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Abstract: 4 

The presence of intermediate supports usually imposes difficulties in identifying the tension force 5 

of stayed cables in cable-stayed bridges or hanger cables in arch bridges. This paper establishes 6 

the partial differential equations of motion of the cable and derives two numerical models with 7 

(Model 1) and without (Model 2) considering the flexural rigidity. The effects of two intermediate 8 

supports on the identification accuracy of the cable tension force are further studied analytically 9 

and experimentally. The effects of several non-dimensional parameters (e.g., damper location, 10 

support stiffness, flexural rigidity, and mode order of the cable) on the identification accuracy of 11 

the models are also investigated. It is theoretically concluded that the simplified Model 2 provides 12 

acceptable accuracy on tension force identification when the non-dimensional parameter   is 13 

greater than 90 (slender cables), while the accurate Model 1 can be applied for tension force 14 

identification at any scenarios. The feasibility of two models is further verified by three numerical 15 

examples and field tests on two real-world arch bridges. 16 
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1. INTRODUCTION 30 

Accurate estimation of the tension force of stay cable for cable stayed bridge or the axial force 31 

within hanger cables of half-through or through arch bridge plays an important role on overall 32 

condition assessment of a bridge during its construction stage and service life. Instead of the direct 33 

measurement methods (e.g., jack hydraulic method and force transducer), the vibration-based 34 

method is employed to identify the natural frequency of the cable from its dynamic response 35 

signals under ambient or artificial excitations. A cable vibration model is then established to 36 

estimate the cable force through the relationship between the measured natural frequencies and 37 

the tension force.1, 2 For a cable with purely pinned-pinned or clamped-clamped conditions, 38 

multiple models have been developed to establish the relationship between the cable force and the 39 

measured natural frequencies in the form of empirical explicit expression, approximate 40 

formulation, and iterative solution.3-5 For a cable with two arbitrary end conditions, a tensioned 41 

beam model with arbitrary supporting stiffness and rotational stiffness would be constructed and 42 

then the frequency equation can be established.6 The tension force can be determined by solving 43 

a very complicated transcendental equation in an iterative way. Kim and Park7 developed a 44 

frequency-based sensitivity-updating algorithm to determine the tensile force of a cable, based on 45 

measured multi-order natural vibration frequencies and a finite element model considering the 46 

bending stiffness and the sag effect of the cable. Ma8 proposed an inclined cable model 47 

considering the unknown rotational constraint stiffness at both ends of the cable. A numerical 48 

approach was then employed to obtain the cable tension, the flexural rigidity and the rotational 49 

stiffness at the cable ends by iterative updating. These studies indicate that, in some sense, the 50 

tension force of a cable with two arbitrary end conditions is readily obtained numerically. 51 
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For the existing in-service bridges, the intermediate supports, such as the internal or external 52 

dampers installed at the cable ends near to the deck and pylon, divide the cable into two or three 53 

segments. In such cases, the boundary conditions of the cable are complicated that it is difficult 54 

to construct the relationship between the cable force and the measured natural frequencies via the 55 

general dynamic model. For a cable with one or two intermediate supports, many studies9-19 56 

investigated the vibration characteristics of the cable-damper systems by solving the differential 57 

equations of the free lateral vibrations of the cable. However, these studies were conducted from 58 

the viewpoint of the damper design rather than focusing on the cable force estimation.  59 

From the view of cable force identification, an empirical approach was proposed to determine 60 

the equivalent vibration length of the cable by measuring the variations of natural frequencies 61 

before and after the installation of the dampers. This approach, however, is impractical to remove 62 

the intermediate cable supports for in-service bridges. Consequently, the limitation of the vibration 63 

method in dealing with the intermediate supports needs to be carefully taken into account. 64 

