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Structural damage detection based on variational Bayesian 

inference and delayed rejection adaptive Metropolis algorithm 

ABSTRACT 

Existing studies on sparse Bayesian learning for structural damage detection usually 

assume that the posterior probability density functions (PDFs) follow standard 

distributions, which facilitates to circumvent the intractable integration problem of the 

evidence by means of numerical sampling or analytical derivation. Moreover, the 

uncertainties of each mode are usually quantified as a common parameter to simplify 

the calculation. These assumptions may not be realistic in practice. This study 

proposes a sparse Bayesian method for structural damage detection suitable for 

standard and nonstandard probability distributions. The uncertainty corresponding to 

each mode is assumed as different. Variational Bayesian inference (VBI) is developed 

and the posterior PDFs of each unknown is individually derived. The parameters are 

found to follow the gamma distribution, whereas the distribution of the damage index 

cannot be directly obtained because of the nonlinear relationship in its posterior PDF. 

The delayed rejection adaptive Metropolis algorithm is then adopted to generate 

numerical samples of the damage index. The coupled damage index and parameters in 

the VBI are successively calculated via an iterative process. A laboratory tested frame 

is utilised to verify the effectiveness of the proposed method. The results indicate that 

the sparse damage can be accurately detected. The proposed method has the 

advantage of high accuracy and broad applicability.  
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1. Introduction 

Vibration-based damage detection contains uncertainties, including measurement 

noises, methodology errors and modelling errors.1–3 However, Neglect of the 

uncertainties may lead to inaccurate damage detection results 4,5 In recent years, 

several researchers have proposed statistical damage identification approaches using 

vibration data, where the uncertainties are described as random variables. The 

representative approaches include perturbation techniques,3,6 Monte Carlo 

simulation,7 statistical pattern recognition8 and Bayesian methods.9–13 Among these 

methods, the Bayesian inference provides a rigorous probabilistic framework to 

identify the target variable and to evaluate the corresponding uncertainties using the 

available information, and has attracted considerable attention since the 1990s.9 

Huang et al.13 reviewed Bayesian inference in system identification and damage 

assessment of civil infrastructures. 

 

Given that damage usually occurs at limited positions in the preliminary stage of 

structural failure, the sparse Bayesian learning,14 which is widely applied to sparse 

signal reconstruction and compressed sensing,15,16 has been developed for structural 

damage identification.17–21 However, the integral in the evidence of the Bayesian 

equation for model updating is generally high dimensional and complicated, making 

the calculation of the posterior probability density function (PDF) difficult. Analytical 

and numerical techniques have been developed to circumvent this problem. 

 

In regard to the analytical methods, Huang et al.17 proposed a hierarchical Bayesian 

model by expanding the nonlinear problem as multiple linear regression functions. 

This model was improved for damage detection with large modelling errors.18 

However, the hierarchical model introduces extra hyper-parameters that required to be 

calculated, resulting in a nontrivial workload. Wang et al.21 used the Laplace 

approximation by assuming the nonlinear posterior PDF as Gaussian distribution such 

that the damage index can be derived in an analytical form. The drawback of the 
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Laplace approximation is that it only works well when the objective function is 

globally identified and sharply peaked. In most cases, the condition may not be 

satisfied because of the limitation of measurement data. In locally identifiable and 

unidentifiable cases, finding all the optimal modes or eligible points is a 

computationally challenging and nontrivial task, especially in high-dimensional and 

nonconvex optimisations.23,24 

 

As for the numerical techniques, the Gibbs sampling was employed by Huang et al.19 

to provide a full Bayesian treatment of the posterior uncertainty. However, Gibbs 

sampling22 can only be used when the posterior PDF obeys the standard distribution. 

Hou et al.20 utilised the expectation–maximisation algorithm to calculate the latent 

damage index via an iterative process. The posterior PDF is assumed to follow a 

standard Gaussian distribution for sampling in the calculation of expectations. This 

assumption of the standard Gaussian distribution may not be true in practice. 

 

This study aims to propose an algorithm with wide applicability, high efficiency and 

accuracy for structural damage detection based on the sparse Bayesian learning. 

Rather than focusing on the most probable value estimated on the basis of the 

maximum a posteriori (MAP) principle, this study attempts to provide a full Bayesian 

treatment by taking the uncertainties of all unknowns into calculation. Therefore, 

variational Bayesian inference (VBI)25 is developed to derive the posterior PDF of 

each parameter and variable individually. The mechanism of VBI is to propose a 

tractable PDF to approximate the target PDF, and through minimizing the Kullback–

Leibler (KL) divergence between the proposed and target PDFs, to circumvent the 

intractable integration in the Bayesian formulation25. Mean field theory26 is utilised to 

factorise the proposed PDF and independently derive the posterior PDFs of each 

individual unknown.27–29 By employing VBI in this study, the probabilistic 

expressions proportional to the posterior PDF of each damage index and parameter 

can be derived. However, the specific distribution of the damage index cannot be 

directly calculated from the proportional expression because of the nonlinear 
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relationship between the latent variable and modal parameters. The unidentifiable 

PDF of the damage index makes its statistical characteristics unavailable and further 

hinders the iteration progress in the VBI. Therefore, an effective technique should be 

developed. 

 

Previous studies30–32 have indicated that provided that the probabilistic expression 

proportional to the target PDF is available, the Metropolis–Hastings (MH) algorithm, 

as a sampling technique developed from the basic Markov chain Monte Carlo 

(MCMC) simulation, can be utilised to generate samples following the target PDF and 

obtain the corresponding statistical characteristics no matter how complicated the 

PDF is. Therefore, the MH algorithm is able to solve the aforementioned 

unrecognizable problem in the VBI. The basic MH algorithm has been modified to 

improve its computational efficiency33–40 in recent decades. For example, the 

transitional MCMC is developed for cases when the proposed distribution is difficult 

to ascertain, and successive intermediate PDFs are used to gradually approach the 

target PDF.35 The delayed rejection (DR) technique is proposed to improve the 

acceptance ratio during the sampling process of high-dimensional models.38–40 The 

DR adaptive Metropolis (DRAM) algorithm,41 as a combination of the adaptive MH 

algorithm and DR, has been applied in civil engineering.42–44 Zhang et al.43 applied 

this algorithm to a Bayesian model updating and accurately predicted the structural 

responses. Wan et al.44 demonstrated that the DRMA algorithm outperforms the 

Laplace approximation in model updating when the posterior PDF is a non-normal 

shape. In this regard, the DRAM algorithm is employed here to generate samples 

following the posterior PDF which is intractable in the VBI.  

 

In this study, the VBI is combined with the DRAM algorithm for sparse damage 

detection. The posterior PDFs of the damage index and parameters are individually 

derived, and all unknowns are then calculated iteratively. A full Bayesian treatment of 

the posterior uncertainties is conducted during the iteration.  
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The rest of this paper is organised as follows. The sparse Bayesian framework for 

structural damage detection based on model updating is introduced and the difficulty 

in calculating the damage index is explained in Section 2. The VBI is developed to 

derive the individual posterior PDF of the damage index and each parameter in 

Section 3, followed by the DRAM algorithm in Section 4. Section 5 summarizes the 

proposed VBI-DRAM method. The application of the method to an experimental 

frame is given in Section 6, followed by the conclusions in Section 7. 

 

2. Sparse Bayesian Method for Model Updating  

In the Bayesian probabilistic framework, the posterior PDF is derived by updating the 

likelihood function with the prior information. The likelihood function is founded on 

the available measurement data, whereas the prior information is empirically 

determined. The model with regard to the application of the Bayesian theorem to 

structural model updating is formulated as9 

𝑝𝑝(𝜽𝜽|𝓓𝓓,ℳ) = 𝑝𝑝(𝓓𝓓|𝜽𝜽,ℳ)𝑝𝑝(𝜽𝜽|ℳ)/𝑝𝑝(𝓓𝓓|ℳ) (1) 

where ℳ denotes the parameterised model, 𝓓𝓓 denotes the measurements, 𝜽𝜽 is the 

target variable, 𝑝𝑝(𝜽𝜽|𝓓𝓓,ℳ)  is the posterior PDF, 𝑝𝑝(𝓓𝓓|𝜽𝜽,ℳ)  is the likelihood 

function, 𝑝𝑝(𝜽𝜽|ℳ)  is the prior PDF, and the denominator 𝑝𝑝(𝓓𝓓|ℳ)  is the 

normalising constant that is independent of the variable.  

 

2.1 Model class 

The model class ℳ is supposed as a linear model. In the undamaged state, the mass 

and stiffness matrices in the finite element model (FEM) are formulated as  

𝐌𝐌 = �ρ𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝐌𝐌𝑖𝑖 (2) 

𝐊𝐊 = �𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝐊𝐊𝑖𝑖 
(3) 
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where 𝐌𝐌 and 𝐊𝐊 are the structural global mass and stiffness matrix, respectively, 𝐌𝐌𝑖𝑖 

and 𝐊𝐊𝑖𝑖 are the elemental mass and stiffness matrix, respectively, ρ𝑖𝑖 and 𝑠𝑠𝑖𝑖 are the 

elemental mass and stiffness parameter, respectively, and n is the number of elements. 

