown in Fig. 1. In Stage 1, two key criteria, namely route distance and route level of service, are used in a bi-objective shortest path algorithm to generate a set of non-dominated (or efficient) routes. In Stage 2, several traffic assignment methods are adopted to determine the flow allocations to the non-dominated routes generated in Stage 1 to obtain the complete bicycle flows on the network. The following subsections describe the two key cyclist route choice criteria, the bi-objective shortest path algorithm, and several traffic assignment methods for flow allocations to the non-dominated routes.

Two Key Cyclist Route Choice Criteria

Due to the quantity of influential factors in bicycle route choice decisions, using the conventional single objective as the sole criterion for determining the route choice decisions as with private motorized vehicles modeling (i.e., the Wardrop's user equilibrium model based on flow-dependent travel times) may not be adequate in modeling cyclist route choice behavior (Menghini et al., 2010; Kang and Fricker, 2013). From the empirical studies on bicycle route choice reviewed above, two key criteria (distance-related attributes and safety-related attributes) were identified to capture the most important factors affecting cyclist route choice behavior. These

two criteria are a composite function of subcriteria as shown in Fig. 2.

Route distance

Route distance is a composite measure of not only the sum of link distances along the route, but also the turning movement penalties (or delays) at intersections that the route passes through. For bicycle trips, intersection delays have been shown to be a deterrence to cyclist route choice behavior. Since link length and intersection delay measure different qualities (length in meters and time in seconds, respectively), delay is converted to an equivalent distance unit with an appropriate conversion factor. The route distance criterion is computed as follows:

$$d_k^{rs} = \sum_{a \in A} l_a \delta_{ka}^{rs} + \sum_{a \in IN, b \in OUT_i} c f_i^t d_i^t \delta_{ka}^{rs} \delta_{kb}^{rs}, \quad rs \in RS, k \in K_{rs}$$

$$\tag{1}$$

where d_k^{rs} is the distance (in meters) on route k connecting origin-destination (O-D) pair rs; l_a is the length (in meters) on link a; δ_{ka}^{rs} (δ_{kb}^{rs}) is the route-link indicator; 1 if link a (b) is on route k between O-D pair rs and 0; cf_i^r is the penalty conversion factor to equivalent distance unit (in meters/second) for turning movement t at intersection i; d_i^r is the penalty (in seconds) of turning movement t at intersection i; A is the set of links; IN_i and OUT_i are the sets of links terminating into and originating out of intersection i; RS is the set of O-D pairs; and K_{rs} is the set of routes connecting O-D pair rs. The route distance in Eq. (1) can be computed by summing link distances (first term) and intersection penalties (second term) that make up that route. The first term can further include other attributes such as penalty for links with elevation gain or restriction on gradient as shown in Table 1, while the second term can include turning movement penalties and/or signalized delays at intersections (i.e., a pre-determined value for each turning movement and each intersection, which can be obtained from a traffic signal timing plan or estimated from a traffic assignment procedure with the capability of accounting for turning penalties/intersection delays).

Using the intersection turning movement estimation procedure developed by Chen et al. (2012), the turning movement penalty at intersection i is determined by two consecutive route-link indicators $\delta_{ka}^{rs}\delta_{kb}^{rs}$ (i.e., link a and link b along route k between origin r and destination s) without network expansion at each intersection to represent all turning movements. Note that adding nodes and links to the network to model intersection turning movements is a costly scheme. A standard four-leg intersection would require adding 3 nodes and 12 links to model individual turning movements (left, through, and right) for all approaches. For real networks, it will not only increase the size of the network but also increase the route storage, which will subsequently increase the computation burden of route generation in Stage one and flow allocation in Stage two.

Route bicycle level of service

There are numerous measures for assessing the safety aspect of bicycle facilities or the suitability of infrastructure for bicycle travel. Lowry et al. (2012) provided a recent review of thirteen methods used in the literature. All methods attempt to provide a score of the perceived safety of bicycle facilities by using a linear regression with variables that represent conditions of the roadway and the environment that affect a cyclist's comfort level. For this study, the BLOS developed by the Highway Capacity Manual (HCM, 2010) is adopted as a surrogate measure to account for different attributes contributing to the safety of bicycle routes. The BLOS measure is considered as the state-of-the-art method, and has been adopted by many cities in the United States as a guide for bicycle facility design. However, other bicycle safety measures could also be used in the proposed framework for modeling cyclist route choice behavior. The route BLOS measure described in Eq. (2) is a composite measure based on the average bicycle segment (*ABSeg*) score on a route, average bicycle intersection (*ABInt*) score on a route, and average number of unsignalized conflicts/driveways (*Cflt*) per 1.61km (mile) on a route as follows:

$$BLOS = 0.200 \cdot (ABSeg) + 0.030 \cdot (\exp(ABInt)) + 0.050 \cdot (Cflt) + 1.40,$$
(2)

where l_a is the length of link a; $Bseg_a$ is the bicycle segment score of link a; $ABSeg = \sum_{a \in k} l_a \cdot Bseg_a / \sum_{a \in k} l_a$ is the length weighted average bicycle score on route k; $IntBLOS_n$ is the bicycle score of intersection n; N_k is the total number of intersections on route k; and $ABInt = \sum_n IntBLOS_n / N_k$ is the simple intersection average bicycle score on route k.

Note that the segment and intersection bicycle scores ($Bseg_a$ and $IntBLOS_n$) provided in Eqs. (3) and (4) are calibrated based on the volume and speed of motorized vehicles, width configuration of bicycle facilities, pavement conditions, number of intersections, etc. The derived BLOS score is a relative measurement without score units to evaluate the level of comfort on the cycling route. The details of the BLOS development can be found in the National Cooperative Highway Research Program (NCHRP) Report by Dowling et al. (2008).

$$BSeg = 0.507 \ln \left(\frac{V}{4 \cdot PHF \cdot L} \right) + 0.199Fs \left(1 + 10.38 \cdot HV \right)^{2} + 7.066 \left(\frac{1}{PC} \right)^{2} - 0.005(We)^{2} + 0.76$$
 (3)

where V is the directional motorized vehicle volume given in vehicles/hour (vph); PHF is the peak hour factor; L is the total number of directional through lanes; Fs is the effective speed factor; HV is the proportion of heavy vehicles in motorized vehicle volume; PC is the Federal Highway Administration's five-point pavement surface condition rating; and We is the average effective width of outside through lane given in feet (ft).

$$IntBLOS = -0.2144 \cdot Wt + 0.0153 \cdot CD + 0.0066 \left(\frac{Vol15}{L}\right) + 4.1324 \tag{4}$$

where Wt is the width of outside through lane plus paved shoulder (including bike lane where present); CD is the crossing distance (the width of the side street including auxiliary lanes and

median); Vol15 is the volume of directional traffic during a 15-minute period.