Ceballos and Prato20 simplified the intermediate supports near the anchors as deviators having no 65 

own rotational stiffness and restraining the transversal displacement only. Chen et al.21, 22 66 

proposed a method to combine the mode shape ratios with the modal frequencies in order to 67 

determine stay cable forces. Yan et al.23 transformed the cable force estimation problem into 68 

finding the zero-amplitude points from the mode shape of the cable. Their methods can eliminate 69 

the effects of complex boundary conditions. However, application of this method to practical field 70 

test requires accurate identification of the mode shape. The conventional ambient vibration-based 71 

measurement system generally requires installing numerous contact-type sensors, such as 72 

accelerometers or velocimeters. These sensors are attached to the cable in order to obtain the 73 
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observable mode shapes, which appears to be very difficult and even impossible within 74 

construction stage and operational state. As stated by Yan et al.24, one of the possible solutions is 75 

to integrate the vision-based measurement for the multiple specific ranges of the cable with the 76 

automatic total station for target positioning, with the purpose of detecting the zero-amplitude 77 

points from the identified local mode shapes. 78 

In practical engineering, the compressive-type high damping rubber (HDR) dampers as the 79 

internal dampers protected by the steel tube near the deck and pylon anchorage zones are 80 

commonly introduced to the cable. Generally, the cable force is not very sensitive to the supporting 81 

stiffness of the HDR damper attached to the cable, hence, its supporting stiffness can be directly 82 

determined from the technical specification of the HDR damper. The stiffness variation resulted 83 

from the installation deviation of the damper can be neglected. This paper establishes an in-plane 84 

cable-double damping model (Model 1) for a tensioned cable with two known intermediate 85 

supporting stiffness values. The objective of this paper is to study the effect of these two 86 

intermediate supports on the tension force estimation of the cable. The analytical solution is 87 

obtained by introducing the boundary equation and continuity condition. By constructing different 88 

parameters, the proposed Model 1 is compared with the cable-double damping model (Model 2) 89 

without considering the flexural rigidity. The effectiveness of the model is verified by a simulation 90 

example for three typical cables and two field tests on the tension force identification of the hanger 91 

cable for two arch bridges.  92 

 93 

2. Dynamics of A Cable with Two Dampers 94 

2.1 Model 1: Considering flexural rigidity of the cable  95 
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A clamped-clamped cable with two intermediate compression-type high damping rubber (HDR) 96 

dampers is shown in Fig. 1. The cable has the cable force T along the chord, the mass per unit 97 

length m, the chord length L, and the flexural rigidity EI. For the small deflection, the differential 98 

equation of the free lateral vibrations for the cable with a uniform cross section can be written as: 99 

     
       

4 2 2

1 14 2 2 2 2

, , ,v x t v x t v x t
f t x x f tEI T m

x
x

t
x

x
 

  
  


  

 
     (1) 100 

where x  is the coordinate along the cable chord, ( , )v x t  is the transverse displacement at time 101 

t, 
1( )f t  and 

2 ( )f t  are the damping forces at time t for two dampers with supporting stiffness 102 

1k  and 
2k , respectively, which are located at the distances of 

1x  and 
2x  from the left ends, 103 

respectively, and     is the Dirac delta function, specifying the locations of the damper forces 104 

at 
1x x  and 

2x x . To simplify the calculation, the sag of the cable is neglected in the model. 105 

The compressive-type HDR dampers can be simplified into a spring element with 106 

compression stiffness of /  ( 1,  2)i i i ik E A t i  , where iE  is the elastic modulus of the rubber, 107 

iA  is the contact area of the cable with the HDR, and it  is the thickness of the rubber.  108 

For the free vibration of the cable, the transverse vibration displacement and the damping 109 

force can be described as follows:  110 

   , i tv x t v x e                                    (2) 111 

   1,2i t

j jf t F e j                                 (3) 112 

 

Fig. 1. Model 1: cable with two attached HDR dampers ( 0EI  ) 
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where 2 1i   , ω is the circular frequency of the free vibration of the cable, and  v x  is the 113 

complex mode shape. Substituting Eqs. (2) and (3) into Eq. (1), a fourth-order ordinary differential 114 

equation is obtained in the form of 115 

   
 

4 2

2

4 2
0EI T m

dx dx

vd x d xv
xv                      (4) 116 

which can be iteratively solved through classical procedures. The mode shape of the cable can be 117 

written in the non-dimensional form as 118 

  1 2 3 4
ˆ ˆˆ ˆ( ) ( )sin cos sinh( ) h( )cosD D D Dv                   (5) 119 

where  ( 1,  2,  3,  4)iD i   is the undetermined coefficient, x L   ( 0 x L  ) is the strain, and 120 

