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Abstract: Current studies have focused on selecting constitutive models using optimization methods, 

or selecting simple formulas or models using Bayesian methods. In contrast, this paper deals with the 

challenge to propose an effective Bayesian-based selection method for advanced soil models 

accounting for the soil uncertainty. Four representative critical state based advanced sand models are 

chosen as database of constitutive model. Triaxial tests on Hostun sand are selected as training and 

testing data. The Bayesian method is enhanced based on transitional Markov chain Monte Carlo 

method, whereby the generalization ability for each model is simultaneously evaluated, for the model 

selection. The most plausible/suitable model in terms of predictive ability, generalization ability, and 

model complexity is selected using training data. The performance of the method is then validated by 

testing data. Finally, a series of drained triaxial tests on Karlsruhe sand is used for further evaluating 

the performance.

Key words: Bayesian theory; constitutive relation; sand; transitional Markov Chain Monte Carlo; 

generalization ability; critical state
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1 Introduction

Reliable predictions depend heavily on plausible constitutive models with reasonable 

parameters in geotechnical engineering [1-7]. To achieve this purpose, many constitutive models 

have been proposed for soils [8-11]. However, different constitutive models render dissimilar results 

in the process of numerical simulations, prompting variations in engineering decisions that affect the 

levels of safety, economy, and risk in construction [12-17]. Therefore, selecting the appropriate 

model is a critical issue in the application of constitutive models to practical use. Lack of attention to 

the problem of model selection has become a primary source of risk for accident [18].

Model selection is the task of choosing a model having the correct inductive bias from a set of 

candidate models. In practice, selection of a constitutive model often depends on the user�s 

preferences and experiences, both of which are subjective. Accordingly, an efficient approach plays 

an important role in conducting model selection. Among current studies, model selection primarily 

relies on optimization methods and the Bayesian approach. However, model selection based on 

optimization methods is less attractive due to the lack of considering soil uncertainty [8, 19]. The 

Bayesian approach appears to be primarily responsible for this problem, in which the ability to select 

the most plausible/suitable model while simultaneously obtaining the posterior uncertainty of 

parameters would be of considerable use to engineers [20-34]. Unfortunately, Bayesian methods are 

only applied to selecting some simple formula or simple soil models in geotechnical engineering [20, 

22, 25, 26, 35]. Accordingly, an investigation of Bayesian model selection for advanced soil models 

is desirable. 

Furthermore, a reliable soil model should offer a reasonable trade-off between predictive 

capability and robustness. The predictive capability is usually evaluated using the magnitude of 

difference between predictions and experiments for optimization-based model selections [7, 8, 11, 

19, 36-41] or by the maximum likelihood value for Bayesian-based model selections [21, 22, 25, 26, 

28, 42, 43]. Robustness can be measured by generalization ability, which is a measure of how 

accurately a model is able to predict outcome values for previously unseen data. For a given soil, 

simple models with ����G����	 features are likely to miss some of the characteristics of soil 
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behaviour. In contrast, advanced models with a large number of identified parameters will be better 

able to capture different soil behaviours, but they are therefore likely to lead to ����1G		��� the data, 

thereby reducing generalization ability. Accordingly, it is desirable to select a soil model that offers 

an outstanding predictive ability and generalization ability so that both �G����	 and robust 

application performance can be expected in practice [29]. 

This paper thus conducts soil model selection using the Bayesian method while evaluating the 

model�s generalization ability. For this purpose, a set of model classes is selected that includes four 

representative sand models: (1) the critical-state-based sand model (SIMSAND), (2) the simple 

anisotropic sand model (SANISAND), (3) the critical-state-based hypoplastic sand model 

(HYPOSAND), and (4) the Cam-Clay-based sand model (MCCSAND). Three drained triaxial tests 

on Hostun sand are selected to make five combinations having different number of tests, making five 

groups of training data. For each combination, Bayesian model selection is performed using the 

enhanced transitional Markov chain Monte Carlo (TMCMC) method, in which the generalization 

ability for each selected sand model is simultaneously evaluated by testing data on the same sand. 

The most appropriate model in terms of predictive ability, generalization ability and model 

complexity is selected and validated. Finally, a series of drained triaxial tests on Karlsruhe sand is 

used for further evaluating the performance.

2 Representative advanced sand models

An impressive variety of sand models that can be classified as (1) elastic perfectly plastic 

models (such as the Drucker-Prager model, the Mohr-Coulomb model), (2) nonlinear simple models 

(such as the nonlinear Mohr-Coulomb (NLMC) [8], hardening soil model [44, 45]), (3) 

critical-state-based advanced models (such as Nor-Sand model [46]; CSAM model [47]; Severn�

Trent sand model [48]; UH models [49-52]; SANISAND model [53]; the critical-state-based simple 

sand model (SIMSAND) [8, 11, 19, 54]; and (4) hypoplasticity models [55-58] have been developed. 

Not surprisingly, such models display different performances when modelling sand behaviours. The 

MC and NLMC models are fundamentally limited from physics perspective, which is well known for 

most geotechnical engineers. Thus, both two models are not considered in model selection. To 
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compare the performance of comparable models (same level of numerical sophistication) and an 

engineer cannot easily distinguish which model to be adopted in practice, a set of model classes that 

included four representative sand models was chosen for their popularity to perform model selection: 

(1) the SIMSAND model, the critical state and interlocking effect are incorporated so that the stress 

dilatancy and contraction can be described, (2) the SANISAND model, which incorporates the 

concept of bounding surface compared to SIMSAND, (3) the critical-state-based hypoplastic sand 

model (HYPOSAND) by Wang et al. [59], which belongs to the framework of hypoplasticity and (4) 

the MCCSAND, which belongs to the framework of modified Cam-Clay (Yao et al. [50, 51]). The 

basic constitutive equations of all selected sand models are summarized in Appendix I. 