In the damaged state, suppose that the mass remains unchanged, whereas the stiffness 

reduces to 

𝐊𝐊� = ��̅�𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝐊𝐊𝑖𝑖 (4) 

where �̅�𝑠𝑖𝑖  is the element stiffness parameter in the damaged state. The stiffness 

reduction factor (SRF) is defined as45 

𝜃𝜃𝑖𝑖 =
�̅�𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

 (5) 

where 𝜃𝜃𝑖𝑖 is nonpostive and larger than −1. Consequently, the target variable 𝜽𝜽 =

[𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃n] in Eq. (1) is regarded as the damage index, indicating the damage 

position and severity of the structure.  

 

2.2 Likelihood PDF 

The modal based Bayesian model updating aims to minimise the discrepancy between 

the measured modal data and model predictions. According to the principle of 

maximum entropy, the discrepancy is assumed to follow the Gaussian distribution.  

 

The difference between the model predictions and measurements is subjected to 

measurement noises and modelling errors. The two sources do not exhibit an identical 

error for each frequency and mode shape. Therefore, the error of each modal 

parameter is individually evaluated as 

𝜺𝜺𝑟𝑟 =
λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)

λ�𝑟𝑟
    ~𝒩𝒩�0,𝛽𝛽𝑟𝑟

−1� (6) 

𝒆𝒆𝑟𝑟 = 𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)  ~𝒩𝒩(𝟎𝟎,  𝛾𝛾𝑟𝑟−1𝑰𝑰) (7) 

where 𝜆𝜆𝑟𝑟(𝜽𝜽)  and 𝝓𝝓𝑟𝑟(𝜽𝜽)  represent the model predicted eigenvalues and mode 
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shapes, respectively, λ�𝑟𝑟  and 𝝓𝝓�𝑟𝑟  are the measured counterparts, and  𝛽𝛽𝑟𝑟  and 𝛾𝛾𝑟𝑟 

reflect the corresponding uncertainty levels. 

 

According to Eqs. (6) and (7), the likelihood functions of the measured frequency and 

mode shape are formulated as 

𝑝𝑝�λ�𝑟𝑟�𝜽𝜽,𝛽𝛽𝑟𝑟� = �
𝛽𝛽𝑟𝑟
2𝜋𝜋
�
1
2
𝑒𝑒𝑒𝑒𝑝𝑝 �−

1
2
𝛽𝛽𝑟𝑟 ∙ �

λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)
λ�𝑟𝑟

�
2

� (8) 

𝑝𝑝�𝝓𝝓�𝑟𝑟�𝜽𝜽, 𝛾𝛾𝑟𝑟� = �
 𝛾𝛾𝑟𝑟
2𝜋𝜋
�
𝑁𝑁𝑝𝑝
2 𝑒𝑒𝑒𝑒𝑝𝑝 �−

 1
2
𝛾𝛾𝑟𝑟 ∙ �𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2
� (9) 

 

The modal parameters are assumed to be independent from mode to mode. Therefore, 

the resulting likelihood functions of 𝜽𝜽 based on measured modal parameters 𝝀𝝀� and 

𝝍𝝍�  are expressed as 

𝑝𝑝�𝝀𝝀��𝜽𝜽,𝜷𝜷� = �𝑝𝑝�λ�𝑟𝑟�𝜽𝜽,𝛽𝛽𝑟𝑟�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

= ��
𝛽𝛽𝑟𝑟
2𝜋𝜋

𝑁𝑁𝑚𝑚

𝑟𝑟=1

�

1
2

𝑒𝑒𝑒𝑒𝑝𝑝 �−
1
2
��𝛽𝛽𝑟𝑟 ∙ �

λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)
λ�𝑟𝑟

�
2

�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

� (10) 

𝑝𝑝�𝝍𝝍��𝜽𝜽,𝜸𝜸� = �𝑝𝑝�𝝓𝝓�𝑟𝑟�𝜽𝜽, 𝛾𝛾𝑟𝑟�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

= ��
 𝛾𝛾𝑟𝑟
2𝜋𝜋

𝑁𝑁𝑚𝑚

𝑟𝑟=1

�

𝑁𝑁𝑝𝑝
2

𝑒𝑒𝑒𝑒𝑝𝑝 �−
 1
2
��𝛾𝛾𝑟𝑟 ∙ �𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2
�

𝑁𝑁𝑚𝑚

𝑟𝑟=1

� (11) 

where 𝑁𝑁𝑚𝑚 is the number of measured modes. 

 

2.3 Prior PDF 

The identification of the SRF is a typical ill-posed inverse problem.46 To solve this 

problem, the regularisation techniques, such as l1 and l2 techniques,45–48 have been 

applied to structural model updating given that damage usually occur at limited 

locations in the preliminary stage of the structural failure. In the Bayesian framework, 

it is suggested to adopt the conjugate prior to simplify the calculation. However, the l1 

technique is not conjugated to the Gaussian distribution adopted in the likelihood 

function. Tippling14 proposed the sparse Bayesian learning, where the prior is 

formulated based on the automatic relevance determination (ARD) principle. The 
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ARD model following the Gaussian distribution is conjugated to the likelihood 

function in this study and adopted as the prior, which is expressed as 

𝑝𝑝(𝜽𝜽|𝜶𝜶) = �𝑝𝑝(𝜃𝜃𝑖𝑖|𝛼𝛼𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= �
1

2𝜋𝜋
�
𝑛𝑛
2
��𝛼𝛼𝑖𝑖

1
2 𝑒𝑒𝑒𝑒𝑝𝑝 �−

1
2
𝛼𝛼𝑖𝑖𝜃𝜃𝑖𝑖2��

𝑛𝑛

𝑖𝑖=1

 (12) 

where 𝛼𝛼𝑖𝑖 represents the precision of 𝜃𝜃𝑖𝑖. 

 

2.4 Posterior PDF 

Substituting Eqs. (10)–(12) into Eq. (1), the posterior PDF of the damage index is 

formulated as 

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝛽𝛽, 𝛾𝛾� =
𝑝𝑝�𝝀𝝀� ,𝛙𝛙��𝜽𝜽,𝜷𝜷,𝜸𝜸�𝑝𝑝(𝜽𝜽|𝜶𝜶)

𝑝𝑝�𝝀𝝀� ,𝝍𝝍��𝜶𝜶,𝛽𝛽, 𝛾𝛾�
=
𝑝𝑝�𝝀𝝀��𝜽𝜽,𝛽𝛽�𝑝𝑝�𝝍𝝍��𝜽𝜽, 𝛾𝛾�𝑝𝑝(𝜽𝜽|𝜶𝜶)
∫𝑝𝑝�𝝀𝝀� ,𝝍𝝍� ,𝜽𝜽�𝜶𝜶,𝛽𝛽, 𝛾𝛾�𝑑𝑑𝜽𝜽

 

=  𝑐𝑐−1 𝑝𝑝�𝝀𝝀��𝜽𝜽,𝛽𝛽�𝑝𝑝�𝝍𝝍��𝜽𝜽, 𝛾𝛾�𝑝𝑝(𝜽𝜽|𝜶𝜶) 

= 𝑐𝑐−1 ��
𝛽𝛽𝑟𝑟
2𝜋𝜋

𝑁𝑁𝑚𝑚

𝑟𝑟=1

�

1
2

��
 𝛾𝛾𝑟𝑟
2𝜋𝜋

𝑁𝑁𝑚𝑚

𝑟𝑟=1

�

𝑁𝑁𝑝𝑝
2

�
1

2𝜋𝜋
�
𝑛𝑛
2
��𝛼𝛼𝑖𝑖

1
2

𝑛𝑛

𝑖𝑖=1

� 𝑒𝑒𝑒𝑒𝑝𝑝 � −
1
2
��𝛽𝛽𝑟𝑟 ∙ �

λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)
λ�𝑟𝑟

�
2

�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

 

     −
 1
2
��𝛾𝛾𝑟𝑟 ∙ �𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2
�

𝑁𝑁𝑚𝑚

𝑟𝑟=1

−
1
2
�(𝛼𝛼𝑖𝑖𝜃𝜃𝑖𝑖2)
𝑛𝑛

𝑖𝑖=1

� 

 (13) 

where the evidence 𝑐𝑐 = ∫ 𝑝𝑝�𝝀𝝀� ,𝝍𝝍� ,𝜽𝜽�𝜶𝜶,𝛽𝛽, 𝛾𝛾�𝑑𝑑𝜽𝜽  is calculated by marginalising 

damage index 𝜽𝜽 and is therefore independent of 𝜽𝜽. 