2
2

ˆ 1 1
2

nn
L


 



 
    

 
                        (6a) 121 

2
2ˆ 1 1

2

nn
L


 



 
    

 
                        (6b) 122 

in which  123 

T
L

EI
  , n

n

L m

n T





                               (6c) 124 

where n   is the nth circular frequency of the cable,   .and n   are two non-dimensional 125 

parameters.  126 

As shown in Fig. 1, the cable is divided into three segments, i.e. the left span (
10 x x  ), 127 

the intermediate span (
1 2x x x  ), and the right span (

2x x L  ) of the cable. The displacements 128 

and slopes at the left and right ends of the cable with fixed constraints are equal to zero, i.e. 129 

1 1(0) (0) 0v v =  and 3 3(0) (0) 0v v = . The mode shapes at the left span, the intermediate span and 130 

the right span are respectively given by 131 
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       
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       (7) 132 

where 
* *

1 1 3 3 2 1 2 2 2, ( ) , and ( )x L  x L= x -x L   L x L x       . 133 

The boundary and continuity conditions of the cable at the locations of the damper 
1x x  134 

and 
2x x  can be expressed, respectively, as follows 135 

1 1 2( ) (0)v v     1 1 2( ) (0)v v      1 1 2( ) (0)v v                (8a) 136 

*

2 3 3 2( ) ( )v v    
*

2 3 3 2( ) ( )v v     
*

2 3 3 2( ) ( )v v               (8b) 137 

and 138 

2 1 1 1( (0) - ( )) -v vEI F      
*

3 2 2 3 2( ( ) - ( )) -v vEI F             (8c) 139 

The displacements of the cable at the locations of two dampers can be expressed in the forms 140 

of 1 1 2 11(0)v v v  （ ）  and 
*

2 3 3 2 22( )v v v  （ ） , thus, Eq. (7) can be rewritten in the form of  141 

DA S                                    (9) 142 

where 11 22(0,0,0, ,0,0,0, )TS v v ， 1 2 7 8( , , , , )TA A A A A  , and 143 
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  (10) 144 

in which ˆcos( )i iC =  ， ˆcosh( )i iCH =  ， ˆsin( )i iS =  ， ˆsinh( )i iSH  ( 1 3)i ~  , 145 

* *

2
ˆcos( )2C =  ， ˆcosh( )* *

2 2CH =  ， ˆsin( )* *

2 2S =  ，and ˆsinh( )* *

2 2SH   146 

In Eq. (9), let 147 

11 22( )i i iA M v N v     （ 1~ 8i  ）                   (11) 148 
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where iM  and iN  ( 1~8i  ) are the combinations of trigonometric functions and hyperbolic 149 

functions, which can be obtained through solving the system of first order equations of Eq. (9) 150 

with eight variables. Based on the continuity conditions of Eqs. (8a) ~ (8b) and substituting the 151 

constants iA  ( 1,2,...,8i  ) into Eq. (8c), two formulas can be obtained 152 

3 3 3 3

4 6 1 1 1

3
3 2 1

2 1 1

ˆ ˆ ˆˆ ˆ ˆ- - ( sin( ) - sinh( ))

ˆ ˆˆ ˆ ˆ- (- cos( ) - cosh( )) -

A A A

F L
A

EI

     

   




                      (12.a) 153 

3 * 3 * 3 * 2 *

7 2 2 8 2 2

3
3 3 3 3 2

3 3 4 3 5 3 6 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ- ( sin( ) - sinh( )) - (- cos( ) - cosh( ))

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ- sin( ) cos( ) sinh( ) - cosh( ) -

A A

F L
A A A A

EI

       

         
     (12.b) 154 

Substituting Eq. (11) into Eqs. (12.a) and (12.b) with the non-dimensional parameters of  155 

3 3

1 1
11

11

F L k L
K

EIv EI
  ，

3 3

2 2
12

22

F L k L
K

EIv EI
                    (13) 156 

We can obtain the frequency equation of the cable as follows: 157 

3 * 3 * 3 * 2 *

7 7 2 2 8 8 2 2

3 3 3

3 3 3 4 4 3 5 5 3

3

6 6 3 12

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ-( )( sin( ) - sinh( )) - ( )(- cos( ) - cosh( ))