Although the equations are basic, some specific points should be addressed. For HYPOSAND, 

Young�s modulus is constant. For SIMSAND and SANISAND, Young�s modulus is expressed as 

follows, according to Richart et al. [60],

 (1)
� �
� �

2

0

2.97

1
at

at

e p
E E p

e p

�
� � �	


 � � � � �

For the MCCSAND, Young�s modulus is expressed as:

 (2)
� �� � � �0

s s

3 1 2 1
 with exp 1

e N Z
E p p p

�
� �

� � �� �	
 � 
 �� 
� �

where E0 is the reference value of Young�s modulus; e is the void ratio and e0 is the initial void ratio; 

p' is the mean effective stress; pat is the atmospheric pressure used as reference pressure (pat = 101.3 

kPa); � is a constant; � is Poisson�s ratio; � is the swelling index; � is the compression index; N and 

Z are two constants of the MCCSAND. 

For SIMSAND, SANISAND and HYPOSAND, the nonlinear formulation of critical state line 

(CSL) [61] was adopted. 

 (3)exp

�

�
� �� �	
� �
 � � 
� �� �� �
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p
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where ec is the critical void ratio; eref is the initial critical void ratio at � = 0; � and � are two 

parameters controlling the shape of CSL in the e-log� plane. 

The parameters of each selected model can be divided into: (1) elastic parameters, (2) plastic 

shear-hardening related parameters, (3) stress-dilatancy-related parameters and (4) critical-state 

related parameters for critical-state-based models. 

3 Model selection approach and generalization ability evaluation

3.1 Bayesian model class selection

In this section, the Bayesian approach for parametric ����	�G��	��� and model class selection is 

$���N� outlined. Further details of basic Bayesian model class selection can be found in Appendix II 

and Yuen [28].

Following a Bayesian formulation [29, 62, 63] and assuming that the observation data and the 

model predictions satisfy the prediction error equation:

 (4)� �obs numU U �
 �b

where is the vector containing model parameters, such as friction angle and critical state related b

parameters; � is a zero-mean Gaussian random variable with variance ��2 representing the prediction 

error variance and ��2 is another unknown parameter besides the soil model parameters . Thus, the b

uncertain parameter vector includes the model parameters and the prediction-error variance ��2, 0 b

i.e., . Table 1 shows the uncertain parameters and the number of parameters for each 
2= ,  ��� �� �0 b

sand model class.

Note that the two elastic parameters, E0 and � in model classes SIMSAND and SANISAND, 

can easily be obtained from isotropic compression tests. Accordingly, the method for determining the 

values of E0 and �, as presented in [8, 19, 37], is adopted in this study. The cohesion c for 

HYPOSAND is set to zero because the tests are performed on dry sand in this study. A typical value 

of Poisson�s ratio �=0.25 is assumed for all model classes.
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Uncertainties of parameters can be evaluated using the posterior PDFs, with the expression of 

the posterior PDF for data D written as follows:

 (5)� � � � � �
� �

p p D
p D

p D



0 0
0

where is the uncertain parameters; p(D) is the evidence;  is the prior PDF of the � �= , ��0 b � �p 0

uncertain parameters , which is based on the previous knowledge or user�s judgment; and 0

 is the likelihood function expressing the level of data fitting. � �p D 0

Generally, deformation and stress are two extremely important indicators for soil behaviours. 

The measurement produced by a laboratory test usually contains two curves, such as the curves �a�q 

and �a�e for the drained triaxial test or the curves �a�q and �a�u for the undrained triaxial test (where 

�a is axial strain, q is deviatoric stress, e is void ratio, and u is excess pore water pressure). 

Accordingly, a goodness-of-fit function involving these two important indicators is reasonable. Note 

that the measured q has no correlation with the measured e or u for a given sand. Actually, the 

measured q, e and u are mainly influenced by the confining pressure, the relative density of sand and 

the initial void ratio. According to [8, 19], a normalized goodness-of-fit function is adopted due to 

the error independent of the magnitude of different variables (e.g., q and e or u), which is expressed 

as:

 (6)� �
0

2

obs num

1 10 obs

1
;

N i iN

g i
j i

j

U U
J D

N N U
 


� �� ��
� �
 � 
� �� �� �

� �b

where N is the number of measured values, N0 is the number of curves for one test, is the value obs

iU

of measurement point i, and  is the value of calculation at point i. num

iU

With multiple observations and types of observations, likelihood values for each observation 

must be combined into an overall value for each candidate parameter set [64]. For laboratory tests of 

sand, the multiple tests can be a series of triaxial tests with different relative densities (from loose to 
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dense) under different confining pressures (from low to high) and different drainage conditions 

(drained and undrained). All the tests are assumed independent each other. When the measured data 

D involve M tests during Bayesian parameter identification, the likelihood function is expressed as: 

 (7)� � � �
1

ln lnw
M

i

i

ip D p D




�0 0

where M is the number of involved tests, wi is weight of , and  is the likelihood � �ip D 0 � �ip D 0

corresponding to the test i. In this study, the weight of each likelihood for all involved tests is 

considered the same and thus equal to 1. 

The posterior PDF  represents the updated belief about the parameter vector  � �,p C D0 0

after obtaining the evidence D. An accurate estimator of the parameters  for the adopted soil 0

model is the Maximum a Posteriori (MAP) estimation. The MAP parameter vector  can be *
0

obtained by maximizing the posterior , or equivalently, . Considering � �,p C D0 � � � �,p C p D C0 0

that the model classes involve high-dimensional nonlinear functions, the evidence integral must be 

evaluated numerically. As the TMCMC method has been proven more efficient for high-dimensional 

problems and can also evaluate the evidence for each model class [65-68], it was used to quantify the 

uncertainty of model parameters and conduct the model class selection. 