 

The MAP estimation to the damage index in Eq. (13) is equivalent to minimising the 

negative natural logarithm of the posterior PDF, which is written as 

𝜽𝜽� = arg  min   𝐽𝐽(𝜽𝜽) 

  = arg  min   ��𝛽𝛽𝑟𝑟 �
λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)

λ�𝑟𝑟
�
2

�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

+ ��𝛾𝛾𝑟𝑟�𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�
2
2
�

𝑁𝑁𝑚𝑚

𝑟𝑟=1

+ �(𝛼𝛼𝑖𝑖𝜃𝜃𝑖𝑖2)
𝑛𝑛

𝑖𝑖=1

 
(14) 

The items unrelated with 𝜽𝜽 are omitted in the above equation. The minimisation of 

Eq. (14) cannot be directly obtained because parameters {𝜶𝜶,𝛽𝛽, 𝛾𝛾} are unknown. VBI 

is used to solve this problem in the subsequent section. 
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3. VBI  

The mechanism of VBI is to propose a tractable PDF to approximate the target PDF.25 

In this study, the target PDF is the posterior PDF 𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�, and the proposed 

PDF is symbolised as 𝑸𝑸(𝜽𝜽,𝜶𝜶,𝜷𝜷,𝜸𝜸), which is simplified as 𝑸𝑸.  

 

According to Eq. (13), the evidence can be calculated as  

𝑐𝑐 = 𝑝𝑝�𝝀𝝀� ,𝛙𝛙��𝜶𝜶,𝜷𝜷,𝜸𝜸� =
𝑝𝑝�𝝀𝝀��𝜽𝜽,𝛽𝛽�𝑝𝑝�𝝍𝝍��𝜽𝜽, 𝛾𝛾�𝑝𝑝(𝜽𝜽|𝜶𝜶)

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�
=
𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸�
𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�

 (15) 

Taking the logarithm of the two sides in Eq. (15), the formulation changes into 

               ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙��𝜶𝜶,𝜷𝜷,𝜸𝜸� = ln
𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸�
𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�

 

                                       = ln
𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸�

𝑸𝑸
− ln

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�
𝑸𝑸

 

(16) 

where 𝑸𝑸  is the proposed PDF to approximate 𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸� . Taking the 

expectation of the two sides in Eq. (16) with respect to 𝑸𝑸 yields 

               �𝑸𝑸 ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙��𝜶𝜶,𝜷𝜷,𝜸𝜸� 𝑑𝑑𝜽𝜽 

= �𝑸𝑸 ln
𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸�

𝑸𝑸
𝑑𝑑𝜽𝜽 −�𝑸𝑸 ln

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�
𝑸𝑸

𝑑𝑑𝜽𝜽 
(17) 

Given that ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙��𝜶𝜶,𝜷𝜷,𝜸𝜸� is irrelevant to 𝜽𝜽, the left side of Eq. (17) is equivalent 

to ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙��𝜶𝜶,𝜷𝜷,𝜸𝜸�. Therefore, Eq. (17) can be simplified as 

               ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙��𝜶𝜶,𝜷𝜷,𝜸𝜸� = 𝓛𝓛(𝑸𝑸) + 𝐷𝐷𝐾𝐾𝐾𝐾�𝑸𝑸||𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�� (18) 

where  

               𝓛𝓛(𝑸𝑸) = E𝑸𝑸 �ln
𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸�

𝑸𝑸
� (19) 
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       𝐷𝐷𝐾𝐾𝐾𝐾�𝑸𝑸||𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�� = �𝑸𝑸 ln
𝑸𝑸

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�
𝑑𝑑𝜽𝜽 (20) 

where E𝑸𝑸 denotes the expectation with respect to 𝑸𝑸, 𝓛𝓛(𝑸𝑸) represents the lower 

bound of 𝑸𝑸  and 𝐷𝐷𝐾𝐾𝐾𝐾  is the KL divergence25 between 𝑸𝑸  and posterior PDF 

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�.  

 

It has been proved that 𝐷𝐷𝐾𝐾𝐾𝐾 ≥ 0.25 𝐷𝐷𝐾𝐾𝐾𝐾 = 0when 𝑸𝑸 = 𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸�. Therefore, 

increasing the proximity of 𝑸𝑸 to the posterior PDF is equivalent to minimising 𝐷𝐷𝐾𝐾𝐾𝐾. 

As the posterior PDF 𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝜶𝜶,𝜷𝜷,𝜸𝜸� is unknown, 𝐷𝐷𝐾𝐾𝐾𝐾  cannot be calculated 

directly. According to Eq.(18), minimising 𝐷𝐷𝐾𝐾𝐾𝐾 is equivalent to maximise 𝓛𝓛(𝑸𝑸).25 

To obtain the independent posterior PDF of the damage index and parameters, 𝑸𝑸 is 

factorized into two components based on the mean field theory,26 shown as 

           𝑸𝑸(𝜽𝜽,𝜶𝜶,𝜷𝜷,𝜸𝜸) = 𝑞𝑞(𝜽𝜽)𝑞𝑞(𝜶𝜶,𝜷𝜷,𝜸𝜸) (21) 

 

The maximisation of 𝓛𝓛(𝑸𝑸) can be achieved by optimising each factor in turn through 

solving the expectation of the numerator 𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸� in 𝓛𝓛(𝑸𝑸) with respect to 

other factors.25 Therefore, factor 𝑞𝑞(𝜶𝜶,𝜷𝜷,𝜸𝜸)  can be derived by calculating the 

expectation of ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸� with respect to 𝜽𝜽, that is 

ln 𝑞𝑞(𝜶𝜶,𝜷𝜷,𝜸𝜸) = 𝐸𝐸𝜽𝜽� ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸�� + const 

= 𝐸𝐸𝜽𝜽� ln 𝑝𝑝�𝝀𝝀��𝜽𝜽,𝛽𝛽� + ln𝑝𝑝�𝝍𝝍��𝜽𝜽, 𝛾𝛾� + ln 𝑝𝑝(𝜽𝜽|𝜶𝜶)� + const 

=
1
2
� ln𝛽𝛽𝑟𝑟

𝑁𝑁𝑚𝑚

𝑟𝑟=1

−
1
2
��𝛽𝛽𝑟𝑟 ∙ 𝐸𝐸𝜽𝜽 ��

λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)
λ�𝑟𝑟

�
2

��
𝑁𝑁𝑚𝑚

𝑟𝑟=1

+
𝑁𝑁𝑝𝑝
2
� ln 𝛾𝛾𝑟𝑟

𝑁𝑁𝑚𝑚

𝑟𝑟=1

  

    −
1
2
��𝛾𝛾𝑟𝑟 ∙ 𝐸𝐸𝜽𝜽 ��𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
��

𝑁𝑁𝑚𝑚

𝑟𝑟=1

+
1
2
� ln𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
�{𝛼𝛼𝑖𝑖𝐸𝐸(𝜃𝜃𝑖𝑖2)} + const
𝑛𝑛

𝑖𝑖=1

 

(22) 

Parameters {𝜶𝜶,𝜷𝜷,𝜸𝜸} are assumed to be independent from each other and from mode 

to mode, leading to the factorisation as 
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           𝑞𝑞(𝜶𝜶,𝜷𝜷,𝜸𝜸) = 𝑞𝑞(𝜶𝜶)𝑞𝑞( 𝜷𝜷)𝑞𝑞(𝜸𝜸) (23) 

𝑞𝑞(𝜶𝜶) = �𝑞𝑞(𝛼𝛼𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (24) 

 𝑞𝑞(𝜷𝜷) = �𝑞𝑞(𝛽𝛽𝑟𝑟)
𝑁𝑁𝑚𝑚

𝑟𝑟=1

 (25) 

 𝑞𝑞(𝜸𝜸) = �𝑞𝑞(𝛾𝛾𝑟𝑟)
𝑁𝑁𝑚𝑚

𝑟𝑟=1

 (26) 

Therefore, 

          ln 𝑞𝑞(𝜶𝜶,𝜷𝜷,𝜸𝜸) = � ln 𝑞𝑞(𝛼𝛼𝑖𝑖) +
𝑛𝑛

𝑖𝑖=1

� ln 𝑞𝑞(𝛽𝛽𝑟𝑟) + � ln 𝑞𝑞(𝛾𝛾𝑟𝑟)
𝑁𝑁𝑚𝑚

𝑟𝑟=1

𝑁𝑁𝑚𝑚

𝑟𝑟=1

 (27) 

According to Eq. (22), the logarithm of the posterior PDF of the individual parameter 

is then obtained as 

ln 𝑞𝑞(𝛼𝛼𝑖𝑖) =  
1
2

ln𝛼𝛼𝑖𝑖 −
1
2
𝛼𝛼𝑖𝑖𝐸𝐸(𝜃𝜃𝑖𝑖2) + const  (28) 

ln 𝑞𝑞( 𝛽𝛽𝑟𝑟) =
1
2

ln𝛽𝛽𝑟𝑟 −
𝛽𝛽𝑟𝑟
2
𝐸𝐸𝜽𝜽 ��

λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)
λ�𝑟𝑟

�
2

� + const (29) 

ln 𝑞𝑞(𝛾𝛾𝑟𝑟) =
𝑁𝑁𝑝𝑝
2

ln 𝛾𝛾𝑟𝑟 −
 𝛾𝛾𝑟𝑟
2
𝐸𝐸𝜽𝜽 ��𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2
�+ const (30) 