The calculation of segment and intersection bicycle scores requires not only the volume and speed of motorized vehicles, which are obtained exogenously by solving the multi-class traffic assignment problem with multiple vehicle types, but also detailed network topology information (e.g., pavement surface condition, average effective width of outside through lane, crossing distance, etc.) as shown in Fig. 3. Note that the interaction effect between motorized and non-motorized vehicles is implicitly accounted for in the BLOS measure, which is used in the first stage for route generation and in the second stage for traffic assignment.

Stage One: Bi-Objective Shortest Path Procedure

Solving the bi-objective shortest path problem is like solving any multi-objective optimization problem as there may not exist a single optimal solution that dominates all other solutions in all objectives. Hence, solving multi-objective problems requires generating a set of non-dominated (or Pareto) solutions. The bi-objective shortest path problem belongs to a class of NP-hard problems (Serafini, 1986). Several solution procedures have been developed to solve this complex problem; these include the label correcting approach (Skriver and Andersen, 2000), the label setting approach (Tung and Chew, 1992), the two-phase method (Ulungu and Teghem, 1995), and the ranking method (Climaco and Martins, 1982).

Of the two objectives (or criteria) considered for bicycle route generation, the route BLOS measure given in Eq. (2) is not a simple additive sum of the link attributes. Instead, route BLOS is a composite measure based on the average segment bicycle score (*ABSeg* given in Eq. (3)) on a route, the average intersection bicycle score (*ABInt* given in Eq. (4)) on a route, the average number of unsignalized conflicts/driveways per 1.61km (mile) (*Cflt*) on a route, and the route-specific constant (1.40). These four terms (*ABSeg*, *ABInt*, *Cflt*, and 1.40) are combined in a non-additive

manner (i.e., not a simple sum of the link/intersection attributes). The handling of non-additive route cost structure (e.g., route BLOS) may not be easy in the bi-objective shortest path problem despite the development of the above solution procedures. In this paper, the ranking method proposed by Climaco and Martins (1982) was modified for solving the multi-objective shortest problem with a non-additive route cost structure. In the ranking method, no weights are needed since the method explicitly generates a set of non-dominated routes. It should be noted that using a weighted-sum approach, which converts the bi-objective (or multi-objective) into a single objective, can only generate one optimal route for a given weight combination. Although multiple routes can be generated by varying the weight combinations, it is well known in the literature that some non-dominated routes in the duality gap may not be generated by any weight combinations (Daskin, 1995).

The overall modified ranking procedure is described in Fig. 4. In the first step, it uses the distance-related attributes (i.e., link distance and intersection turning movement penalty) to generate a set of realistic routes without exceeding the maximum allowable bound. In the second step, the corresponding safety-related attributes are computed for each route in the set to determine the non-dominated routes according to the two key criteria, route distance and route BLOS.

Stage Two: Bicycle Traffic Assignment Methods

Dial (1979) introduced a model and algorithm for the multi-criteria route-choice problem that aims to proportion travel among routes and modes simultaneously as a traffic assignment model. This model has been extended to a bi-objective (or bi-criteria) traffic assignment model by adopting a linear value of time (VOT) to convert travel time to an equivalent monetary unit (Dial, 1996, 1997). Gabriel and Bernstein (1997), on the other hand, adopted a non-linear VOT function for the non-additive traffic equilibrium problem. Nagurney (2000), Nagurney et al. (2001, 2002),

and Nagurney and Dong (2002) introduced variable weights for the multi-criteria traffic assignment problem by assuming a linear generalized cost function for combining the criteria with variable weights. Recently, Raith et al. (2014) adapted four multi-objective methods from operations research for solving the multi-objective traffic assignment problem. Note that these multi-objective traffic assignment methods have not been applied to real transportation networks. In this paper, the authors not only operationalize these methods for solving the bicycle traffic assignment problem, but also compare them to the path-size logit multi-path traffic assignment method, a widely adopted random utility model for route choice analysis. Table 2 provides a summary of the traffic assignment methods for flow allocations in Stage 2.

Equal share assignment (ESA) method

The ESA method evenly allocates the O-D demand to all non-dominated routes as follows:

$$f_k^{rs} = \frac{q_{rs}}{|K_{rs}|} \tag{5}$$

where f_k^{rs} is the flow on route k connecting O-D pair rs; q_{rs} is the demand between O-D pair rs; and $|K_{rs}|$ is the number of routes in O-D pair rs. Hence, each non-dominated route in O-D pair rs has an equal share of the O-D demand.

Travel distance per benefit of BLOS assignment (TBA) method

The TBA method allocates the O-D demand according to the distribution of travel distance per benefit of BLOS relative to the shortest distance route. The slopes (ρ) between the shortest distance route and other non-dominated routes in the Pareto set represent the travel distance per benefit of BLOS. With the computed slopes, ρ , route choice probabilities can be obtained from a predetermined distribution function as follows.

- Compute ρ_k^{rs} between the shortest distance route \overline{k}_{rs} and other non-dominated routes k of O-D pair rs
- Compute route choice probability with ho_k^{rs}

$$\Pr[\overline{k}_{rs}] = \Pr[0 \le \rho_{\overline{k}}^{rs} < \rho_{\overline{k}+1}^{rs}] = \int_{0}^{\rho_{\overline{k}+1}^{rs}} f(\rho) \, d\rho$$

$$\Pr[k_{rs}] = \Pr[\rho_k^{rs} \le \rho_k^{rs} < \rho_{k+1}^{rs}] = \int_{\rho_k^{rs}}^{\rho_{k+1}^{rs}} f(\rho) \ d\rho$$

$$ightharpoonup \Pr[|K_{rs}|] = 1 - \sum_{k=1}^{|K_{rs}|-1} \Pr[k_{rs}]$$

Reference point assignment (RPA) method

The RPA method allocates the O-D demand based on route attractiveness. Route attractiveness is determined by the Euclidean distance (ε) to the reference point (i.e., a virtual or an ideal point), and the route choice probability is determined by the computed route attractiveness. Raith *et al.* (2014) suggested the following three different probability functions:

$$P_k^{rs} = \frac{\sum_{l=1} \varepsilon_l^{rs} - \varepsilon_k^{rs}}{\left(\left|K_{rs}\right| - 1\right) \sum_{l=1} \varepsilon_l^{rs}}$$
(6)

$$P_k^{rs} = \frac{\sum_{l=1} \left(\varepsilon_l^{rs}\right)^2 - \left(\varepsilon_k^{rs}\right)^2}{\left(\left|K_{rs}\right| - 1\right)\sum_{l=1} \left(\varepsilon_l^{rs}\right)^2}$$
(7)

$$P_k^{rs} = \frac{\prod_{l \neq k} \mathcal{E}_l^{rs}}{\sum_{l_1 = l} \left(\prod_{l_2 \neq l_1} \mathcal{E}_{l_2}^{rs}\right)} \tag{8}$$

The first function given in Eq. (6) is a sum-based approach. The target ε_k^{rs} is extracted from

the sum of all routes $\sum_{l=1}^{rs} \varepsilon_l^{rs}$, and the probability can be determined by dividing the total Euclidean distance of all routes weighted by the number of routes minus the target route. Alternatively, the probability can be computed based on the squares sum as shown in Eq. (7). Finally, the product approach is introduced in Eq. (8).