3.2 Enhancement of TMCMC method 

The TMCMC method was originally developed by Ching and Chen [65] as a combination of the 

sequential particle filter method [69] and MCMC. The method begins with the prior distribution 

 and makes a gradual transition to the posterior by optimization at each round of samplings. � �p 0

The key idea of TMCMC is that of proposal density, which corresponds to the jth round of sampling 

 determined as, � �
j

p 0

 (8)� � � � � � jq

j
p p L D �0 0 0
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where qj�[0, 1] is chosen following q0=0< q1<�< qm=1 with j=0, 1, �.., m denoting the stage 

level. Consequently,  equals the prior distribution  for j=0, and  is the � �
0

p 0 � �p 0 � �
m

p 0

posterior distribution  for j=m. � �p D0

The details of the original TMCMC method, with its MATLAB code, can be found in Ching 

and Wang [67]. In the original TMCMC, the new samples are generated from a normal distribution 

with the mean and standard error calculated from the samples of last iteration. However, some 

observations have indicated that the inappropriate mean value and standard deviation error can result 

in the estimated posteriors tending to fall into local convergence [68]. Therefore, Tto improve the 

performance of original TMCMC, a differential evolution�Markov chain algorithm proposed by 

Vrugt [70] was adopted in this study to replace the process to generate a new sample from the normal 

distribution in original TMCMC, which can be generated as:

 (9)� � � � � �
new

, , ,
= c

j l j l j l
d�0 0 0

with

 (10)� � � � � �� � � � � �� �, , , ,
= 1 best c

jj l j l j a j b
d � ! �� �� � � � � � �

� �
0 0 0 0 0

where  is the new sample;  is the current sample;  is the sample corresponding to � �
new

,j l
0 � �,

c

j l
0

best

j0

the maximum weight in the current iteration; d is the dimension of ;  and  are two 0 � �,j a
0 � �,j b

0

vectors consisting of d variables, where the indices a and b are two integers drawn from [1,�, Ns]; 

!=  is the jump rate; " denotes the number of chain pairs used to generate the jump with 2.38 2 d"

a default value of "=3 according to Vrugt [70]. The values of � and � are sampled independently 

from the uniform distribution [�c, c] and the normal distribution N(0, c*), respectively. In this study, 

the c=0.1 and c*=10�12 were employed, as recommended by Vrugt [70]. 

After differential evolution, a binomial crossover operation forms the G��� sample, 

 (11)� �
� � � �

� �

new

,new

,

,

,  if rand 0,1  or 

,  otherwise

randj l

j l c

j l

CR l l# $ 
%

 &
%'

0

0

0
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where rand(0, 1) is a uniform random number within [0, 1]; lrand=randint (1, d) is an integer randomly 

chosen from 1 to d and is newly generated for each l; the crossover probability CR�[0, 1] 

corresponds roughly to the average fraction of the vector components that are inherited from the 

mutation vector, with CR=0.9 taken in this study. 

After the enhanced TMCMC algorithm is executed, the importance weights produced during the 

algorithm can be used to estimate the model evidence , which can be estimated by the � �jp D C

enhanced TMCMC algorithm as a by-product:

 (12)� �
s1

,

10 s

1
Nm

j j k

kj

p D C S w
N

�





� �
( 
 � 

� �
�)

where S is asymptotically unbiased estimation of the model evidence, wj,k are the importance 

weights, and m is the total number of transitional stages. 

The local convergence problem of drawing posteriors can be solved by the enhanced 

DE-TMCMC. Thus, the model selection process conducted by enhanced DE-TMCMC is more 

robust than the same works done by original TMCMC. Finally, the most plausible/suitable model can 

be selected for a given problem. 

3.3 Evaluation of generalization ability

Since sand models are always evaluated on the basis of finite samples/tests, the evaluation of a 

sand model is sensitive to sampling error. As a result, measurements of prediction error for the 

current data may not provide much information about predictive ability for new data. To track this 

problem, generalization ability, a measure of how accurately a model is able to predict outcome 

values for previously unseen data, was adopted for this case. 

Due to the difficulties in computing the unknown joint probability distribution for 

generalization error, generalization ability is usually measured by empirical error, a function of the 

difference between the actual and predicted results for out-of-sample data. To make the empirical 

error independent of the type of test and the number of measurement points, a normalized empirical 

error function was adopted, expressed as: 
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 (13)� �
2

obs num

1 obs

1
Error

i iN

i
i

U U

N U


� ��

 � 

� �
�0

where is the ith observed data point; is the ith numerical data point; N is the number of obs

iU num

iU

data points; is a set of model parameters; is the error between observed and numerical 0 � �Error 0

data for the set of model parameters . 0

With multiple observations, the combined empirical error is expressed as:

 (14)� � � �
1

Error = Error
X

i i
j

l



� �� ��0 0

where X is the number of observations contributing to the computation of generalization ability, and 

li is weight. In this study, li=1/X for a uniform weight.

3.4 General procedure of model selection

Fig. 1 shows the procedure for model class selection and hence evaluating generalization 

ability. In this procedure, a set of candidate models was first selected. Then, the measured data 

serving as the training data for model selection were selected. Next, the likelihood function for 

multiple observations was determined according to Eq.(7). Subsequently, the Bayesian model class 

selection using the enhanced TMCMC method was successfully carried out, incidentally giving the 

posteriors of all identified parameters for each selected model class. Based on preliminary results, the 

most plausible model with posteriors of its parameters was gained. 

Continuing the procedure, after obtaining the posteriors of all identified parameters for each 

selected model class, simulations of the new tests that were different from the training data used in 

the model class selection, were performed using each model class with N optimum sets of parameters 

drawn from the obtained posterior distributions. The empirical error was simultaneously calculated. 

The model class showing minimum empirical error was identified as the suitable model having 

strong generalization ability. 

The ideal model class should survive during Bayesian model class selection as well as the 

evaluation of generalization ability. 
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3.5 Illustration case of Bayesian model selection 

To show the proposed procedure of model selection, an illustration case on selecting a 

polynomial equation is presented. The measured data was generated by the equation y=2x+5x2 with 

x�[0, 3]. The general model class can be defined as follows:

 (15)
2 3

0 1 2 3y a a x a x a x �
 � � � �

where a0~a4 are uncertain model parameters; x is input and y is output. 

Then, a total of 15 ( ) models were generated. Based on the measured data, an 
1 2 3 4

4 4 4 4C C C C� � �

appropriate model will be finally selected from 15 models. The prior PDF of all uncertain parameters 

for each model class was assumed in uniform distribution. All uncertain parameters were 

independently and uniformly distributed within [0, 10]. The results of model selection are 

summarized in Table 2. According to the values of ln , the model 8 is most appropriate and � �jp D C

the identified parameters are a1=2.000009, a2=4.9999961 with the uncertainty of �=3.63e-06. The 

obtained model approximately equals to the predefined equation

4 Selection of sand models

4.1 Model selection based on different test sets

A series of laboratory triaxial tests performed on Hostun sand by Liu et al. [71] and Li et al. 