It shows that all parameters follow the gamma distribution as 

𝑞𝑞(𝛼𝛼𝑖𝑖) ∝ (𝛼𝛼𝑖𝑖)
1
2 ∙ exp �−

 𝛼𝛼𝑖𝑖
2
∙ 𝐸𝐸(𝜃𝜃𝑖𝑖2)� (31) 

𝑞𝑞( 𝛽𝛽𝑟𝑟) ∝ ( 𝛽𝛽𝑟𝑟)
1
2 ∙ exp �−

𝛽𝛽𝑟𝑟
2
∙ 𝐸𝐸𝜽𝜽 ��

λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)
λ�𝑟𝑟

�
2

�� (32) 

𝑞𝑞(𝛾𝛾𝑟𝑟) ∝ (𝛾𝛾𝑟𝑟)
𝑁𝑁𝑝𝑝
2 ∙ exp �−

 𝛾𝛾𝑟𝑟
2
∙ 𝐸𝐸𝜽𝜽 ��𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2
�� (33) 

Therefore, the mean and variance of each parameter are calculated as 

𝐸𝐸(𝛼𝛼𝑖𝑖) =
3

𝐸𝐸(𝜃𝜃𝑖𝑖2) ;  Var(𝛼𝛼𝑖𝑖) =
6

[𝐸𝐸(𝜃𝜃𝑖𝑖2)]𝟐𝟐 (34) 
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𝐸𝐸(𝛽𝛽𝑟𝑟) =
3

𝐸𝐸𝜽𝜽 ��
λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)

λ�𝑟𝑟
�
2

�
 ;   Var(𝛽𝛽𝑟𝑟) =

6

�𝐸𝐸𝜽𝜽 ��
λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)

λ�𝑟𝑟
�
2

��
2 

(35) 

𝐸𝐸(𝛾𝛾𝑟𝑟) =
𝑁𝑁𝑝𝑝 + 2

𝐸𝐸𝜽𝜽 ��𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�
2
2
�

;    Var(𝛾𝛾𝑟𝑟) =
2𝑁𝑁𝑝𝑝 + 4

�𝐸𝐸𝜽𝜽 ��𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�2
2
��
2 (36) 

 

Factor 𝑞𝑞(𝜽𝜽)  can be similarly derived by calculating the expectation of 

ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸� with respect to {𝜶𝜶,𝜷𝜷,𝜸𝜸}, that is 

 ln 𝑞𝑞(𝜽𝜽) = 𝐸𝐸𝜶𝜶,𝜷𝜷,𝜸𝜸� ln 𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝜽𝜽�𝜶𝜶,𝜷𝜷,𝜸𝜸�� + const 

               = 𝐸𝐸 𝜶𝜶,𝜷𝜷,𝜸𝜸� ln 𝑝𝑝�𝝀𝝀��𝜽𝜽,𝜷𝜷�𝑝𝑝�𝝍𝝍��𝜽𝜽,𝜸𝜸�𝑝𝑝(𝜽𝜽|𝜶𝜶)� + const 

               = 𝐸𝐸 𝜷𝜷� ln 𝑝𝑝�𝝀𝝀��𝜽𝜽,𝜷𝜷�� + 𝐸𝐸 𝜸𝜸� ln 𝑝𝑝�𝝍𝝍��𝜽𝜽,𝜸𝜸�� + 𝐸𝐸 𝜶𝜶[𝑝𝑝(𝜽𝜽|𝜶𝜶)] + const 

               = −
1
2
��𝐸𝐸(𝛽𝛽𝑟𝑟) ∙ �

λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)
λ�𝑟𝑟

�
2

�
𝑁𝑁𝑚𝑚

𝑟𝑟=1  

−
1
2
��𝐸𝐸(𝛾𝛾𝑟𝑟) ∙ �𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2�

𝑁𝑁𝑚𝑚

𝑟𝑟=1

 

                     −
1
2
�{𝐸𝐸(𝛼𝛼𝑖𝑖) ∙ 𝜃𝜃𝑖𝑖2}
𝑛𝑛

𝑖𝑖=1

+ const 

(37) 

where the items independent with 𝜽𝜽 are merged into the constant item. Therefore, 

𝑞𝑞(𝜽𝜽) ∝  exp�−��
𝐸𝐸(𝛽𝛽𝑟𝑟)

2
∙ �
λ�𝑟𝑟 − 𝜆𝜆𝑟𝑟(𝜽𝜽)

λ�𝑟𝑟
�
2

�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

 

(38) 

−��
𝐸𝐸(𝛾𝛾𝑟𝑟)

2
∙ �𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2
� −

𝑁𝑁𝑚𝑚

𝑟𝑟=1

��
𝐸𝐸(𝛼𝛼𝑖𝑖)

2
∙ 𝜃𝜃𝑖𝑖2�

𝑛𝑛

𝑖𝑖=1

� 

Eqs. (34)–(36) and (38) are coupled and should be iteratively calculated. The 

iterations are corresponding to the variational Bayesian expectation and maximisation 

step.25 Given that VBI does not guarantee to converge to the global optimum, it is 

suggested to assign different initialisations to the parameters at the beginning of the 

iteration. The iterative process requires the calculation of three expectations, namely, 

𝐸𝐸(𝜃𝜃𝑖𝑖2), 𝐸𝐸𝜽𝜽 ��
λ�𝑟𝑟−𝜆𝜆𝑟𝑟(𝜽𝜽)

λ�𝑟𝑟
�
2
� and 𝐸𝐸𝜽𝜽 ��𝝓𝝓�𝑟𝑟 − 𝝓𝝓𝑟𝑟(𝜽𝜽)�

2
2
�, which is a full Bayesian analysis 

that takes posterior uncertainties of 𝜽𝜽 into consideration. However, the specific 

distribution of 𝜽𝜽  cannot be directly recognised from Eq. (38) because of the 
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nonlinear relationship between 𝜽𝜽 and the modal parameters. This scenario hinders 

the iteration progress in the VBI. In next section the numerical DRAM algorithm is 

used to obtain the statistical distribution of 𝜽𝜽. 

 

4. DRAM Algorithm  

The MH algorithm is one of the most common MCMC simulation and can be used to 

generate samples following the target PDF that is difficult to directly sample [31]. 

Given the expression 𝑞𝑞(𝑦𝑦) proportional to the target PDF and proposed PDF 𝑆𝑆 to 

generate samples, the procedures of the basic MH algorithm are described as 

follows:31 

(1) Generate the candidate sample 𝑦𝑦 ~ 𝑆𝑆�∙ �𝑒𝑒𝑗𝑗�, where 𝑒𝑒𝑗𝑗  is the current sample, 

(2) Compute the acceptance ratio of the candidate sample, 

       ξ�𝑒𝑒𝑗𝑗 ,𝑦𝑦� = min �1, 
𝑞𝑞(𝑦𝑦)𝑆𝑆�𝑦𝑦�𝑒𝑒𝑗𝑗�
𝑞𝑞(𝑒𝑒𝑗𝑗)𝑆𝑆�𝑒𝑒𝑗𝑗�𝑦𝑦�

� 

(3) The next sample is  

        𝑒𝑒𝑗𝑗+1 = �
𝑦𝑦         with the acceptance ratio ξ�𝑒𝑒𝑗𝑗 ,𝑦𝑦�
𝑒𝑒𝑗𝑗     with the rejection ratio 1 − ξ�𝑒𝑒𝑗𝑗 ,𝑦𝑦�

 

 

The sample will eventually converge to its equilibrium distribution after the burn-in 

period.30 However, the rejection ratio of samples in high-dimensional problems is 

usually large because of the wide sampling space. Accordingly, the burn-in period will 

be long, resulting in a low sampling efficiency. To solve this problem, DR39,40 

algorithm is proposed to reduce the number of rejected samples and improve the 

acceptance ratio. When the candidate sample is decided to be rejected, rather than 

getting a repeated sample, a secondary candidate sample is generated from an 

adjusted proposal PDF and the acceptance ratio is recalculated. This process is called 

DR and the procedures are as follow:39, 40 

(1) Generate the candidate sample 𝑦𝑦1 ~ 𝑆𝑆�∙ �𝑒𝑒𝑗𝑗�, where 𝑒𝑒𝑗𝑗  is the current sample, 
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(2) Compute the acceptance ratio of the candidate sample, 

       ξ1�𝑒𝑒𝑗𝑗 ,𝑦𝑦1� = min �1, 
𝑞𝑞(𝑦𝑦1)𝑆𝑆�𝑦𝑦1�𝑒𝑒𝑗𝑗�
𝑞𝑞(𝑒𝑒𝑗𝑗)𝑆𝑆�𝑒𝑒𝑗𝑗�𝑦𝑦1�

� 

(3) The next sample is  

    𝑒𝑒𝑗𝑗+1 = �
𝑦𝑦1 and go to Step (7)        with the acceptance ratio ξ1�𝑒𝑒𝑗𝑗 ,𝑦𝑦1�
go to Step (4)                  with the rejection ratio 1 − ξ1�𝑒𝑒𝑗𝑗 , 𝑦𝑦1�

 