Dominated area assignment (DAA) method

The DAA method allocates the O-D demand to the probability obtained from the share space computed with both objective values. See Fig. 5 for an illustration of the share space and route choice probability.

Path-size logit assignment (PSLA) method

The PSLA method allocates the O-D demand based on the combined utilities of two objectives via the path size logit (PSL) choice function. The multinomial logit (MNL) model is a widely used route choice model under the random utility principle. However, it is well known that the major drawback in applying the MNL model to the route choice problem is the inability to account for overlapping (or correlation) among routes. Ben-Akiva and Bierlaire (1999) proposed the PSL model as an alternative to solve the route overlapping problem in MNL. The closed-form probability of PSL is expressed as follows:

$$P_k^{rs} = \frac{PS_k^{rs} \cdot \exp\left(U_k^{rs}\right)}{\sum_{j=1}^n PS_j^{rs} \cdot \exp\left(U_j^{rs}\right)}, \ \forall \ k \in K_{rs}, \ rs \in RS$$

$$(9)$$

where

$$U_k^{rs} = -\left(\left(d_k^{rs}\right)^{\alpha} \cdot \left(BLOS_k^{rs}\right)^{\beta}\right)$$
 is the utility of route k between O-D pair rs ;

$$PS_k^{rs} = \sum_{a \in k} \left(\frac{l_a}{L_k^{rs}} \right) \cdot \left(\frac{1}{\sum_{l \in K_{rs}} \delta_{la}^{rs}} \right) \text{ is the path-size factor of route } k \text{ between O-D pair } rs; \ L_k^{rs} \text{ is the length}$$

on route k between O-D pair rs; and l_a is the length of link a.

Numerical Results

To demonstrate the proposed two-stage bicycle traffic assignment procedure, two networks are adopted in the numerical experiments. First, a simple network is used to illustrate the features of the different traffic assignment methods. Then, a real network is employed to demonstrate the applicability of the two-stage procedure.

Simple Network

The network shown in Fig. 6 is used to illustrate the features of different traffic assignment methods for bicycle trips. To simplify the analysis, the authors assume both objectives (i.e., distance and BLOS) are obtained from a prior analysis. In the left panel, the numbers in parentheses next to each link number are the link distance (in meters) and link BLOS, while the turning delay and intersection BLOS are provided in the right panel. The travel demand from node 1 to node 5 is 10 trips.

Using the link characteristics above, the route distance and route BLOS can be computed as shown in Fig. 7. In this experiment, there are five dominated routes (i.e., Routes 2, 3, 7, 8, and 9) and four non-dominated routes: Route 1 is the shortest distance route; Route 4 has the lowest BLOS score (i.e., a lower BLOS score means a higher level of service); and Route 5 and Route 6 are non-dominated routes between the two extremes (i.e., have route distance and route BLOS between the shortest distance route and the least BLOS route).

Comparison of five bicycle traffic assignment methods

Using these generated non-dominated routes, the following bicycle traffic assignment methods

are performed:

- ESA: Uniformly allocate the O-D demand to the four non-dominated routes.
- TBA: Gamma distribution with shape (k) = 2.00, scale $(\theta) = 2.97$ (i.e., assumed parameters that yield the probability $\Pr[\rho \le 10.0] = 85\%$).
- RPA: Route distance and route BLOS for the reference point are 5.0 and 1.90,
 respectively.
- DAA: Maximum distance is 15.0 and maximum route BLOS is 5.0
- PSLA: parameters $\alpha = 0.862$, $\beta = 0.117$ of the utility function (obtained from Kang and Fricker, 2013)

Table 3 provides a comparison of allocated flows using the five traffic assignment methods for bicycle trips. From the table, all methods allocate more flows to the shortest distance route (Route 1) except for the ESA and DAA methods. As mentioned, the ESA method allocates an equal amount of flows to all four non-dominated routes regardless of the objective values on the routes, while the DAA method allocates flows according to the share space of the route, which is sensitive to the maximum objective values of the extreme supported routes. The TBA and RPA methods allocate flows to the non-dominated routes using the objective values (i.e., route distance and route BLOS) in different ways. In the TBA method, the O-D demands are allocated according to the distribution of travel distance per unit of better BLOS compared to the shortest distance route. It enables the flow allocation to non-supported routes (non-convex points) and non-extreme supported routes. As for the RPA method, it uses the three probability functions given in Eqs. (6) to (8) to allocate the O-D demand based on route attractiveness determined by the Euclidean distance to the reference point. It is intuitive and easy to modify the shares of demand allocated to each non-dominated route. However, both methods do not explicitly consider actual cyclist route

choice behavior (i.e., no calibration). The PSLA method, on the other hand, requires additional survey and parameter calibration to fit the cyclists' choice to the two key criteria. In this study, the authors adopt the parameter values from Kang and Fricker (2013). From Table 3, it seems that both TBA and RPA using Eq. (8) can produce allocated flow results like that of the PSLA model. In summary, the ESA and DAA methods, albeit simple, are not suitable for modeling cyclists' route choice behavior since it either does not consider the objective values or it is sensitive to the maximum values when allocating flows to the non-dominated routes. The TBA, RPA using Eq. (8), and PSLA methods seem to produce flow patterns that not only account for the objective values but also reflect cyclist route choice behavior.

Sensitivity analysis with different parameters of the TBA, RPA and PSLA methods

The above analysis indicates that the ESA and DAA methods are inadequate for the biobjective bicycle traffic assignment problem. In the following analyses, several sensitivity tests
with different parameters using the TBA, RPA, and PSLA methods are conducted to examine how
the parameters affect the route flow allocations. For each assignment method shown in Fig. 8, a
figure and a table are used to illustrate the effect of the parameter setting on the assignment method
and flow allocation to the non-dominated routes, respectively.

Three cases of the shape and scale parameters of the gamma probability function for TBA (i.e., Case 1: k=2.0 and θ =2.97; Case 2: k=2.0 and θ =1.48; Case 3: k=2.0 and θ =4.45), three cases of the reference point for RPA (i.e., Case 1=(5.0, 1.9); Case 2=(5.0, 2.1); Case 3=(8.0, 1.9)), and three cases of the two parameters of the utility function for PSLA (i.e., Case 1: α = 0.862, β = 0.117; Case 2: α =1.362, β = 0.117; Case 3: α = 0.862, β =1.117) are performed.