[72] were chosen for the model selection. The initial void ratio and confining pressure for each test 

are listed in Table 3. Fig. 2 shows all results of selected triaxial tests. To form a comprehensive 

group of experiments that can effectively reflect common sand behaviours, a total of three drained 

triaxial tests including one dilative test (test 1) and two contractive tests (tests 4 and 5) were chosen 

as training data for model class selection and parameter identification. The exact information of used 

training data is data points on deviatoric stress-axial strain and void ratio or volumetric strain-axial 

strain curves (i.e. q-�a and e-�a). The other tests were considered as testing data used to calculate the 

empirical error for evaluating the generalization ability of each sand model. Note that the 

experimental data have strain localization, such as the tests on very dense sand, are not considered 
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since the numerical results are obtained by an element integrated with one single Gauss point in this 

study. The model selection when the used data have strain localization can be conducted using finite 

element method for boundary value problems. 

To investigate the effect of a number of tests on model class selection and the evaluation of 

generalization ability, the model class selection was successively conducted based on different 

number of tests. Based on three selected drained triaxial tests (test 1, 4 and 5), a total of seven 

combinations (selecting one, two or three tests from tests of 1, 4 and 5, respectively) were obtained 

as summarized in Table 4. However, combinations 2 and 3 were overlapped because of containing a 

similar contractive test. Thus, only combination 2 was selected. A similar situation was found for 

combinations 4 and 5. Thus, only combination 4 was selected. As such, combinations 1, 2, 4, 6 and 

7�five cases in total�were finally adopted in the model class selection.

The prior PDF of all uncertain parameters for each model class was assumed to show uniform 

distribution. All uncertain parameters were independently uniformly distributed [lower_bound, 

upper_bound], e.g., the friction angle was uniformly distributed [20, 50]. The bounds of each prior 

PDF for all model classes are summarized in Table 5. Note that when the bounds for the uncertain 

parameters are very narrow, a very small step size is needed in the model selection. 

For all cases, the enhanced TMCMC with 2000 was implemented, meaning 2000 samples per 

stage. Therefore, 2000Ns total samples were generated in the enhanced TMCMC simulation. 

According to previous results [26, 65-68], the total number of stages for different model class 

selections was not always the same.

4.2 Results and discussion

Table 6 summarizes the results of evidence obtained by enhanced TMCMC and the results of 

plausibility using Bayes� theorem based on various test combinations. To intuitively present the 

results of model class selection while choosing the most plausible model class, all plausibilities are 

exhibited in Fig. 3. The MAP parameters that correspond to the maximum values of their posterior 

PDFs and the uncertainties for all selected model classes are summarized in Tables 6~11. It can be 

seen that some parameters with physical meanings (e.g., friction angle, critical state parameters) 
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identified from three tests for SIMSAND, SANISAND, HYPOSAND and MCCSAND agree well 

with experimental measurements by Liu et al. [71] and Li et al. [72]. 

For model class selection based on test 1 (dense sand) (see Fig. 3(a)), SANISAND was the most 

plausible model class while the HYPOSAND was the worst one. The results indicate that 

HYPOSAND had a limitation in capturing the dilative behaviour of dense sand. For selection based 

on test 4 (loose sand) (see Fig. 3(b)), the most plausible model class was still SANISAND, while the 

worst was the HYPOSAND. However, little difference in plausibilities for other model classes was 

found, demonstrating that such model classes show outstanding ability in the simulation of 

contractive behaviours for sands. 

When the number of involved tests in the model selection increased to 2, a different result for 

model class selection was found. The most plausible model class was SIMSAND for selection based 

on tests 1 and 4 (see Fig. 3(c)), while it was SANISAND for selection based on tests 4 and 5 (see 

Fig. 3(d)). However, the difference of plausibility between SIMSAND and SANISAND was small 

for both cases, and thus it can sometimes be ignored. The worst model was HYPOSAND for case 

involving tests 1 and 4 and MCCSAND for case involving tests 4 and 5.

Based on preliminary results, it is possible to infer that the most plausible model class is either 

SIMSAND or SANISAND, which can perform well in capturing the sand behaviours of dilatancy 

and contractiveness. Furthermore, HYPOSAND and MCCSAND displayed similar performance but 

were inferior to SIMSAND and SANISAND in simulation. 

Unsurprisingly, this surmise is confirmed by the results of model selection based on three tests, 

as depicted in Fig. 3(e). Although the performance of HYPOSAND and MCCSAND was inferior to 

that of SIMSAND and SANISAND, it is also acceptable in practice. However, more effective 

parameter identification methods for them should be considered to find more accurate parameters, 

such as optimization-based methods [7, 8, 19, 38-40]. 

As mentioned, a reliable soil model should have a reasonable trade-off between predictive 

capability and generalization ability. However, for a given soil model, the predictive performance for 

unseen test data indicating generalization ability relies heavily on the precision of the parameters 
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used. Accordingly, the evaluation of generalization ability can serve as a remedy for Bayesian model 

class selection. To evaluate the generalization ability of each model using its optimal parameters, the 

testing tests were simulated and the empirical errors in terms of q and e for drained tests or u for 

undrained tests were simultaneously calculated according to Eq.(14), as shown in Fig. 4. The 

magnitude of empirical error reflects predictive ability along with the accuracy and reliability of 

optimal parameters obtained by Bayesian model selection from limited training tests for a given sand 

model. The large value of empirical error indicates a poor performance in terms of prediction. 

Unlike the results of Bayesian model class selection, some different findings from the 

standpoint of generalization ability were noted. When only one training test on a dense sample was 

involved in the Bayesian model class selection, the best model was SANISAND and the worst was 

HYPOSAND in terms of the generalization ability (see Fig. 4(a)), consistent with the result obtained 

by Bayesian model class selection. When the involved test in model class selection was performed 

on a loose sample, the best mode was still SANISADN while the worst was MCCSAND (see Fig. 

4(b)). It can be shown that the parameters identified from tests on dense sand are more reliable that 

those identified from tests on loose sand for the MCCSAND, which indicate that the parameters of 

the MCCSAND model are sensitive to the types of tests involved. Therefore, the MCCSAND model 

is not recommended to be applied to geotechnical practice when only one test on either dense or 

loose sample is available. Furthermore, HYPOSAND exhibit similar but poor performance for both 

cases using one test, and thus more attentions should be paid when using them in practice. 