ˆ ˆˆ ˆ ˆ ˆ- ( )sin( ) ( ) cos( ) ( )sinh( )

ˆ ˆ- ( ) cosh( ) 0

M Z N M Z N

M Z N M Z N M Z N

M Z N K

       

     

 

 

    

  

(14.a) 158 

where 159 

3 2 3 3 3 3

2 1 1 4 6 1 1 1

3 3 2 3 3 3 3

11 2 1 1 4 6 1 1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[- cos( ) - cosh( )) - ( sin( ) sinh( )]

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ cos( ) cosh( )) - - ( sin( ) - sinh( )]

N N N N
Z

K M M M M

         

          

  


  
   (14.b) 160 

The frequency equation is an implicit transcendental equation, and the unknown parameter 161 

n  is generally solved by the iterative method. Generally, it is difficult to obtain parameter ηn by 162 

using the common iterative method due to the complexity of the transcendental equation. Dan et 163 

al. (2014) investigated numerical solutions by integrating interval solution method and Newton-164 

Raphson for nonlinear frequency equations. Herein, we integrate the interval solution based on 165 

the image of the frequency equation and the dichotomy procedures to solve the nonlinear 166 
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frequency equation.  167 

The implicit frequency Eq. (14.a) can be written in the form of f(ηn) = 0, and its solution is 168 

associated with the zero root. As indicated in Fig. 2, we display the relationship of f(ηn) and ηn in 169 

the form of an image, from which the resolving interval covering the zero root can be determined. 170 

Note that there are two break points in the image of f(ηn)~ ηn. As indicated, there exists a zero root 171 

between these two break points in region “b”, which however is a false solution. In the study, it is 172 

necessary to determine the appropriate solution interval, where a correct zero root can be found 173 

from the image of f(ηn)~ ηn. The region “a” covering one zero point is selected as the interval of 174 

the initial solution, and the dichotomy method is then employed to find the approxiamate solution 175 

of the frequency equation with a certain degree of accuracy. 176 

Once the parameter n  is attained, the tension force can be estimated as follows: 177 

2 2

2 2 2
= n

n

m L
T

n



 
                               (15) 178 

 179 

 

Fig. 2. (a) image of ( )nf  ~ n  and (b) selection of solution interval with zero root 
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2.2 Model 2: without considering flexural rigidity of the cable 180 

For comparison purpose, a tensioned cable with two transversely attached intermediate supports 181 

shown in Fig. 3 is created. The cable has the cable force T along the chord, the mass per unit 182 

length m, and the chord length L. The sag and flexural rigidity of the cable are neglected for sake 183 

of simplicity. The differential equation of in-plane motion of the cable can be written as  184 

       
2 2

1 1 2 22 2
+

v v
T m f t x x f t x x

x t
 

 
    

 
                 (16) 185 

According to the derivation process14, with the boundary and continuity conditions of the 186 

cable at the damper locations, the frequency equation of the cable is given as:  187 

 

 

2 2 * * *21 22 21 22
1 2 1 2 1 2

* * * *21 22 21 22
1 1 2 2 1 2 1 2

ˆ

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

tan

sin sin sin sin sin

1 sin cos sin cos sin siˆ ˆ ˆ ˆ
ˆ ˆ ˆ

s
ˆ

n co

K K K K

K K K K



    
   

      
   

 

 



  

   

   (17) 188 

where 
* *

1 1 2 2 2and ( )x L   L x L x      are the non-dimensional position of the supports, and 189 

ˆ /n= L L m T     is the wave number. The non-dimensional parameters 21 1K k L T   and 190 

22 2K k L T  are the supporting stiffness values of the compression-type HDR dampers at two 191 

ends.  192 

Considering that the intermediate supports are located very close to the ends, i.e., 1  and 193 

*

2  are very small. Equation (17) can be rewritten in a simpler asymptotic expression. As the 194 

simplification inevitably introduces errors, the solution ˆ
n  is further improved based on Eq. (17) 195 