As the probability of $Pr[\rho < 10.0]$ increases in the TBA method (i.e., from 65% in Case 3 to

85% in Case 1 and from 85% in Case 1 to 99% in Case 2), the flow on the shortest route (i.e., Route 1) is significantly increased from 3.07 in Case 3 to 4.99 in Case 1 and from 4.99 in Case 1 to 8.48 in Case 2. Compared to other routes, the flow on Route 1 was more highly affected by the adopted parameter values of the assumed gamma distribution. In the RPA method, the allocated flows are also sensitive to different reference points for calculating route attractiveness. Because route attractiveness is determined by the Euclidean distance to the reference point and because the probability is determined by the route attractiveness relative to the attractiveness of other routes, a non-dominated route closer to the reference point would have a higher probability. For the PSLA method, it appears that the distance parameter has a higher impact than the BLOS parameter in the utility function. That is, increasing α from 0.862 in Cases 1 and 3 to 1.362 in Case 2 significantly increases the probability of Route 1 from 0.604 in Case 1 and from 0.577 in Case 3 to 0.914 in Case 2, while increasing β from 0.117 in Cases 1 and 2 to 1.117 in Case 3 only increases the probability of Route 5 from 0.306 in Case 1 and from 0.086 in Case 2 to 0.355 in Case 3. Overall, all three methods seem to be sensitive to the parameter setting with respect to its assignment method.

Comparison between bi-criteria and single-criterion assignment results

In this section, the authors compare the link flow pattern between three bi-criteria assignment methods (i.e., TBA, RPA, and PSLA) and two existing single-criterion all-or nothing (AON) assignments using route distance and route BLOS (i.e., AON-Distance and AON-BLOS). The mean absolute error (MAE) and the root-mean-square error (RMSE) are adopted as statistical measures for assessing the link flow differences between each pair of methods. In Fig. 9, RMSE values are shown in the upper-half triangle, while the MAE values are shown in the lower-half triangle. The magnitude of the error is indicated by the size of the circle (i.e., a larger circle is

associated with a larger error). In general, there is a difference between the single-criterion and bicriteria assignment methods as indicated the larger RMSE (first three columns of the first two rows)
and MAE (last three rows of the last two columns) values, implying that the number of criteria
used to generate routes and allocate flows is an important factor. Within the three bi-criteria
assignment methods, RPA and PSLA methods have a more similar link flow pattern as indicated
the lower RMSE and MAE values (i.e., 4.80 and 2.09). As for the two single-criterion AON
assignment methods, the link flow patterns are quite different as indicated by the highest RMSE
and MAE values (i.e., 41.91 and 19.64), implying the two criteria (route distance and route BLOS)
give quite different routes which lead to quite different assignment results.

Winnipeg Network

In this section, the two-stage approach is applied to a real network in the City of Winnipeg, Canada. The Winnipeg network, shown in Fig. 10, consists of 154 zones, 1,067 nodes, 2,555 links (1943 links without centroid connectors), and 4,345 O-D pairs for motorized vehicles. The network structure, O-D trip table for motorized vehicles, and link performance parameters are from the Emme/4 software (INRO Consultants, 2013). The bicycle network is assembled based on information obtained from the City of Winnipeg (2013a). Among the 2,555 links, 541 links include bike routes or bike lanes. Using the 2006 census data (City of Winnipeg, 2013b), the bicycle O-D demand is created based on the gravity model with the gamma function.

The two-stage bicycle traffic assignment procedure is coded in Intel Visual FORTRAN XE and runs on a 3.60 GigaHertz (GHz) processor and 16.00GB of Random Access Memory (RAM). The total computational efforts required was 610-620 seconds for different assignment problems, about 95% of which is spent in the first stage.

Stage one: bicycle BLOS analysis and route generation results

Fig. 11 shows the generated route results in the Winnipeg network. To compute the BLOS measures in Eqs. (3) and (4), traffic conditions (e.g., motorized vehicle volumes) and space availability (e.g., lane width) are obtained from the multi-class traffic assignment results provided by Emme/4 software and Google Earth, respectively. A segment with a high motorized vehicle volume typically gives a higher BLOS value, while links with a larger outside lane width typically give a lower BLOS value. After evaluating the BLOS measures, the modified rank method is performed to generate the non-dominated routes in terms of route distance and route BLOS for each O-D pair in the Winnipeg network (see Figs. 11(a) and 11(b)). In total, there are 58,846 non-dominated routes. Longer distance O-D pairs typically have more non-dominated routes, while shorter distance O-D pairs have less non-dominated routes. As for the route distribution in terms of BLOS, most routes are between 2.5 and 4.0, which correspond to BLOS of B, C, and D. Fig. 11(c) provides an illustration of the non-dominated routes for O-D pair (1-8). Route 1 has the shortest distance (1.11 km) and the worst BLOS (3.5), while Route 5 has the best BLOS (2.6) and the longest distance (1.58 km).

Stage two: Bicycle traffic assignment results

Using the generated non-dominated routes in the first stage, three bicycle traffic assignment methods are performed: TBA, RPA with Eq. (8), and PSLA with the following assumed parameters:

- TBA: Gamma distribution with $\alpha = 1.50$; $\beta = 0.32$ (i.e., the assumed parameters give the following $\Pr[\rho \le 1.0 \text{ (km per BLOS)}] = 90\%$).
- RPA: Route distance and route BLOS for the reference point are $\min \left\{ d_k^{rs} \right\}$ and $\min \left\{ BLOS_k^{rs} \right\}$.
- PSLA: Parameters for the utility function are $\alpha = 0.862$; $\beta = 0.117$ (from Kang and Fricker, 2013).

Figs. 12(a), 12(b), and 12(c) depict the link flow patterns of TBA, RPA, and PSLA, while Fig. 12(d) compares the link flow distributions of the three assignment methods. Visually, the three link flow patterns look similar.

The main differences from Fig. 12(d) are that TBA and RPA allocate a higher percentage of links to low flow values (i.e., 0 to 10 units), while PSLA allocates a higher percentage of links to medium flow values (i.e., 10 to 50 units). For the high flow values (i.e., 50 to 100+), the three assignment methods identify similar numbers and locations of links in the network as shown by the red color-coded links in Figs. 12(a), 12(b), and 12(c).

In terms of the flow distributions allocated by route distance and route BLOS, Fig. 13 shows the results of the three assignment methods. The TBA method tends to allocate more flows to the shorter distance routes (0 to 3 km) with a higher value of BLOS or a lower level of safety (3 to 4.5+), while both RPA and PSLA methods seem to allocate similar percentages of flows by route distance with some variations by route BLOS. The aggregate measures, total traveled distance (TTD), average traveled distance (ATD), total traveled BLOS (TTB), and average traveled BLOS (ATB), are also computed for the three traffic assignment methods (see the bottom of Fig. 13). Similar to route flow distribution, the TBA method has the lowest TTD and ATD and the highest TTB and ATB. On the other hand, both RPA and PSLA methods have similar TTD (20,142 km and 20,161 km) and ATD (3.61 km and 3.62 km), but the RPA method allocates a slightly lower TTB and ATB than that of the PSLA method (20,299 and 20,626 for TTB and 3.64 and 3.70 for ATB). Overall, the results of the Winnipeg network demonstrate the applicability of the two-stage bicycle traffic assignment procedure with the flexibility of using different traffic assignment methods.