For cases with two tests, the most suitable models were SIMSAND and SANISNAD (see Fig. 

4(c) and (d)). Due to a lack of the ability to balance the predictions between dilatancy and contractive 

behaviours, the inaccurate optimum parameters can lead to a weak generalization ability of 

HYPOSAND and MCCSAND, and thus neither is recommended when only one test on a dense 

sample or only one test on a loose sample is available for parameter identification in practice. For the 

case with three tests, the most appropriate models are SIMSAND and SANISAND, while the worst 

is still MCCSAND (see Fig. 4(e)). 

In summary, the poor generalization ability of HYPOSAND and MCCSAND when the 

involved training tests are performed on both dense and loose sand samples is mainly attributable to 

Page 21 of 52

http://mc.manuscriptcentral.com/nag

International Journal for Numerical and Analytical Methods in Geomechanics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

15

poor predictive ability of the models and inaccurate optimum parameters. The performance of 

HYPOSAND is not quite satisfactory compared to SIMSAND and SANISAND regardless of the 

number and types of involved tests. The poor generalization ability of the MCCSAND is found when 

the involved tests on a loose sample are dominant, which can be attributed to the inaccurate 

identified parameters because its predictive ability of the model is acceptable based on the results of 

Bayesian model selection. The results also suggest that the tests performed on dense sand are 

beneficial to identify reliable parameters of the MCCSAND.

As stated by Wood [73], simple yet adequate models are favoured on the basis of practicality. In 

general, how simple of a model can be expressed using the number of parameters and the complexity 

of model equations. Compared to Bayesian model class selection, the Akaike information criterion 

(AIC) [74] and Bayesian information criterion (BIC) [75] are two commonly used criteria for model 

selection accounting for the effect of the number of parameters. For AIC, the penalty term is taken to 

be the number of adjustable parameters of model class. When the number of data points N is large, 

the penalty term will disappear which means that the contribution of the number of model parameters 

is little. Accordingly, the AIC cannot replace the Bayesian model class selection method if N is 

��G����	�� large. For BIC, the penalty term increases with the number of data points N. According 

to Yuen [28], for large N, the BIC is equivalent to the Bayesian approach using equal prior 

plausibilities for all model candidates. However, in practice, the Bayesian model class selection is 

especially useful when N is not large so the selection of model class is ��G���	 by the user�s 

judgement. Therefore, the BIC cannot replace the Bayesian model class selection method if N is not 

��G����	�� large since the residual term has an important contribution. Overall, the Bayesian model 

class selection is superior to AIC and BIC. 

Numerical convergence is easier to obtain when simple formulas are used to deal with complex 

geotechnical problems. Due to the implementation of the bounding surface concept-based hardening 

law with a small elastic domain for SANISAND, increasing the model complexity, SIMSAND was 

finally selected as the most appropriate sand model in terms of the predictive ability and 

generalization ability for simulating monotonic behaviours, consistent with results obtained by the 
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optimization method [8]. Therefore, SIMSAND is selected as an outstanding sand model regardless 

of the methods (deterministic and probabilistic) used. 

To show the performance of the selected model class SIMSAND and its MAP parameters, a 

series of simulations on testing data that have been used in the evaluation of generalization ability 

were performed, as shown in Fig. 5. Satisfactory agreement is found between the numerical 

simulations and experiments that contractive and dilatancy behaviours, even static liquefaction, can 

be easily reproduced, demonstrating an excellent predictive ability for SIMSAND as well the 

rationality of identified parameters.

5 Validation by other sand

5.1 Model selection based on tests of Karlsruhe sand

A series of drained triaxial tests performed on Karlsruhe sand by Wichtmann and Triantafyllidis 

[76] was selected for this case. According to Wichtmann and Triantafyllidis [76], the test Karlsruhe 

sand has a mean grain size d50=0.14 mm and a uniformity ���G����	 Cu=d60/d10=1.5. The minimum 

and maximum void ratios were emin=0.677 and emax=1.054. Most of the grains have a subangular 

shape. 

The initial void and confining pressure for each test are summarized in Table 11. The 

experimental results for all triaxial tests are shown in Fig. 6. Three drained triaxial tests (tests 3, 4 

and 9) with approximate density and different confining pressures following the industrial standard 

were selected as training data. The remaining tests were used to evaluate generalization ability. 

K0=44 and n=0.68 were determined from the 1D compression tests following those studies [8, 19, 

37].

5.2 Results and discussion

Fig. 7 shows the model selection results based on three drained tests of Karlsruhe sand. It was 

found that the most plausible model class was SIMSAND and the worst was still HYPOSAND, 

which is consistent with preliminary results obtained on tests of Hostun sand. SANISAND also had 

an acceptable performance and was inferior only to SIMSAND. Table 12 summarizes the MAP 
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parameters of all sand models for Karlsruhe sand. It can be seen that the parameters identified for 

SIMSNAD, SANISAND, HYPOSAND and MCCSAND are in appropriate ranges compared to the 

experimental investigations (*=33.1° and eref=1.067) by Wichtmann and Triantafyllidis [76]. 

Using the obtained optimal parameters, the evaluation of generalization ability for all model 

classes was conducted as shown in Fig. 8. SIMSAND and SANISAND were found to be the most 

suitable models, while the HYPOSAND model was worst in terms of generalization ability evaluated 

using finite testing data. Furthermore, the MCCSAND model also showed good generalization 

ability due to the parameters identified from tests on dense sand samples, confirming the validity of 

previous suggestions. 

Overall results demonstrate that the SIMSAND is the most plausible/suitable sand model in 

terms of predictive ability and generalization ability for Karlsruhe sand. Fig. 9 shows the comparison 

of testing tests on Karlsruhe sand between experiments and simulations. Acceptable agreement is 

found between the numerical simulations and experiments that the contractive and dilatancy 

behaviours can be adequately reproduced, demonstrating an excellent predictive ability for 

SIMSAND as well the rationality of identified parameters. 