 

Fig. 3. Mode 2: Cable with two attached HDR supports ( 0EI  ) 



 
11 

via the general iterative method with the initial value of 
0ˆ
n =n   ( n   is the mode order). The 196 

tension force of the cable can then be obtained as  197 

2 2

2ˆ
n

n

m L
T




                               (18) 198 

 199 

3. Parametric study on Model 1 and Model 2 200 

The above derivation for Model 1 indicates that, considering the flexural rigidity of the cable, the 201 

frequency equation is very complex as shown in Eq. (14). In practical engineering, when the 202 

flexural rigidity of the cable is not very large, a relatively simple expression based on Model 2 203 

(Equation 18) with acceptable identification accuracy can be used to reduce the calculation cost. 204 

Moreover, the range of the parameter   for the general cable is very large. For a short cable with 205 

relatively large flexural rigidity, Model 1 with the higher identification accuracy is still needed to 206 

establish the relationship between the measured natural frequency and the cable tension force. 207 

This section investigates the effect of the non-dimensional parameters of  , K , and   on the 208 

frequency ratio n , from which the tension force can be estimated. 209 

Fig. 4 shows the variation of frequency ratio    with respect to the non-dimensional 210 

parameters K  (= 0 1010 ~10  , 
1 2=K K  ), and   (=0~200) at six different intermediate supports 211 

locations, i.e. (a) 1 2 0.02*   ; (b) 1 2 0.04*   ; (c) 1 2 0.06*   ; (d) 1 2 0.08*   ; (e) 212 

1 2 0.10*   ; and (f) 1 2 0.12*   . The mode order considered is the fundamental frequency 213 

( 1n  ). Fig. 5 shows the influences of   and   on   in the cases of (a) 310K  ; (b) 510K  ; 214 

(c) 710K  , and (d) 910K  . Several observations are drawn as follows. First, no matter what 215 

kinds of intermediate supports are introduced, the relationship between the frequency ratio   216 
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and the parameter    is approximately exponential. The parameter    increases with the 217 

decrease of ξ . In the range of 0 ~ 60   , the parameter    appears to decrease rapidly. 218 

Whereas in the range of 60 ~ 200  , it decreases gradually. Consequently, the presence of the 219 

flexural rigidity of the short cable should be considered carefully in estimation of cable force. 220 

Second, the effect of the non-dimensional support stiffness K on   is in the form of “Z”-221 

shape. In the case of 310K   and 810K  ,   increases very slowly with the increasing of K . 222 

The effect of intermediate supports on the cable is insignificant when 310K   , whereas the 223 

 

Fig. 4. Influences of K  and   on   in the cases of (a) 1 2 0.02*   ; (b) 1 2 0.04*   ; 

(c) 1 2 0.06*   ; (d) 1 2 0.08*   ; (e) 1 2 0.10*   , and (f) 1 2 0.12*    
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intermediate supports can be regarded as fixed ends when 810K   . Moreover, in the case of 224 

3 810 10K  , the relationship between   and K is approximately in the form of linear increase.  225 

Third, the frequency ratio   increases gradually with the increase of   as the effective 226 

length of the cable is shortened, and its overall flexural rigidity increases due to the introduction 227 

of intermediate supports. Forth and the last, the weak constraint of the intermediate support (for 228 

instance 310K  ) results in the weak influence of its location   on  . Especially in the case 229 

of 60   and 310K=  with different values of   from 0.04 to 0.1, the curve -   tends to 230 

be identical. With the increase of K , as shown in Fig. 5(b)-(d), the -   curves under different 231 

support locations   (i.e., 0.04, 0.06, 0.08, and 0.10) indicate significant differences which can 232 

 

Fig. 5. Influences of   and   on   in the cases of (a) 310K  ; (b) 510K  ; (c) 710K  ; (d) 

910K   
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be easily distinguished. 233 

 234 

4 Relative error analysis 235 

This section investigates the relative error from Model 2 when used in the practical engineering. 236 