Concluding Remarks

In this paper, the authors presented a two-stage bicycle traffic assignment model with consideration of cyclist route choice behavior. In Stage 1, two key criteria (e.g., route distance and route BLOS) were considered to generate a set of non-dominated paths using a bi-objective shortest path procedure. In Stage 2, five traffic assignment methods (equal share assignment (ESA), travel distance per benefit of BLOS assignment (TBA), reference point assignment (RPA), dominated area assignment (DAA), and path-size logit assignment (PSLA)) were adopted for flow allocations to the set of non-dominated routes identified in Stage 1.

From the first case study, the authors found that the ESA and DAA methods, albeit simple, are not suitable for modeling cyclists' route choice behavior since these methods either do not consider the objective values or are sensitive to the maximum values when allocating flows to the non-dominated routes. The TBA, RPA using Eq. (8), and PSLA methods appeared to produce flow patterns that not only account for the objective values but also reflect cyclists' route choice behavior.

From the second case study, the authors found there are strong correlations in terms of flow allocations among the TBA, RPA using Eq. (8), and PSLA methods, but the RPA method seems to allocate similar flow pattern as the PSLA method. Overall, the results of the Winnipeg network demonstrate the applicability of the two-stage bicycle traffic assignment procedure with the flexibility of using different criteria in the first stage to generate non-dominated paths and different traffic assignment methods in the second stage to allocate flows. However, since these results have not been validated with real bicycle data, care should be used when interpreting these assignment results with assumed or borrowed parameters from other studies. The difficulty of conducting validation of the model results is the need to have a credible and accurate trip table as an input to the bicycle traffic assignment model. This difficulty is echoed in Hood et al. (2011)'s work using

San Francisco as a case study. The validation of the trip assignment results against bicycle counts was poor due to the lack of an accurate bicycle trip table. Hence, it is necessary to develop a bicycle trip table estimation method that can be used in conjunction with a bicycle traffic assignment model.

In this paper, the HCM's bicycle level of service (BLOS) was chosen as a surrogate measure for modeling cyclists' perception of safety (or risk) on different bicycle facility types. It would be helpful to consider other measures, such as the bicycle compatibility index (Harkey et al., 1998) or the stress indicator (Mekuria et al., 2012), and examine their impact on non-dominated route generation and flow allocations to the bicycle network. Additional criteria, such as route pollution linked to health risks (Pankow et al., 2014) and route cognition using the concept of space syntax (Raford et al., 2007), could be considered to model bicycle route choice behavior in the route generation procedure. In addition, more tests should be conducted with different network topologies with different bicycle facilities and travelers' characteristics. Note that the current twostage bicycle traffic assignment model did not consider the effect of congestion (i.e., link travel times are independent of bicycle flows). As the number of cyclists increases, it would be necessary to consider flow-dependent link travel times to capture the effect of congestion in the two-stage bicycle traffic assignment procedure. Also, multiple user classes should be considered to differentiate different levels of biking experience as well as relevant criteria to reflect different user classes' bicycle route choice behavior. These extensions will further improve the realism of the two-stage bicycle traffic assignment model developed in this paper.

Acknowledgment

This research was supported by the Mountain-Plains Consortium (MPC) and the Transportation Research Center for Livable Communities (TRCLC) sponsored by the U.S. Department of Transportation, the U.S. Department of Transportation through their Federal Highway Administration Eisenhower Transportation Graduate Fellowship program, the Research Committee of the Hong Kong Polytechnic University (Project No. 1-ZE5T), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Minis (NRF-2016R1C1B2016254), and the National Research Foundation of Korea grant funded by the Korea government (NRF-2010-0029443). These supports are gratefully acknowledged.

References

Akar, G., and Clifton, K. J. (2009). "Influence of individual perceptions and bicycle infrastructure on decision to bike." *Transp. Res. Rec.*, 2140, 165-171.

Ben-Akiva, M., and Bierlaire, M. (1999). *Discrete choice methods and their applications to short term travel decisions*, Handbook of Transportation Science. R.W. Hall ed., Kluwer Publishers.

Bovy, P., and Fiorenzo-Catalano, S. (2007). "Stochastic route choice set generation: Behavioral and probabilistic foundations." *Transportmetrica*, 3(3), 173-189.

Broach, J., Gliebe, J., and Dill, J. (2011). "Bicycle route choice model developed using revealed preference GPS data." *Proc.*, *Transportation Research Board 90th Annual Meeting*, Transportation Research Board, Washington, D.C.

Chen, A., Chootinan, P., Ryu, S., Lee, M. and Recker, W. (2012). "An intersection turning movement estimation procedure based on path flow estimator." *J. Adv. Transp.*, 46(2), 161-176. City of Winnipeg. (2013a). "Winnipeg cycling map."

http://www.winnipeg.ca/publicworks/MajorProjects/ActiveTransportation/maps-and-routes.stm (Jan 13, 2014).

City of Winnipeg. (2013b). "2006 Mobility by Neighborhood.xls in 2006 Census." http://winnipeg.ca/census/2006/Selected%20Topics/default.asp. (Jan 13, 2014).

Climaco J. C. N. and Martins, E. Q. V. (1982). "A bicriterion shortest path problem." *Eur. J. Oper. Res.*, 11(4), 399-404.

Daskin, M. S. (1995). *Network and Discrete Location: Models, Algorithms, and Applications*, John Wiley and Sons, New York.

Dial, R. B. (1979). "A model and algorithm for multicriteria route-mode choice." *Transp. Res. Part B*, 13(4), 311-316.

Dial, R. B. (1996). "Bicriterion traffic assignment: Basic theory and elementary algorithms." *Transp. Sci.*, 30(2), 93-11.

Dial, R.B. (1997). "Bicriterion traffic assignment: efficient algorithms plus examples." *Transp. Res. Part B*, 31(5), 357-379.

Dill, J., and Carr, T. (2003). "Bicycle commuting and facilities in major US cities: if you build them, commuters will use them." *Transp. Res. Rec.*, 1828, 311-316.

Dowling, R. G., Reinke, D. B., Flannery, A., Ryus, P., Vandehey, M., Petritsch, T. A., Landis, B. W., Rouphail, N. M. and Bonneson, J. A. (2008). *NCHRP 616: Multimodal level of service analysis for urban streets multimodal level of service analysis for urban streets*, Transportation Research Board, Washington, D.C.

Ehrgott, M., Wang, J., Raith, A. and van Houtte, A. (2012). "A bi-objective cyclist route choice model." *Transp. Res. Part A*, 46(4), 652-663.