(4) Generate the candidate sample 𝑦𝑦2 ~ 𝑆𝑆�∙ �𝑒𝑒𝑗𝑗 ,𝑦𝑦1 �, 

(5) Compute the acceptance ratio of the secondary candidate sample, 

       ξ2�𝑒𝑒𝑗𝑗 , 𝑦𝑦1,𝑦𝑦2� = min �1, 
𝑞𝑞(𝑦𝑦2)𝑆𝑆(𝑦𝑦1|𝑦𝑦2)𝑆𝑆�xj�𝑦𝑦1,𝑦𝑦2�(1 − ξ1(𝑦𝑦2,𝑦𝑦1))
𝑞𝑞(𝑒𝑒𝑗𝑗)𝑆𝑆�𝑦𝑦1�𝑒𝑒𝑗𝑗�𝑆𝑆�𝑦𝑦2�𝑒𝑒𝑗𝑗 ,𝑦𝑦1�(1 − ξ1(𝑒𝑒𝑗𝑗 ,𝑦𝑦1))

� 

(6) The next sample is  

    𝑒𝑒𝑗𝑗+1 = �
𝑦𝑦2    with the acceptance ratio ξ2�𝑒𝑒𝑗𝑗 , 𝑦𝑦1,𝑦𝑦2�
𝑒𝑒𝑗𝑗               with rejection ratio ξ2�𝑒𝑒𝑗𝑗 ,𝑦𝑦1,𝑦𝑦2�

 

(7) End 

 

Moreover, the proposed PDF for sampling also significantly influences the sampling 

efficiency.30,31 The closer the proposed PDF is to the target PDF, the higher the 

acceptance ratio of the sample will be. In most instances, the Gaussian distribution is 

adopted as the proposed PDF because of its operability and large entropy. The mean 

of Gaussian distribution is consistently adjusted with the new obtained sample as 

shown above, whereas the variance is generally determined based on experience. A 

small variance results in a slow convergence when the sample severely deviates from 

the equilibrium distribution, whereas a large variance leads to a high sampling 

rejection ratio. In light of this issue, the adaptive Metropolis (AM) algorithm36,37 is 

proposed to automatically adjust the variance based on the generated samples. The 

adjustment is usually conducted after obtaining a certain number of samples to ensure 

the semi-positive definite property of the covariance matrix. The adjustment rule is 

expressed as36,37   
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  𝐶𝐶 = �
𝐶𝐶, 𝑗𝑗 + 1 < 𝑁𝑁𝑡𝑡

𝑆𝑆𝑑𝑑 cov (𝜽𝜽(1),𝜽𝜽(2),…,𝜽𝜽(𝑗𝑗+1) )+𝑆𝑆𝑑𝑑𝜀𝜀𝑰𝑰𝑑𝑑, 𝑗𝑗 + 1 ≥ 𝑁𝑁𝑡𝑡 
 (39) 

where 𝐶𝐶 is the covariance matrix which is usually determined based on experience, 

𝑆𝑆𝑑𝑑 is a parameter related to the dimension of the covariance and is generally set to 

2.42/𝑑𝑑 (𝑑𝑑 is the dimension of 𝜽𝜽),41 𝜀𝜀 is an extremely minimal constant, 𝑰𝑰𝑑𝑑 is an 

identity matrix, and 𝑁𝑁𝑡𝑡 is the bound number of samples before the adjustment of the 

covariance matrix. 

 

Considering the advantages of DR and AM algorithms, researchers have combined 

them to generate a new algorithm called the DRAM algorithm.41 The DRAM 

algorithm is applicable to standard and nonstandard probabilistic distributions, 

provided that the probability proportional to the target PDF is available. It has a 

considerable efficiency when applied to high-dimensional problems.44 

 

In this study, the DRAM algorithm is used to generate samples of 𝜽𝜽 using Eq. (38). 

For simplification and efficiency, a two-layer delayed rejection is employed. That is, 

if the secondary sample is rejected, the new sample is set equal the previous sample 

and the third-layer sampling is not performed any more. A Gaussian distribution 

𝒩𝒩(𝜇𝜇,𝐶𝐶) is adopted as the proposed PDF. To accelerate the convergence and shorten 

the burn-in period of the DRAM algorithm, the mean 𝜇𝜇 of the Gaussian distribution 

is initially set as 𝜽𝜽�, which is calculated from the minimisation of the objective 

function in Eq. (14). Both the mean 𝜇𝜇 and covariance matrix 𝐶𝐶 are adjusted with 

the progress of sampling. The algorithm is described as follows: 

 

DRAM algorithm 

Given the proposed sampling PDF 𝒩𝒩(𝜇𝜇,𝐶𝐶), the first sample 𝜽𝜽(1), the scale factor 

𝜌𝜌 to reduce the covariance (𝜌𝜌 < 1), the bound 𝑁𝑁𝑡𝑡, the trivial constant 𝜀𝜀 and the  

number of samples 𝑛𝑛𝑠𝑠 

1. Generate the candidate sample 𝑒𝑒1 ~ 𝒩𝒩(𝜇𝜇,𝐶𝐶). 
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2. Calculate the acceptance ratio of the candidate sample, 

       ξ𝑗𝑗1�𝜽𝜽(𝑗𝑗), 𝑒𝑒1 � = min �1, 
𝑞𝑞(𝑒𝑒1)𝒩𝒩𝜽𝜽(𝑗𝑗)(𝑒𝑒1,𝐶𝐶)
𝑞𝑞(𝜽𝜽(𝑗𝑗))𝒩𝒩𝒙𝒙𝟏𝟏(𝜽𝜽(𝑗𝑗),𝐶𝐶)

� 

3. Randomly generate 𝝁𝝁 from uniform distribution 𝒰𝒰(0, 1). 

4. If 𝝁𝝁 < ξ𝑗𝑗1�𝜽𝜽(𝑗𝑗), 𝑒𝑒1 �, 𝜽𝜽(𝑗𝑗+1) = 𝑒𝑒1, and go to Step 8. Otherwise, go to Step 5. 

5. Generate the secondary candidate sample 𝑒𝑒2 ~ 𝒩𝒩(𝜇𝜇,𝜌𝜌𝐶𝐶). 

6. Calculate the acceptance ratio of the secondary candidate sample, 

       ξ21(𝑒𝑒2, 𝑒𝑒1 ) = min �1, 
𝑞𝑞(𝑥𝑥1)𝒩𝒩𝑥𝑥2(𝑥𝑥1,𝐶𝐶0)
𝑞𝑞(𝑥𝑥2)𝒩𝒩𝑥𝑥1(𝑥𝑥2,𝐶𝐶0)

�  

       ξj2�𝜽𝜽(𝑗𝑗), 𝑒𝑒2 � = min �1, 
𝑞𝑞(𝑒𝑒2)𝒩𝒩𝑥𝑥1(𝑒𝑒2,𝐶𝐶)𝒩𝒩𝜽𝜽(𝑗𝑗)(𝑒𝑒2,𝐶𝐶)[1 − ξ21(𝑒𝑒2, 𝑒𝑒1 )]

𝑞𝑞(𝜽𝜽(𝑗𝑗))𝒩𝒩𝑥𝑥1(𝜽𝜽(𝑗𝑗),𝐶𝐶)𝒩𝒩𝑥𝑥2(𝜽𝜽(𝑗𝑗),𝐶𝐶)�1− ξ𝑗𝑗1(𝜽𝜽(𝑗𝑗), 𝑒𝑒1 )�
� 

7. If 𝝁𝝁 < ξ𝑗𝑗2�𝜽𝜽(𝑗𝑗), 𝑒𝑒2 �, then 𝜽𝜽(𝑗𝑗+1) = 𝑒𝑒2. Else, 𝜽𝜽(𝑗𝑗+1) = 𝜽𝜽(𝑗𝑗). 

8. Adjust the sampling covariance 

        𝐶𝐶 = �
𝐶𝐶, 𝑗𝑗 + 1 < 𝑁𝑁𝑡𝑡

𝑆𝑆𝑑𝑑 cov (𝜽𝜽(1),𝜽𝜽(2),…,𝜽𝜽(𝑗𝑗+1) )+𝑆𝑆𝑑𝑑𝜀𝜀𝑰𝑰𝑑𝑑, 𝑗𝑗 + 1 > 𝑁𝑁𝑡𝑡 
 

9. Let 𝜇𝜇 = 𝜽𝜽(𝑗𝑗+1). 

10. Let 𝑗𝑗 = 𝑗𝑗 + 1, repeat Steps 1–8 until 𝑗𝑗 = (𝑛𝑛𝑠𝑠 − 1). 

11. The samples following the posterior PDF of 𝜽𝜽  is obtained, 

(𝜽𝜽(1),𝜽𝜽(2), … ,𝜽𝜽(𝑛𝑛𝑠𝑠)) . The most probable value and uncertainty of 𝜽𝜽  are 

calculated from the samples. 
 

5. Summary of the Proposed Method 

Figure 1 summarises the implementation procedures of the proposed method, which 

starts from initialising the parameters and progresses by iteratively updating all 

unknowns. The damage index 𝜽𝜽 are sampled using the DRAM sampling technique 

according to Eqs. (14) and (38), and the most probable value 𝜽𝜽MAP is calculated 

from the obtained samples. The parameters {𝜶𝜶,𝜷𝜷,𝜸𝜸} are updated according to Eqs. 