6 Discussions

In the above investigation, four advanced constitutive models were adopted to describe the 

typical mechanical behaviours of sand under monotonic loading. However, the behaviours of 

granular materials are complex and an accurate modelling remains an open challenge. One of the 

main difficulties lies in a clear and efficient definition of the internal state of such materials. Usually 

two kinds of internal parameters have to be considered: (1) one or several scalar parameters 

characterizing the density state with respect to a critical density, such as the evolution of e/ec in 

considered models of this study, which is a usual way to define the isotropic internal state; (2) one or 

several tensorial parameters characterizing the anisotropic internal state, such as the critical state 

considering fabric anisotropy [77-81]. In complex loading paths, experimental studies have indicated 

that the behaviour of a granular soil under shear is predominantly anisotropic. Such anisotropic 

behaviour of sand can be effectively modelled by incorporating the fabric tensor and its evolution. 
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Another effective way to simulate such an anisotropic behaviour is the use of micromechanics-based 

models [82-85]. Note that the four adopted sand models in this study only consider the internal 

isotropic state variables and the anisotropic behaviour of sand can�t be described, which is a 

limitation of this study. Nevertheless, the approach can also be applied to models considering 

anisotropy with objective tests of complex loading paths.

The considered tests (training and testing tests) are only monotonous triaxial tests (drained and 

undrained) in this study. The proposed analysis can give an estimation of the ability of the 

considered models to give good simulation performance of monotonic loading defined from an initial 

isotropic internal state. However, the loading paths in practice are more complex, such as: (1) a 

loading with the stress principal directions different from the ones of an anisotropic initial internal 

state; (2) a cyclic loading; (3) a loading with significant evolutions of the principal directions. Again, 

the approach can also be applied to these cases if adopted constitutive models further considering 

anisotropy with effect of stress reversal.

Furthermore, the test results sometimes are not consistent themselves, which is probably caused 

by: (a) an inherent spatial variability of soil properties, (b) experimental uncertainty (measurement 

scatter) due to limitations of the experimental techniques and (c) sampling uncertainty (statistical 

uncertainty) due to the limited number of soil samples used in the investigation. Such inconsistency 

would lead to variability of parameters for model of interest, which can be quantified by the 

proposed Bayesian approach with DE-TMCMC from available experimental data. In practice, such 

inconsistency (experimental and sampling uncertainties) can be incorporated into probabilistic 

analyses using random G��� methods, such as by the approach of David Ma�ín [86].

The model selection using Bayesian approach from triaxial tests can be considered as a basic 

work before extending the approach to the practice. The presented work using triaxial tests to select 

�best model� can give a comprehensive understanding of different sand models on modelling the 

mechanical behaviours. Although the appropriateness of various constitutive models in FEM (not at 

the meso level of triaxial tests, but at the level of responses of real structures such as settlements, 

deflections) is well studied, choosing a suitable model for the engineering of interest solved by FEM 

is still a challenge. Therefore, it is important to engage the proposed approach to shed a different 
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light on past conclusions from these studies. The proposed approach is more applicable to 

comparable models (same level of numerical sophistication) and an engineer cannot easily 

distinguish which models to be adopted in FEM.

7 Conclusions

This study has presented a selection of sand models along with parameter identification using 

Bayes� theorem, thus evaluating generalization ability based on test data. First, the principles of 

Bayesian model selection and the enhanced TMCMC method were briefly introduced. Then, the 

procedure for model class selection and evaluation of generalization ability was presented. To 

conduct the model class selection, four representative advanced sand models (SIMSAND, 

SANISAND, HYPOSAND and MCCSAND) were chosen. Three drained triaxial tests on Hostun 

sand were selected to make five combinations as five groups of training data. Then, for each 

combination, Bayesian model selection was performed using the enhanced TMCMC method. The 

optimum parameters corresponding to the maximum of posterior PDF with their uncertainties for 

each sand model were summarized. The plausibilities were compared for six four selected sand 

model classes. The generalization ability of each selected sand model was then evaluated by 

empirical error computed on new test data. Finally, a validation case based on Karlsruhe sand was 

carried out. Based on the obtained results, some conclusions were drawn, as follows:

(1) The SIMSAND model was demonstrated to be the most plausible/suitable sand model in 

terms of predictive ability, generalization ability and model complexity regardless of the 

number and types of training tests involved.

(2) Although the performance of HYPOSAND was not quite satisfactory compared to 

SIMSAND and SANISAND regardless of the number of tests involved, it was better than 

the MCCSAND� because of its insensitivity to parameters. 

(3) The poor generalization ability of the MCCSAND was found when the involved training 

tests on a loose sample were dominant, which can be attributed to inaccurately identified 

parameters because its predictive ability was acceptable based on the results of Bayesian 
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model class selection. The results also suggest that the tests performed on dense sand are 

beneficial to identify reliable parameters of the MCCSAND.

Note that the anisotropic behaviour of granular materials was not considered and tests with 

more complex loading conditions were not included in this study. In fact, this study of model class 

selection on laboratory tests can be extended for any kind of soils and advanced constitutive models 

with considering material anisotropy and complex loading conditions, and will be a base for the 

future studies on boundary value problems using finite element method. 
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Appendix I

(1) Typical constitutive relations of SIMSAND, SANISAND and MCCSAND
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(2) Typical constitutive relations of HYPOSAND

Components Constitutive equations

Constitutive equation

Critical state line 
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in which Ci (i = 1; 2; 3; 4) are dimensionless parameters. The deviatoric stress tensor �	 is defined by 

 with  being the Kronecker delta. stands for the Euclidean norm of the * 1/ 3(tr ) ij
 �A A A B ijB

stretching tensor defined as .  is the critical state function that describes the effects of 
eI

void ratio and stress level.  is a translated stress tensor. By replacing the stress tensor with the 
cA

translated stress tensor, the practical hypoplastic model can describe the effects of cohesion. Note 

that four material parameters C1, C2, C3, and C4 were replaced by E, �2�3, and 1�via a relationship 

according to Wu et al. [57] in this study. 

Appendix II-basic information of Bayesian model class selection

Let D denote the input�output or output-only data from a physical system or phenomenon. Note 

that the data D can be stress-strain curve from laboratory tests and monitoring data from field tests in 

geotechnical engineering. The goal is to use D to select the most plausible/suitable class of models 

representing the system out of NC given classes of models C1, C2, . . . , CNC, such as the advanced 

sand models. Since probability may be interpreted as a measure of plausibility based on �����G�� 

information, the probability of a class of models conditional on the set of dynamic data D is required. 