Emme4 software manual. (2013). INRO Consultants, Canada.

Gabriel, S. A. and Bernstein, D. (1997). "The traffic equilibrium problem with nonadditive path costs." *Transp. Sci*, 31(4), 337-348.

Harkey, D. L, Reinfurt, D. W., and Knuiman, M. (1998). "Development of the bicycle compatibility index." *Transp. Res. Rec.*, 1636, 13-20.

Highway capacity manual. (2010) "HCM2010." Transportation Research Board, National Research Council, Washington, D.C.

Hood, J., Sall, E. and Charlton, B. (2011). "A GPS-based bicycle route choice model for San Francisco, California. *Trans. Lett. Int. J. of Transp. Res.*, 3(1), 63-75.

Hopkinson, P. and Wardman, M. (1996). "Evaluating the demand for cycle facilities." *Transp. Policy*, 3(4), 241-249.

Hunt, J. D. and Abraham, J. E. (2007). "Influences on bicycle use." *Transportation*, 34(4), 453-470.

Kang, L., and Fricker, J. (2013). "A bicycle route choice model that incorporate distance and perceived risk." *Proc., Transportation Research Board 92nd Annual Meeting*, Transportation Research Board, Washington, D.C.

Klobucar, M., and Fricker, J. (2007). "Network evaluation tool to improve real and perceived bicycle Safety." *Transp. Res. Rec.*, 2031, 25-33.

Northrop, K. (2011). "Bicycle commuter trends in the US graphic representation."

http://www.webikeeugene.org/2011/03/07/bicycle-commuter-trends-in-the-us-graphic-representation/ (Dec 20, 2014).

Lee K. H., Won, D. H., Ko E. J., (2015). "The multiple impacts of the neighborhood environment on the use of public bicycles by residents: an empirical study of Changwon in Korea." *Int. J. of Urban Sci.*, 19(2), 224–237.

Lowry, M., Callister, D., Gresham, M., and Moore, B. (2012). "Assessment of community-wide bikeability with bicycle level of service." *Transp. Res. Rec.*, 2314, 41-48.

Mekuria, M., Furth, P., and Nixon, H. (2012). *Low-stress bicycling and network connectivity*, Mineta Transportation Institute, San José State University.

Menghini, G., Carrasco, N., Schussler, N. and Axhausen K. W. (2010). "Route choice of cyclists in Zurich." *Transp. Res. Part A*, 44(9), 754-765.

Nagurney, A. (2000). "A multiclass, multicriteria traffic network equilibrium model." *Math. Comput. Model.*, 32(3-4), 393-411.

Nagurney, A. and Dong, J. (2002). "A multiclass, multicriteria traffic network equilibrium model with elastic demand." *Transp. Res. Part B*, 36(5), 445-469.

Nagurney A., Dong, J. and Mokhtarian, P. L. (2002). "Multicriteria network equilibrium modeling with variable weights for decision-making in the information age with applications to telecommuting and teleshopping." *J. Econ. Dyn. Control*, 26(9-10), 1629-1650.

Nagurney, A., Dong J. and Mokhtarian, P. L. (2001). "Teleshopping versus shopping: A multicritieria network equilibrium framework." *Math. Comput. Model.*, 34(7-8), 783-798.

Pankow, J., Figliozzi, M., and Bigazzi, A., (2014). Evaluation of bicyclists exposure to traffic related air pollution along distinct facility types, National Institute for Transportation and Communities (NITC) NITC-RR-560.

Raford, N., Chiaradia, A. and Gil, J. (2007) "Space syntax: the role of urban form in cyclist route choice in central London." *Proc.*, *Transportation Research Board 86th Annual Meeting*, Transportation Research Board, Washington, D.C.

Raith, A., Wang, J., Ehrgott, M. and Mitchell, S. (2014). "Solving multi-objective traffic assignment." *Ann. Oper. Res.*, 222(1), 483-516.

Sener, I., Eluru, N. and Bhat, C. R. (2009). "An analysis of bicycle route choice preferences in Texas, US." *Transportation*, 36(5), 511-539.

Serafini P. (1986). "Some considerations about computational complexity for multi objective combinatorial problems." *Recent advances and historical development of vector optimization. Lect.*Notes Econ. Math. 294, Berlin, Springer, 222-232.

Skriver A. J. V. and Andersen, K. A. (2000). "A label correcting approach for solving bicriterion shortest-path problems." *Comput. Oper. Res.*, 27(6), 507-524.

Stinson, M. A. and Bhat, C. R. (2003). "An analysis of commuter bicyclist route choice using a stated preference survey." *Trans. Res. Rec.*, 1828, 107-115.

Tung, C.T. and Chew, K.L. (1992). "A multicriteria Pareto-optimal path algorithm." *Eur. J. Oper. Res.*, 62(2), 203-209.

Ulungu E.L. and Teghem, J. (1995). "The two phases method: an efficient procedure to solve biobjective combinatorial optimization problems." *Foundations of Computing and Decision Sciences*, 20(2), 149-65.

Wardrop, J.G. (1952). "Some theoretical aspects of road traffic research." *Proc. of the Inst. of Civ. Eng.*, 2(1), 325-378.

Winters, M., Davidson, G., Kao, D. and Teschke, K. (2011). "Motivators and deterrents of bicycling: comparing influences on decisions to ride." *Transportation*, 38(1), 153-168.

 Table 1 Online bicycle trip planners

Route planner	Provided routes
Los Angeles Route Planner	Avoiding elevation gain
(http://opt.berkeley.edu)	 Avoiding pollution
	 Preferring green space
	 Avoiding prior bicycle accidents
San Francisco Bicycle Trip Planner	• Shortest route
(http://amarpai.com/bikemap)	 Balanced route
	 Bike-friendly route
	• Restrictions on gradient
Sacramento Region Bicycle Trip Planner	 Shortest route
(http://www.sacergion511.org/bicycling/trips)	Bike-friendly route
Vancouver Cycle Trip Planner	 Shortest route
(http://cyclevancouver.ubc.ca)	 Least traffic pollution
	 Least elevation gain
	 Vegetated route
	 Restrictions on gradient
Washington D.C. Bike Planner	 Shortest route
(http://bikeplanner.org)	 Least elevation gain
	Bike-friendly route
New York City Bike Map	 Shortest route
(http://www.nyc.gov/html/dot/html/bicyclists/bike	• Safe route
maps.shtml)	• Safer route