(34)–(36). The procedures are repeated until the defined convergence criterion is 

satisfied. 
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Figure 1 Flowchart of the proposed VBI-DRAM method 

6. Experimental Example 

6.1 Model description 

A laboratory tested two-storey steel frame is utilised to verify the effectiveness of the 

proposed algorithm. Figure 2 shows the intact structure. The structure is fixed on the 

strong floor through a steel plate. The entire frame is 1 m high with two equal storeys, 

and the span is 0.5 m. The cross-section of all components is 50.0×5.0 mm2. The mass 

density of the steel material measures 7.92×103 kg/m3, and the Young’s modulus is 
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estimated as 2.0×1011 N/m2.  

 
Figure 2 Experimental frame  

 

A modal test on the intact frame was firstly conducted. The frame was excited using a 

hammer with a rubber tip. The vibration responses were recorded at 26 locations with 

equal spacing of 100 mm, as shown in Figure 3. The first eight frequencies and mode 

shapes were extracted using a rational fraction polynomial method.49 

 

Three cuts were then sequentially introduced to the frame. The cuts had the same 

length of 20 mm and different depths to simulate various damage severities. 

Specifically, Cut 1 was located at the clamped end with a depth of 10 mm. Cuts 2 and 

3 were located at the beam–column joint and the middle of the bottom column with 

the same depth of 15 mm. Figure 3 shows the configurations and locations of the three 

cuts.  

 

The structure is modelled using 150 Euler–Bernoulli beam elements with each 20 mm 

long. Given that the cuts have the same length with each element, the damage severity 

of each cut defined in Eq. (5) is equal to the reduction in the moment of inertia of the 

cross-section. Therefore, the SRFs of each damaged element are 40%, 60% and 60%, 
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respectively, that is, 𝜃𝜃1 = −40%, 𝜃𝜃126 = −60% and 𝜃𝜃12 = −60%, respectively.  

 

Figure 3 Configuration of the experimental frame and damage locations (unit: mm) 

 

The specific information of three damage scenarios (DSs) is summarized in Table 1. 

The aforementioned modal test was conducted on each DS. The frequencies and mode 

shapes of each DS are compared in Table 2. The 6th mode was close to the 7th mode, 

leading to modal identification errors. These two modes were then removed, and only 

the first five modes and 8th mode were used for damage identification hereinafter.  

Table 1 Damage locations and severities of three DSs 

Damage 
Scenario 

Cut  
No. 

Element 
No. 

Cut depth 
(mm) 

Damaged 
component 

SRF (𝜃𝜃) 

DS1 Cut 1 1 10 Column 𝜃𝜃1 = −40% 

DS2 
Cut 1 

Cut 2 

1 

126 

10 

15 

Column 

Beam 

𝜃𝜃1 = −40% 

𝜃𝜃126 = −60% 

DS3 

Cut 1 1 10 Column 𝜃𝜃1 = −40% 

Cut 2 

Cut 3 

126 

12 

15 

15 

Beam 

Column 

𝜃𝜃126 = −60% 

𝜃𝜃12 = −60% 

 

10
0

100

Cut 3 50
0

10
0

500

22
0
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00
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0
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Table 2 Modal data of the frame in undamaged and damaged states (units: Hz) 

Mode  Undamaged 
DS1   DS2  DS3 

Freq. (HZ) MAC  Freq. (HZ) MAC  Freq. (HZ) MAC 
1 6.27 6.19(−1.39) 0.99  6.17(−1.60) 0.91  6.16(−1.78) 0.96 
2 20.64 20.45(−0.92) 0.99  20.16(−2.33) 0.99  20.17(−2.28) 0.87 
3 44.35 44.17(−0.40) 0.98  43.89(−1.03) 0.96  43.94(−0.90) 0.93 
4 62.63 62.41(−0.36) 0.99  61.69(−1.51) 0.99  61.40(−1.96) 0.98 
5 71.29 70.62(−0.93) 0.97  69.98(−1.84) 0.97  69.60(−2.37) 0.95 
8 106.52 105.6(−0.90) 0.94  105.1(−1.32) 0.91  104.2(−2.21) 0.88 

Average (%)     (−0.82) 0.98  (−1.61) 0.96  (−1.92) 0.93 
Note. (1) Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

      (2) MAC refers to the Modal Assurance Criterion of the mode shapes in the damaged and undamaged states 

 

6.2 Damage identification results 

The parameters should be initialised first. As previously mentioned, the VBI does not 

ensure the global optimum upon convergence. The parameters are recommended to be 

initialised with different values. Nevertheless, the DRAM algorithm is a relatively 

global technique that is applicable to nonstandard and nonconvex PDFs, which 

compensates for the limitation of VBI. Therefore, the 𝜽𝜽MAP identified from the 

samples generated by the DRAM algorithm will be the global maximum theoretically. 

As previously defined, the parameters reflect the uncertainty level of the selected 

model. Consequently, these parameters are supposed to converge to the determined 

values under different initialisations. This will be investigated later. The uncertainty 

levels of the damage index, frequency and mode shape are initially assumed as 10%, 1% 

and 5%, respectively, that is, 𝛼𝛼𝑖𝑖
(0)=1/(10%)2 =100 (i =1, 2,…, 150), 𝛽𝛽𝑟𝑟

(0)=1/(1%)2 

=1×104 (r =1, 2,…, 5, 6), and 𝛾𝛾𝑟𝑟(0)=1/(5%)2 =400 (r =1, 2,…, 5, 6). 𝜽𝜽MAP  is 

initialised to 𝟎𝟎, that is, 𝜽𝜽MAP(0) = 𝟎𝟎. 

 

After the initialisation, 𝜽𝜽�  is firstly solved according to Eq.(14). The DRAM 

algorithm is then carried out to sample 𝜽𝜽 according to the target PDF Eq. (38). The 

first sample 𝜽𝜽(1) and mean 𝜇𝜇 of the proposed PDF are set as 𝜽𝜽�, that is, 𝜽𝜽(1) = 𝜇𝜇 =
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𝜽𝜽�. The covariance matrix 𝐶𝐶 in Step 1 is assumed as a diagonal matrix with the entry 

equal to 0.05 and subsequently adjusted according to Step 8. Scale factor 𝜌𝜌 is set to 

0.01, and 𝑆𝑆𝑑𝑑 = 2.42/𝑑𝑑 (𝑑𝑑 is the dimension of 𝜽𝜽, 150 here). The bound 𝑁𝑁𝑡𝑡 is set to 

100. 𝜀𝜀 is set to 10−5 to ensure that the covariance is positive and semidefinite. The 

number of samples 𝑛𝑛𝑠𝑠 is set to 5000. After obtaining 𝑛𝑛𝑠𝑠 samples of 𝜽𝜽, the most 

probable value 𝜽𝜽MAP and expectations 𝐸𝐸(𝜃𝜃𝑖𝑖2) , 𝐸𝐸 ��λ
�𝑟𝑟−𝜆𝜆𝑟𝑟(𝜽𝜽)

λ�𝑟𝑟
�
2
� and 𝐸𝐸 ��𝝓𝝓�𝑟𝑟 −

𝝓𝝓𝑟𝑟(𝜽𝜽)�
2
2
� are calculated. Parameters {𝜶𝜶,𝜷𝜷,𝜸𝜸} are then updated according to Eqs. 

(34)–(36). The above procedures are repeated until the convergence condition is 

satisfied (Tol = 0.02). The damage index 𝜽𝜽 and parameters {𝜶𝜶,𝜷𝜷,𝜸𝜸} are valued as 

𝜽𝜽 = 𝜽𝜽MAP, 𝛼𝛼𝑖𝑖 = 𝐸𝐸(𝛼𝛼𝑖𝑖), 𝛽𝛽𝑟𝑟 = 𝐸𝐸(𝛽𝛽𝑟𝑟) and 𝛾𝛾𝑟𝑟 = 𝐸𝐸(𝛾𝛾𝑟𝑟). 

 

(1) DS1 

The actual damage in DS1 is 𝜃𝜃1 = −40%. In the first iteration, the generated 5000 

samples of 𝜽𝜽 based on the DRAM algorithm and their probability histograms are 

plotted in Figure 4. For brevity, only the samples of 𝜃𝜃1 and 𝜃𝜃50, which correspond to 

the damaged and undamaged elements, respectively, are presented. Since the mean of 

the proposed Gaussian PDF and the initial sample are obtained by minimising the 

objective function Eq.(14), the samples quickly converge to the region nearby the 

actual damage index. The burn-in period30 in the sampling process is very short, as 

shown in Figures 4(a) and (b). The probability histograms and fitted PDF curves are 

plotted in Figures 4(c) and (d), respectively. The posterior PDFs of the damage indices 

are not standard distributions. 