The relative error   between Model 1 and Model 2 is defined as 237 

 238 

2 1

1

100%
T T

=
T




                               (19) 239 

where 1T   and 2T   are the tension forces calculated according to Model 1 and Model 2, 240 

respectively. The value 1T  is assumed as the exact value since the effect of flexural rigidity of 241 

the cable is considered in Model 1.  242 

4.1 Influences of  , K  and   243 

The estimation of the cable force is largely affected by the non-dimensional bending stiffness 244 

parameter  , the supporting stiffness K  and the location of the intermediate support  . Note 245 

that the definitions on the dimensionless damper supporting stiffness are 3kL EI  for Model 1 and 246 

kL T  for Model 2. To avoid confusion, the same supporting stiffness k  is used for Model 1 and 247 

Model 2, and 3K=kL EI   is employed for further parametric analysis. For a given K  , we 248 

generally substitute 3k= KEI L  into kL T  to obtain 2K   for Model 2.  249 

Fig. 6 shows the influences of    and    on    in the cases of: (a) *
1 2 0.04    ; (b) 250 

*
1 2 0.06   ; (c) *

1 2 0.08   , and (d) *
1 2 0.10   . The mode order considered is the fundamental 251 

frequency ( 1n  ). Three observations are drawn from Fig. 6. First, among these three parameters, 252 

   has the greatest influence on the relative error   . When 10   , the relative error   253 

between the two models reaches about 80%; When 60  , the trend of the -   curve becomes 254 
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flat; When 90  , the relative error   is less than 5%, which would be attributed to the damper 255 

support stiffness K and the support installation position  . 256 

Second, when   and   are constant, the relative error   has the minimum value around 257 

510K   and the maximum value around 310K  . The relative error   increases when K is far 258 

larger than these values, which can also be observed from Fig. 6. Third and last, the specific 259 

application scope of Model 2 can be obtained through the parameter analysis. In the case of 260 

90  , the accuracy of Model 2 meets the requirement of 0.05   regardless of the other two 261 

parameters K  and  . Note that K  has significant effect on   for a given   and  . The 262 

 

Fig. 6. Influences of K  and   on   in the cases of: (a) *
1 2 0.04   ; (b) *

1 2 0.06   ; (c) 

*
1 2 0.08   ; (d) *

1 2 0.10    

(a)                                                                  (b)

(c)                                                                   (d)
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accuracy   attains its minimum value when 510K  . In such case,   can be set to be larger 263 

than 50. 264 

 265 

4.2 Influence of modal order 266 

Note that the mode order considered in section 4.1 is the fundamental frequency ( 1n   ). In 267 

practical engineering, due to the presence of the intermediate supports and the flexural rigidity of 268 

the cable, the high-order frequency and the fundamental frequency are no longer simple linear 269 

relationship, which indicates that the influence of each mode order on the relative error is different. 270 

Hence, the mode order number n should be carefully considered in error analysis. Fig. 7 shows 271 

the effects of the mode order n on the frequency ratio   and the relative error   between two 272 

models in the cases of (a) and (b): 30   ; (c) and (d): 80   ; (e) and (f): 110    when 273 

1 2= =0.06  . It is observed that when the parameter   is small, the effects of the different mode 274 

order n on the frequency ratio   and the relative error   between the two models are quite 275 

different. With the increase of  , the difference gradually becomes the smaller. The larger the 276 

mode order, the larger the frequency ratio and the relative error of between two models. 277 

Particularly in the case of 1n   and 80  , no matter how K  changes, the relative error is 278 

smaller than 5%. Whereas in the case of 110   , for the first and second mode orders, the 279 

relative error is always smaller than 5% no matter how K   changes. Hence it is desirable to 280 

estimate the tension force of the cable using its first mode frequency. 281 

 282 

5. Numerical analysis 283 
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Three typical cables are used to verify the effectiveness of the formulas derived from Model 1 and 284 

Model 2. Table 1 presents the basic parameters of the three cables. The dimensionless bending 285 

stiffness   of these three cables is set to be 59.74, 95.58 and 119.48, respectively. The support 286 

stiffness K  of these two intermediate supports are identical, varying from 010  to 1010 , and the 287 

installation position of the supports at two ends is set to be 1 2 0.06*   . 288 

 
Fig. 7. Influence of mode order on frequency ratio and relative error between two models in the 

cases of (a) and (b): 30  ; (c) and (d): 80  ; (e) and (f): 110  . 