Table 2 A summary of traffic assignment methods

Method	Description	Advantage	Disadvantage	Critical input
Equal share assignment (ESA)	O-D demand is split evenly between all non-dominated routes	Easy to implement	Allocated flows not dependent on the objective values	None
Travel distance per benefit of BLOS assignment (TBA)	O-D demand is allocated according to the distribution of travel distance per unit of better BLOS compared to the shortest distance route	Enable the flow allocation to non- supported routes (non-convex points) and non- extreme supported routes	Sensitive to the assumed distribution	Distribution of travel distance per benefit of BLOS relative to the shortest distance route
Reference point assignment (RPA)	The route attractiveness is determined by the Euclidean distance to the reference point, and the probability is determined by the route attractiveness relative to the attractiveness of other routes	Easy and intuitive in modifying the shares of demand allocated to each non-dominated route	Sensitive to the reference point and potential bias with different objective scales	Reference (ideal) point
Dominated area assignment (DAA):	Shares of demand are allocated to the non-dominated routes based on the part of the objective space dominated by the corresponding route attribute point	Consider the attributes of the non-dominated routes	Sensitive to the maximum objective values (extreme supported routes)	Maximum value for each objective
Path-size logit assignment (PSLA)	O-D demand is allocated based on the combined utilities of two objectives	Account for the total route cost values and an economic interpretation	Require detailed survey data to calibrate the parameters	Parameters for the utility function

Table 3 Comparison of allocated flows using five assignment methods

Route	Route	Route	ECA TDA	RPA			DAA	DCI A	
#	dist.	BLOS	ESA	ESA TBA	Eq. (6)	Eq. (7)	Eq. (8)	DAA	PSLA
1	6.00	2.33	2.50	4.99	3.08	3.28	4.96	3.78	6.04
5	6.80	2.17	2.50	2.87	2.91	3.19	2.97	0.70	3.06
6	9.00	1.98	2.50	1.70	2.41	2.64	1.35	0.87	0.84
4	12.50	1.88	2.50	0.44	1.60	0.89	0.72	4.64	0.06

List of figure captions

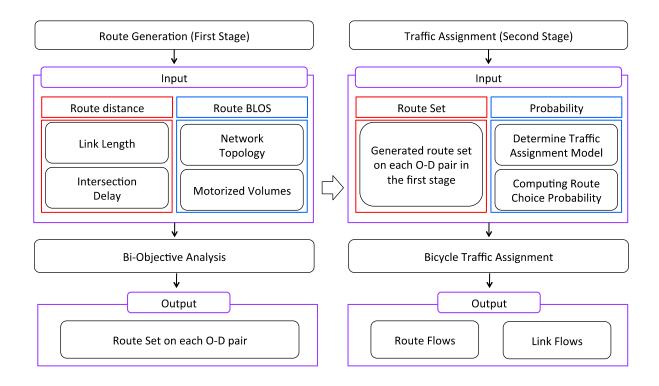


Fig. 1 Two-stage procedure for bicycle traffic assignment

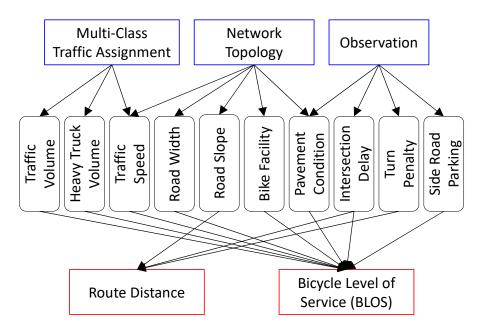


Fig. 2 Two key criteria affecting cyclists' route choice decisions

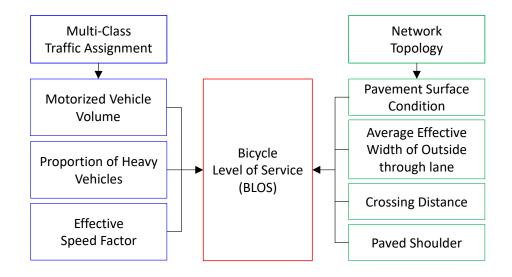


Fig. 3 Input data for computing BLOS

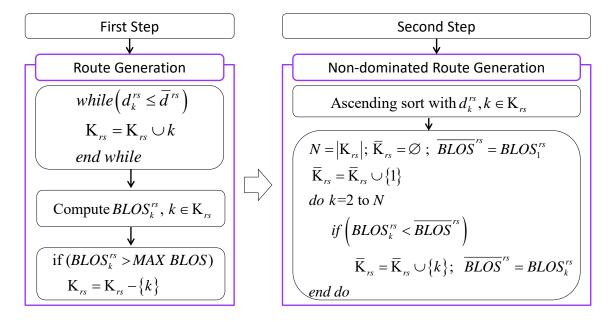


Fig. 4 Modified ranking method for generating non-dominated routes

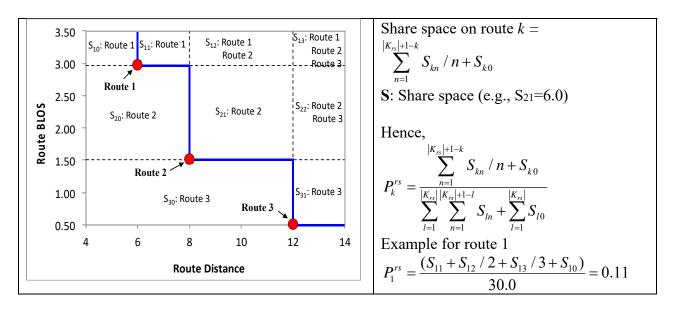


Fig. 5 Illustration of route choice probability using the DAA method

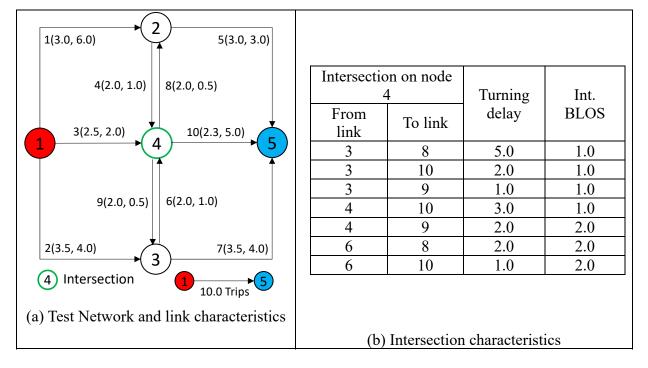


Fig. 6 Test network and network characteristics

Route #	Link member	Route distance	Route BLOS	2.40 Route 8
1	1-5	6.00	2.33	2.30 - Route 1 Route 2
2	1-4-10	10.30	2.34	2.20 - Route 7 Route 3
3	1-4-9-7	12.50	2.29	80 Route 5 Route 9
4	3-8-5	12.50	1.88	Route 9
5	3-10	6.80	2.17	2.00 - Route 6
6	3-9-7	9.00	1.98	1.90 - Route 4
7	2-7	7.00	2.23	1.80
8	2-6-10	8.80	2.33	4.00 6.00 8.00 10.00 12.00 14.00
9	2-6-8-5	12.50	2.12	Route Distance

Fig. 7 Estimated route distance and route BLOS and the corresponding generated non-dominated routes