 

The damage detection results in the first iteration are shown in Figure 5(a). The 

results show that a number of elements are falsely identified as damaged at the 

beginning. Convergence is achieved after five iterations, as shown in Figure 5. The 

actual damaged element No.1 is correctly identified upon convergence. The samples 

in the final iteration are plotted in Figure 6. Again the posterior PDFs of the damage 

indices are not standard distributions. 
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(a) Samples of 𝜃𝜃1 (b) Samples of 𝜃𝜃50 

  

(c) Posterior PDF of 𝜃𝜃1 (d) Posterior PDF of 𝜃𝜃50 

Figure 4 Samples and posterior PDFs in the first iteration (DS1) 

 

  
(a) Iteration No.1 (b) Iteration No.2 
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(c) Iteration No.4 (d) Iteration No.5 

Figure 5 Damage identification results in DS1 

 

  

(a) Samples of 𝜃𝜃1 (b) Samples of 𝜃𝜃50 

  

(c) Posterior PDF of 𝜃𝜃1 (d) Posterior PDF of 𝜃𝜃50 

Figure 6 Samples and posterior PDFs in the final iteration (DS1) 
 

(2) DS2 

The actual damage in DS2 are 𝜃𝜃1 = −40%  and 𝜃𝜃126 = −60% . The proposed 
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method is similarly applied to this DS. The samples and PDFs of 𝜽𝜽 are not shown for 

brevity. The detection results during the iterations are shown in Figure 7. In the 

second iteration, element No. 50 is incorrectly identified as damaged, which is located 

at the top of the column and is adjacent to element No. 126. Upon convergence, this 

error is eliminated and the two actual damaged elements are correctly identified 

without false identifications.  

  
(a) Iteration No.1 (b) Iteration No.2 

  
(c) Iteration No.5 (d) Iteration No.6 

Figure 7 Damage identification results in DS2 
 

(3) DS3 

The actual damage in DS3 are 𝜃𝜃1 = −40%, 𝜃𝜃126 = −60% and 𝜃𝜃12 = −60%. The 

identification results during the iterations are shown in Figure 9. Convergence is 

achieved after seven iterations. Three damaged elements are accurately identified 

upon convergence.  
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(a) Iteration No.1 (b) Iteration No.2 

  

(c) Iteration No.6 (d) Iteration No.7 

Figure 8 Damage identification results in DS3 
 

6.3 Variation of parameters  

The parameters also change during the iteration. Figure 9 shows the variations of 

{𝜶𝜶,𝜷𝜷,𝜸𝜸} in DS1. In particular, although all 𝛼𝛼𝑖𝑖 (i = 1, 2, …, 150) have identical 

initialisation, 𝛼𝛼1 converges to a small value close to 1 whereas the remaining 𝛼𝛼𝑖𝑖(i =2, 

3,…, 150) become significantly large, forcing the corresponding damage indices of 

undamaged elements to zero in Eq. (14). Consequently, the damage detection results 

are sparse, which is consistent with the sparsity mechanism of the ARD model. 

Similar results were obtained by Hou et al.20 The variations of parameters 𝛽𝛽𝑟𝑟 and 𝛾𝛾𝑟𝑟 

in DS1 are presented in Figure 9 (b) and (c). These parameters are different from each 

other, representing the different uncertainties of each mode.  
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(a) 𝛼𝛼 (b) 𝛽𝛽 

 
(c) 𝛾𝛾 

Figure 9 Variations of parameters in DS1 during the iterative process 

 

Two extra groups of values are introduced to the parameters in DS1, that is, 

β(0)=1/(2%)2 =2.5×103, γ(0)=1/(10%)2 =100 and β(0)=1/(0.5%)2 =4×104, γ(0)=1/(2.5%)2 

=1600, to investigate the effects of different initialisations on the damage detection 

results using the proposed VBI-DRAM algorithm. The above damage detection 

process is similarly conducted. Parameters 𝛽𝛽1 , 𝛽𝛽6 , 𝛾𝛾1  and 𝛾𝛾6  with different 

initialisations are compared in Figure 10. As it shows, the parameters converge to the 

identical values in the final iteration step. In particular, β1
 =2.8×104, β6=5.2×103, 

γ1=2.5×103 and γ6=2.9×102. Accordingly, the uncertainties of the 1st and 8th 

eigenvalues are 0.6% and 1.4%, respectively, and those of modal shapes are 2.0% and 

5.9%, respectively.  
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(a) 𝛽𝛽1  (b) 𝛽𝛽6  

  
(c) 𝛾𝛾1 (d) 𝛾𝛾6 
Figure 10 Parameters with different initializations 

7. Comparison with the EM method20 

A sparse Bayesian learning for damage detection using the expectation-maximization 

(EM) technique has been developed in Hou et al.20 The present study is an 

improvement from the theoretical and computational perspectives.  

(1) From the theoretical aspect, the uncertainty of each mode is assumed 

independently in this study while most other studies treat uncertainties associated 

with different modes as identical. Also, the posterior uncertainties of parameters 

{𝜶𝜶,𝜷𝜷,𝜸𝜸} are taken into consideration in the calculation of 𝜽𝜽 while Hou et al., 20 

did not consider these uncertainties. Finally, the method does not require the 

posterior PDF following the Gaussian distribution and is thus more widely 

applicable.  
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(2) From the computational point of view, the EM technique requires to calculate the 

Hessian matrix in the posterior sampling or assuming the variance empirically in 

the likelihood sampling, both are very time-consuming. In the present VBI, the 

calculation of the Hessian matrix is avoided. The numerical sampling of the 

damage index 𝜽𝜽  is directly conducted on the PDF (Eq.(38)), which is 

proportional to its posterior PDF. 

 

The cantilever beam in Hou et al.20 (Figure 11) is used here for comparing the 

performance of the present and the EM techniques. The beam is 900 mm long, 50.75 

mm wide and 6.0 mm thick with the mass density of 7.67×103 kg/m3. The Young’s 

Modulus of the material is estimated to be 2.0×1011 N/m.  

 

 

Figure 11 Geometric configuration of the beam structure (unit: mm) 

 

The beam is divided 150 equal Euler-Bernoulli beam elements (i.e. n = 150) each 

having a length of 6 mm. Two cuts are introduced in the clamped end and the middle 

of the beam with the damage severity of 50%, that is, 𝜃𝜃1 = 𝜃𝜃75 = −0.5. The first two 

frequencies and mode shapes are employed for the model updating and damage 

detection. The mode parameters in the undamaged and damaged states are listed in 

Table 3. 
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Table 3 Modal data of the beam in undamaged and damaged states 

Mode  
Undamaged 

Freq. (Hz) 

  Damaged 
 Freq. (Hz) MAC 

1    6.02  5.93(−1.50) 1.0000 
2    37.75  37.04(−1.88) 0.9998 

Average (%)      (−1.69) 0.9999 
Note. (1) Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

      (2) MAC refers to the Modal Assurance Criterion of the mode shapes in the damaged and undamaged states 

 

The VBI-DRAM method developed in the present study and the EM method are 

separately employed for the damage detection. The calculations are carried out on a 

PC with AMD A8-8600P Radeon R6 CPU and 8 GB RAM. The identification results 

and computational time are compared in Table 4. As it shows, the damage detection 

results using both techniques are accurate, while the computational time using the 

present VBI-DRAM method is only 7% of that using the EM technique. Consequently, 

the VBI-DRAM is much more efficient than the other. 

 
Table 4 Damage detection results using EM and VBI-DRAM method 

 
Technique Result Time 

EM 

(Posterior sampling) 

𝜃𝜃1 = −0.52 

𝜃𝜃45 = −0.49 
147′36′′ 

VBI-DRAM 
𝜃𝜃1 = −0.52 

𝜃𝜃45 = −0.51 
11′19′′ 

 

8. Conclusions 

This study proposes a sparse Bayesian model for structural damage detection based on 

the VBI and DRAM algorithms. By combining the two techniques, the individual 

posterior PDF of the damage index and parameters are derived and a full Bayesian 

treatment of all posterior uncertainties is conducted. The damage index and 
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parameters are iteratively solved. The proposed method is applicable to standard and 

nonstandard probability distributions. A laboratory tested frame is utilised to verify its 

effectiveness. The results indicate that the damage location and severity can be 

accurately detected. The uncertainty of each mode is different, verifying the 

rationality of the independent evaluation of each mode in this study. A comparative 

study demonstrates that it is computationally efficient than the EM technique. The 

proposed method has the advantages of high accuracy and wide applicability for 

structural damage detection. 

 

Acknowledgements 

This study was supported by the PolyU Research Grant (Project No. 1-ZVP2) and the 

National Natural Science Foundation of China (Project No. 51678364). 
  



32 
 

References 

1. Zhang J, Xu YL, Xia Y, et al. A new statistical moment-based structural damage 
detection method. Structural Engineering and Mechanics 2008; 30: 445–466. 

2. Simoen E, De Roeck G and Lombaert G. Dealing with uncertainty in model 
updating for damage assessment: A review. Mechanical Systems and Signal 
Processing 2015; 56–57: 123–149. 

3. Xia Y and Hao H. Statistical damage identification of structures with frequency 
changes. Journal of Sounds and Vibration 2003; 263: 853–870. 

4. Doebling SW, Farrar CR, Prime MB, et al. Damage identification and health 
monitoring of structural and mechanical systems from changes in their vibration 
characteristics: a literature review. Los Alamos National Laboratory Report, 1996. 