This can be obtained by using Bayes� theorem as follows:
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where  is the plausibility of a predictive model class Cj given the data D, is � �jp C D � �jp D C

called the evidence of model class Cj provided by the data D, is the prior plausibility of a � �jP C

model class Cj, p(D) is the denominator, given by the law of total probability:

 (17)� � � � � �
1

=
cN

j j

j

p D p D C p C


�

The prior plausibilities are normalized in the same way as probabilities:

 (18)� �
1

1
cN

j

j

p C




�

 (19)� � � � � �= ,  1,  2,  ...,  j j j cp D C p D C p C d j N
4


/ 0 0 0,

Note that , , p(D), ,  and are probabilities, not � �jp C D � �jp D C � �jp C � �, jp D C0 � �jp C0

probability density functions.
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Tables

Table 1 Six model class candidates and their uncertain parameters

Model class Uncertain parameter vector 0 Number of uncertain parameters

SIMSAND
2

p,  ,  ,  ,  ,  ,  ,  ,  ref d p de k A n n �� � * �� �� �
9

SANISAND
2

0,  ,  ,  ,  ,  ,  ,  ,  ref d p de h A n n �� � * �� �� �
9

HYPOSAND
2,  ,  ,  ,  ,  ,  ref de E A �� � * �� �� �

7

MCCSAND 
2,  ,  ,  ,  ,  ,  ,  N Z m �* � � , �� �� �

8

Table 2 Model class selection results for illustration case

Model 

number
Model � �ln jp D C

Model 

number
Model � �ln jp D C

1 0y a �
 � -4879.1
9 3

1 3y a x a x �
 � � -45.83

2 1y a x �
 � -1009.5
10 2 3

2 3y a x a x �
 � � -48.78

3
2

2y a x �
 � -44.17
11 2

0 1 2y a a x a x �
 � � � 36.62

4
3

3y a x �
 � -394.3
12 3

0 1 3y a a x a x �
 � � � -49.27

5 0 1y a a x �
 � � -850.2
13 2 3

0 2 3y a a x a x �
 � � � -33.81

6
2

0 2y a a x �
 � � -27.21
14 2 3

1 2 3y a x a x a x �
 � � � 14.59

7
3

0 3y a a x �
 � � -181.3
15 2 3

0 1 2 3y a a x a x a x �
 � � � � -19.60

8
2

1 2y = a x+a x +e 165.1

Table 3 Summary of triaxial tests on Hostun sand

Triaxial tests Drained tests Undrained tests

Test number 1 2 3 4 5 6 7 8 9 10

e0 0.66 0.75 0.85 0.83 0.82 0.69 0.72 0.70 0.72 0.78

p' / kPa 100 100 100 200 400 100 100 400 400 400
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Table 4 Test combinations for model class selection

Test combination 1 2 3 4 5 6 7

Test number 1 4 5 1 and 4 1 and 5 4 and 5 1, 4 and 5

Table 5 Bounds of all uncertain parameters in the prior PDF used in TMCMC

Soil models Parameters
2

��

eref � � *�5° kp Ad np nd

SIMSAND
[0.5, 1.5] [10-3, 10-1] [0.1, 1.0] [20, 50] [10-3,10-1] [0.1, 3] [0, 10] [0, 10]

eref � � *�5° h0 Ad np nd

SANISAND
[0.5, 1.5] [10-3, 10-1] [0.1, 1.0] [20, 50] [1, 100] [0.1, 3] [0, 10] [0, 10]

eref � � E / kPa *�5° �d
HYPOSAND

[0.5, 1.5] [10-3, 10-1] [0.1, 1.0] [103, 5×104] [20, 50] [0.1, 3]

*�5° � � N Z , m
MCCSAND

[20, 50] [10-3, 10-1] [0.01, 1.0] [0.5, 3.0] [0.5, 2.0] [0, 1] [0, 10]

[0, 1]

Table 6 Results of model class selection based on limited number of tests

Tests Test 1 Test 4 Tests 1 and 4 Tests 4 and 5 Tests 1, 4 and 5

Model class Ln(S)
� �p C D

Ln(S)
� �p C D

Ln(S)
� �p C D

Ln(S)
� �p C D

Ln(S)
� �p C D

SIMSAND 70.29 0.114 328.02 0.209 385.25 0.401 678.79 0.218 697.85 0.351

SANISAND 361.91 0.589 340.57 0.217 341.22 0.355 819.48 0.263 676.03 0.340

HYPOSAND 47.40 0.077 253.25 0.161 178.79 0.186 557.30 0.179 384.78 0.193

MCCSAND 54.96 0.089 273.10 0.174 279.40 0.291 466.10 0.149 522.10 0.262

Table 7 Identified MAP parameters of SIMSAND and their uncertainties

SIMSAND eref � � *�5° kp Ad np nd

Based on test 1
0.765 

(3.59E-3)

0.0122 

(2.05E-3)

0.835 

(3.78E-2)

27.8 

(1.78E-1)

1.47E-03 

(7.84E-5)

0.46 

(1.96E-2)

1.8 

(7.28E-2)

3.9 

(2.16E-1)

Based on test 4
0.718 

(8.07E-4)

0.0076 

(9.56E-4)

0.313 

(2.75E-2)

29.3 

(4.54E-2)

7.75E-03 

(4.04E-4)

0.73 

(2.24E-2)

1.4 

(1.06E-1)

4.2 

(1.51E-1)

Based on test 1 

and 4

0.750 

(7.29E-4)

0.0254 

(6.21E-4)

0.684 

(1.54E-2)

29.3 

(3.61E-2)

3.72E-03 

(1.17E-4)

0.55 

(6.54E-3)

2.8 

(3.28E-2)

6.8 

(7.45E-2)

Based on test 4 

and 5

0.775 

(2.47E-3)

0.0478 

(2.63E-3)

0.464 

(1.53E-2)

29.1 

(3.92E-2)

9.36E-03 

(3.59E-4)

0.64 

(1.84E-2)

1.5 

(1.04E-1)

6.0 

(2.73E-1)

Based on test 1, 

4 and 5

0.751 

(1.03E-3)

0.0265 

(9.47E-4)