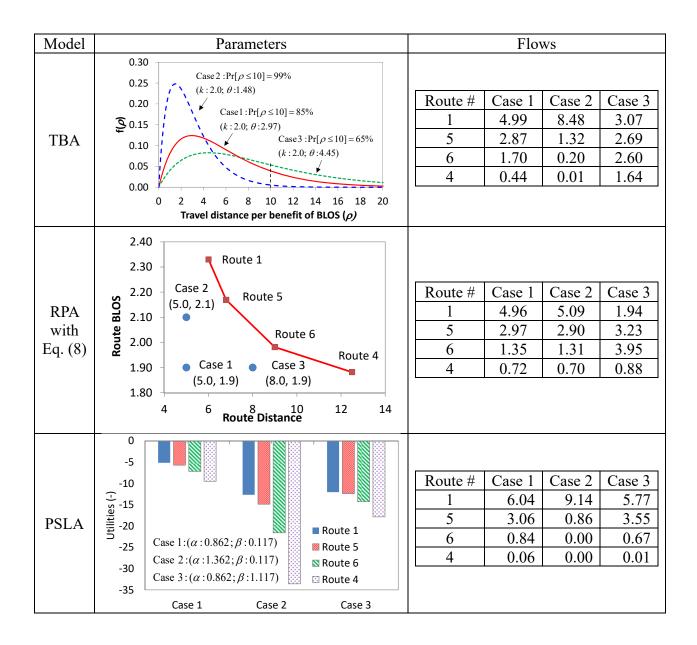


Fig. 8 Comparison of allocated flows with different parameters on the TBA, RPA and PSLA assignment methods

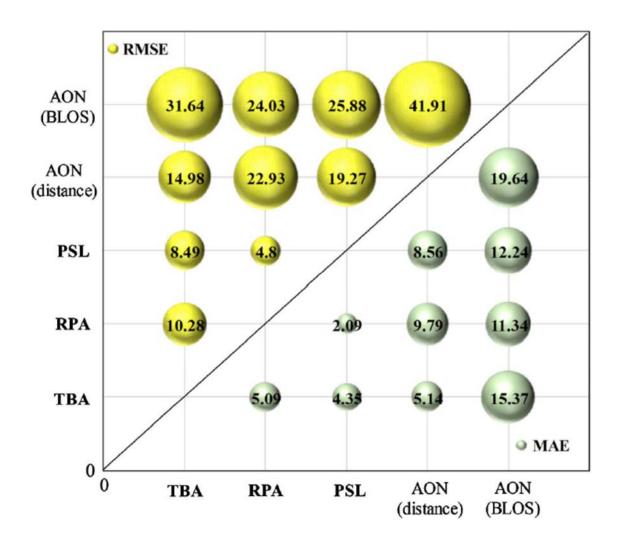


Fig. 9 Link flow comparison between bi-criteria (bold text) and single-criterion (unbolded text) assignment methods

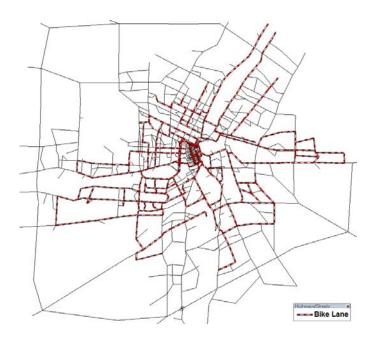


Fig. 10 Winnipeg network with bike lanes

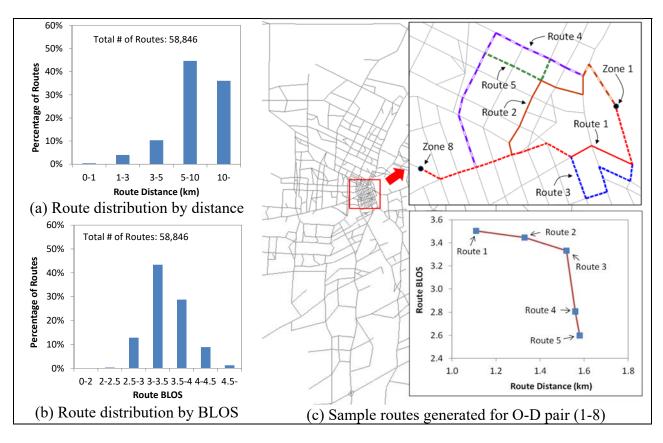


Fig. 11 Generated routes analysis based on route distance and route BLOS

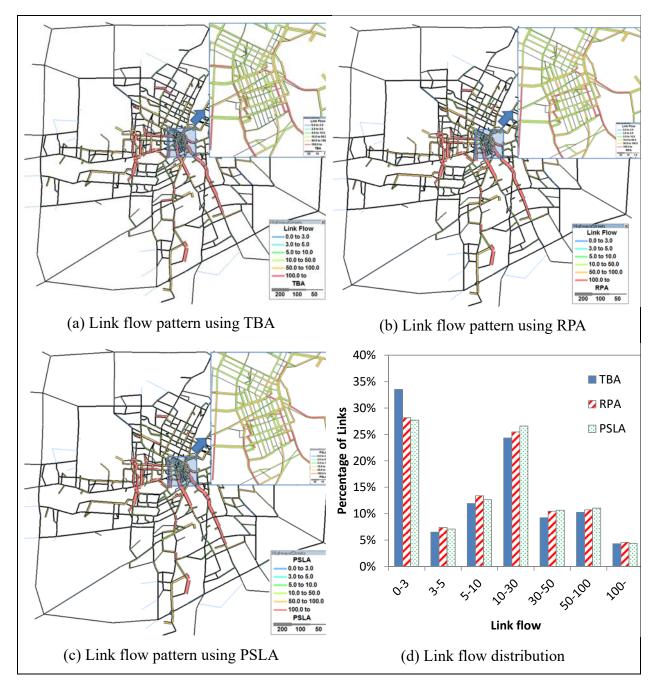
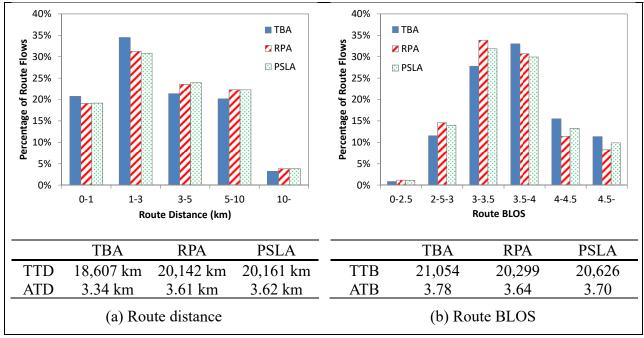


Fig. 12 Link flow patterns of three assignment methods



TTD: Total Traveled Distance; ATD: Average Traveled Distance TTB: Total Traveled BLOS; ATB: Average Traveled BLOS

Fig. 13 Route flow distribution in terms of route distance and route BLOS