5. Sohn H, Farrar CR, Hemez FM, et al. A review of structural health monitoring 
literature: 1996–2001, Los Alamos National Laboratory Report, 2003. 

6. Hua XG, Ni YQ, Chen ZQ, et al. An improved perturbation method for 
stochastic finite element model updating. International Journal for Numerical 
Methods in Engineering 2008; 73: 1845–1864. 

7. Yeo I, Shin S, Lee HS, et al. Statistical damage assessment of framed structures 
from static responses. Journal of Engineering Mechanics, ASCE 2000; 126: 414–
421. 

8. Gul M and Catbas FN. Statistical pattern recognition for structural health 
monitoring using time series modeling: theory and experimental verifications, 
Mechanical Systems and Signal Processing 2009; 23: 2192–2204. 

9. Beck JL and Katafygiotis LS. Updating models and their uncertainties. I: 
Bayesian statistical framework, Journal of Engineering Mechanics, ASCE 1998; 
124: 455–461. 

10. Ching J and Beck JL. Bayesian analysis of the Phase II IASC-ASCE structural 
health monitoring experimental benchmark data. Journal of Engineering 
Mechanics, ASCE 2004; 130: 1233–1244. 

11. Zhu YC and Au SK. Bayesian operational modal analysis with asynchronous 
data, part I: Most probable value. Mechanical Systems and Signal Processing 
2018; 98: 652–666. 

12. Yan WJ and Katafygiotis LS. An analytical investigation into the propagation 
properties of uncertainty in a two-stage fast Bayesian spectral density approach 
for ambient modal analysis. Mechanical Systems and Signal Processing 2019; 
118: 503–533. 

13. Huang Y, Shao CS, Wu BA, et al. State-of-the-art review on Bayesian inference 
in structural system identification and damage assessment. Advances in 



33 
 

Structural Engineering 2019; 22: 1329–1351. 

14. Tipping ME. Sparse Bayesian learning and the relevance vector machine, 
Journal of Machine Learning Research 2001; 1: 211–244. 

15. Malioutov D, Cetin M and Willsky AS. A sparse signal reconstruction 
perspective for source localization with sensor arrays. IEEE Transactions on 
Signal Processing 2005; 53: 3010–3022. 

16. Fang J, Shen YN, Li FW, et al. Support knowledge-aided sparse Bayesian 
learning for compressed sensing. IEEE International Conference on Acoustics 
2015, 3786–3790. 

17. Huang Y and Beck JL. Hierarchical sparse Bayesian learning for structural 
health monitoring with incomplete modal data. International Journal for 
Uncertainty Quantification 2015; 5: 139–169. 

18. Huang Y, Beck JL and Li H. Hierarchical sparse Bayesian learning for structural 
damage detection: theory, computation and application. Structural Safety 2017; 
64: 37–53. 

19. Huang Y, Beck JL and Li H. Bayesian system identification based on 
hierarchical sparse Bayesian learning and Gibbs sampling with application to 
structural damage assessment. Computer Methods in Applied Mechanics and 
Engineering 2017; 318: 382–411. 

20. Hou RR, Xia Y, Zhou XQ, et al. Sparse Bayesian learning for structural damage 
detection using expectation-maximization technique. Structural Control and 
Health Monitoring 2019; 26. 

21. Wang XY, Hou RR, Xia Y, et al. Laplace approximation in sparse Bayesian 
learning for structural damage detection. Mechanical Systems and Signal 
Processing, under review. 

22. Smith AFM and Roberts GO. Bayesian computation via the Gibbs sampler and 
related Markov-chain Monte-Carlo methods, Journal of the Royal Statistical 
Society Series B-Methodological 1993; 55: 3–23. 

23. Beck JL. Bayesian system identification based on probability logic. Structural 
Control and Health Monitoring 2010; 17: 825–847. 

24. Beal MJ. Variational algorithms for approximate Bayesian inference. PhD thesis, 
University of London, 2003. 

25. Bishop CM. Pattern recognition and machine learning. Berlin: Springer, 2006. 

26. Parisi G. Statistical field theory. Addison-Wesley, 1988. 

27. Baldacchino T, Cross EJ, Worden K, et al. Variational Bayesian mixture of 
experts models and sensitivity analysis for nonlinear dynamical systems. 
Mechanical Systems and Signal Processing 2016; 66–67: 178–200. 



34 
 

28. Jacobs WR, Baldacchino T, Dodd T, et al. Sparse Bayesian nonlinear system 
identification using variational inference. IEEE Transactions on Automatic 
Control 2018; 63: 4172–4187. 

29. Blei DM, Kucukelbir A and McAuliffe JD. Variational Inference: a review for 
statisticians. Journal of the American Statistical Association 2017; 112: 859–
877. 

30. Andrieu C, de Freitas N, Doucet A, et al. An introduction to MCMC for machine 
learning. Machine Learning 2003; 50: 5–43. 

31. Chib S and Greenberg E. Understanding the Metropolis-Hastings Algorithm. 
American Statistician 1995; 49: 327–335. 

32. Arminger G. A Bayesian approach to nonlinear latent variable models using the 
Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 1998; 63: 
271-300. 

33. Au SK and Beck JL. Estimation of small failure probabilities in high dimensions 
by subset simulation. Probabilistic Engineering Mechanics 2001; 16: 263–277. 

34. Yang JH and Lam HF. An efficient adaptive sequential Monte Carlo method for 
Bayesian model updating and damage detection. Structural Control and Health 
Monitoring 2018; 25. 

35. Ching JY and Chen YC. Transitional Markov chain Monte Carlo method for 
Bayesian model updating, model class selection, and model averaging. Journal 
of Engineering Mechanics 2007; 133: 816–832. 

36. Haario H, Saksman E and Tamminen J. Adaptive proposal distribution for 
random walk Metropolis algorithm. Computational Statistics 1999; 14: 375–395. 

37. Haario H, Saksman E and Tamminen J. An adaptive Metropolis algorithm, 
Bernoulli 2001; 7: 223–242. 

38. Tierney L and Mira A. Some adaptive Monte Carlo methods for Bayesian 
inference. Statistics in Medicine 1999; 18: 2507–2515. 

39. Green PJ and Mira A. Delayed rejection in reversible jump Metropolis-Hastings. 
Biometrika 2001; 88: 1035–1053. 

40. Mira A. On Metropolis-Hastings algorithms with delayed rejection. Metron 2001; 
59: 231–241. 

41. Haario H, Laine M, Mira A, et al. DRAM: Efficient adaptive MCMC. Statistics 
and Computing 2006; 16: 339–354. 

42. Zuev KM and Katafygiotis LS. Modified Metropolis-Hastings algorithm with 
delayed rejection. Probabilistic Engineering Mechanics 2011; 26: 405–412. 

43. Zhang J, Wan CF and Sato T. Advanced Markov chain Monte Carlo approach 
for finite element calibration under uncertainty. Computer-Aided Civil and 



35 
 

Infrastructure Engineering 2013; 28: 522–530. 

44. Wan HP and Ren WX. Stochastic model updating utilizing Bayesian approach 
and Gaussian process model. Mechanical Systems and Signal Processing 2016; 
70–71: 245–268. 

45. Zhou XQ, Xia Y and Weng S. l1 regularization approach to structural damage 
detection using frequency data. Structural Health Monitoring 2015; 14: 571–
582. 

46. Hou RR, Xia Y and Zhou XQ. Structural damage detection based on l1 
regularization using natural frequencies and mode shapes. Structural Control and 
Health Monitoring 2018; 25. 

47. Chen ZP, Pan CD and Yu L. Structural damage detection via adaptive dictionary 
learning and sparse representation of measured acceleration responses. 
Measurement 2018; 128: 377–387. 

48. Wang L and Lu ZR. Sensitivity-free damage identification based on incomplete 
modal data, sparse regularization and alternating minimization approach. 
Mechanical Systems and Signal Processing 2019; 120: 43–68. 

49. Formenti D and Richardson M. Parameter estimation from frequency response 
measurements using rational fraction polynomials (twenty years of progress). 
Proceeding of International Modal Analysis Conference 2002; 4753: 373–382. 

 


	Structural damage detection based on variational Bayesian inference and delayed rejection adaptive Metropolis algorithm
	Xiaoyou Wang1, Rongrong Hou1, Yong Xia1* and Xiaoqing Zhou2
	1Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
	*Corresponding author, email: ceyxia@polyu.edu.hk
	Structural damage detection based on variational Bayesian inference and delayed rejection adaptive Metropolis algorithm
	ABSTRACT
	1. Introduction
	2. Sparse Bayesian Method for Model Updating
	2.1 Model class
	2.2 Likelihood PDF
	2.3 Prior PDF
	2.4 Posterior PDF

	3. VBI
	4. DRAM Algorithm
	5. Summary of the Proposed Method
	6. Experimental Example
	6.1 Model description
	6.2 Damage identification results
	6.3 Variation of parameters

	7. Comparison with the EM method20
	8. Conclusions

	Acknowledgements
	References