0.628 

(1.17E-2)

29.0 

(4.11E-2)

4.54E-03 

(1.35E-4)

0.56 

(2.35E-2)

3.0 

(3.66E-2)

7.0 

(4.06E-1)

Table 8 Identified MAP parameters of SANISAND and their uncertainties

SANISAND eref � � *�5° h0 Ad np nd

Based on test 1
0.735 

(1.02E-3)

0.0158 

(5.80E-4)

0.832 

(7.94E-3)

28.6 

(0.0358)

19.3 

(0.37)

0.54 

(7.0E-3)

1.1 

(7.5E-2)

6.7 

(8.59E-2)

Based on test 4
0.710 

(1.19E-3)

0.0052 

(8.70E-4)

0.501 

(3.13E-2)

28.6 

(0.0593)

19.9 

(0.38)

0.80 

(2.25E-2)

1.1 

(8.65E-2)

3.4 

(1.48E-1)

Based on test 1 

and 4

0.740 

(1.23E-3)

0.0169 

(8.81E-4)

0.803 

(2.57E-2)

28.6 

(0.0429)

29.0 

(0.85)

0.61 

(1.85E-2)

2.2 

()5.95E-2

6.1 

(2.07E-1)

Based on test 4 

and 5

0.738 

(8.13E-4)

0.0225 

(6.23E-4)

0.615 

(8.66E-3)

28.1 

(0.0259)

18.6 

(0.12)

0.52 

(9.7E-3)

0.6 

(4.15E-2)

7.7 

(1.92E-1)

Based on test 1, 4 0.739 0.0156 0.795 28.7 25.5 0.76 2.3 4.2 
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and 5 (5.87E-4) (4.71E-4) (1.15E-2) (0.0275) (0.46) (3.96E-2) (3.96E-2) (1.89E-1)

Table 9 Identified MAP parameters of HYPOSAND and their uncertainties

HYPOSAND eref � � E / kPa *�5° �d

Based on test 1 0.803 (3.72E-3) 0.056 (3.40E-3) 0.759 (0.031) 14109 (192) 27.1 (0.092) 1.44 (0.051)

Based on test 4 0.669 (3.74E-3) 0.003 (5.58E-4) 0.919 (0.101) 4132 (84) 31.4 (0.079) 0.91 (0.032)

Based on test 1 and 4 0.734 (1.85E-3) 0.015 (1.23E-3) 0.733 (0.023) 7883 (83) 28.7 (0.093) 2.47 (0.032)

Based on test 4 and 5 0.746 (3.80E-3) 0.035 (3.06E-3) 0.574 (0.030) 4509 (78) 30.7 (0.057) 1.64 (0.048)

Based on test 1, 4 and 5 0.740 (1.65E-3) 0.021 (1.50E-3) 0.682 (0.026) 7860 (71) 28.8 (0.073) 2.53 (0.032)

Table 10 Identified MAP parameters of MCCSAND and their uncertainties

SANISAND *�5° � � N Z , m

Based on test 1 33.2 (0.26) 0.044 (0.004) 0.18 (0.009) 2.22 (0.069) 0.94 (0.008) 0.61 (0.024) 1.45 (0.133)

Based on test 4 30.3 (0.3) 0.045 (0.007) 0.12 (0.003) 1.47 (0.016) 1.45 (0.032) 0.52 (0.018) 7.26 (0.469)

Based on test 1 and 4 29.8 (0.3) 0.021 (0.003) 0.25 (0.006) 2.51 (0.049) 0.88 (0.004) 0.48 (0.008) 2.41 (0.031)

Based on test 4 and 5 29.6 (0.5) 0.035 (0.002) 0.22 (0.003) 2.59 (0.021) 0.78 (0.004) 0.96 (0.013) 1.30 (0.112)

Based on test 1, 4 and 5 28.4 (0.3) 0.066 (0.006) 0.17 (0.003) 2.15 (0.031) 0.72 (0.002) 0.22 (0.020) 0.95 (0.043)

Table 11 Summary of drained triaxial tests on Karlsruhe G�� sand

Test number 1 2 3 4 5 6 7 8 9

e0 0.996 0.840 0.734 0.735 0.706 0.697 0.960 0.840 0.718

p' / kPa 50 50 50 100 200 300 400 400 400

Table 12 MAP parameters of all sand models for Karlsruhe sand 

eref � � *�5° kp Ad np nd
SIMSAND

1.053 0.0238 0.743 33.6 3.84×10-3 0.75 1.6 1.8

eref � � *�5° h0 Ad np nd
SANISAND

1.046 0.0137 0.881 6678 35.8 0.60 1.2 2.3

eref � � E / kPa *�5° �d
HYPOSAND

1.183 0.020 0.832 18940 29.0 0.65

*�5° � � N Z , m
MCCSAND

6976 0.044 0.18 2.33 0.96 0.05 3.19
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Figure captions

Fig. 1 Procedure of Bayesian model class selection with generalization ability evaluation

Fig. 2 Results of triaxial tests of Hostun sand

Fig. 3 Model class selection results based on: (a) test 1; (b) test 4; (c) tests 1 and 4; (d) tests 4 and 5; (e) tests 1, 4 and 5

Fig. 4 Results of empirical errors based on: (a) test 1; (b) test 4; (c) tests 1 and 4; (d) tests 4 and 5; (e) tests 1, 4 and 5

Fig. 5 Comparison of triaxial tests between simulations and experiments on Hostun sand 

Fig. 6 Results of drained triaxial tests on Karlsruhe G�� sand (test 1: e0=0.996, p'= 50 kPa; test 2: e0=0.840, p'= 50 kPa; 

test 3: e0=0.734, p'= 50 kPa; test 4: e0=0.735, p'= 100 kPa; test 5: e0=0.706, p'= 200 kPa; test 6: e0=0.697, p'= 300 kPa; 

test 7: e0=0.960, p'= 400 kPa; test 8: e0=0.840, p'= 400 kPa; test 9: e0=0.718, p'= 400 kPa) 
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Fig. 7 Model class selection results based on training data on Karlsruhe sand 

Fig. 8 Results of empirical errors based on testing data for Karlsruhe sand

Fig. 9 Comparison of triaxial tests between simulations and experiments for Karlsruhe sand
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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