(a)                           (b)

(c)                                                                (d)

(e)                                                                  (f)
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The finite element analysis is first used to calculate the vibration frequencies of the cables 289 

with two intermediate supports under different supporting stiffness. Then, the frequency values 290 

are substituted into the formulas of Model 1 and Model 2 shown in section 2 to calculate the 291 

tension force of the cable, respectively.  292 

Fig. 8 shows the comparative results of the calculated tension force of (a) cable 1#, (c) cable 293 

2#, and (e) cable 3#, and its relative error for (b) cable 1#, (d) cable 2#, and (f) cable 3#. Three 294 

observations can be drawn from Fig. 8. First, in practical engineering, the acceptable threshold 295 

for the estimation of cable force is generally set to be 5%. The relative error between the tension 296 

force obtained from Model 1 and the accurate value falls in the range of 2%, which indicates that 297 

Model 1 considering the flexural rigidity of the cable has very high identification accuracy, fully 298 

meeting the requirement of practical engineering. Second, the relative error between the tension 299 

force obtained from Model 2 and the accurate value is largely affected by the parameters of   300 

and K  . The increase of    results in the decrease of the relative error. In particular when 301 

=95.58  for Cable 2 and =119.48  for cable 3, the relative errors are smaller than 5% no matter 302 

how K  changes, which is identical to the conclusion obtained in section 4.1. Whereas for Cable 303 

1# with =59.74 , some relative errors are larger than 5%. Third and last, the support stiffness 304 

K  has a distinct effect on the relative error. For the three typical cables, there always exists a 305 

special value, for instance 510K    for Cable 1#, leading to the smallest relative error. The 306 

Table 1. Parameters of three typical cables 

number EI(MN·m2) m（kg/m） T（kN） L（m） ξ 

1 0.031524 12.107 500 15 59.74 

2 0.031524 12.107 500 24 95.58 

3 0.031524 12.107 500 30 119.48 
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numerical study indicates that Model 2 is feasible for practical engineering at acceptable accuracy 307 

only at certain values of  .  308 

 309 

6 Illustrative Examples 310 

 

Fig. 8. Calculation of tension force value and its relative error distribution law for each model: 

(a) and (b): cable 1#; (c) and (d): cable 2#; (e) and (f): cable 3# 
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To verify the effectiveness and accuracy of the proposed Model 1 and Model 2 in estimation of 311 

cable tension force, these models are investigated with two real-world arch bridges, Guitang River 312 

Bridge located at Changsha, Hunan, P.R China and Sanan Yongjiang Bridge located at Nanning, 313 

Guanxi. The ambient vibration measurement on hanger cables is collected to identify their 314 

vibration frequencies, and further to estimate their tension forces by using Model 1 and Model 2. 315 

6.1 Case 1: A tied arch bridge 316 

As shown in Fig. 9, Guitang River Bridge is a down-supported tied arch bridge with a span length 317 

of 84 m. The bridge has two arch ribs composed of steel box sections. Its deck is made from cast-318 

in-place prestressing concrete suspended from the arch by 14 pairs of hanger cables, each having 319 

a distance of 5.0 m in longitudinal direction and post-tensioning along their length by longitudinal 320 

prestressed tendons running either side of the deck. These tendons also act as ties for the arch to 321 

resist the horizontal thrust within the structure.  322 

The hanger cables have a standard tensile strength of 1,770 MPa. The compression-type 323 

high-damping rubber (HDR) dampers are 150 mm high and 60 mm thick. Its modulus of elasticity 324 

is 8.0 MPa. They are installed at the top anchorage zone of the hanger cables close to the arch ribs 325 

and at the bottom of the tied deck. The supporting stiffness of the damper is 59.19 10k   N/m. 326 

 

Fig. 9. View of Guitang River Bridge 
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Fig. 10 shows the hanger cable arrangement of the bridge. The ambient vibration is measured 327 

on Cables U3~U12 at the upstream side and D3~D12 at the downstream side before and after the 328 

installation of the HDR dampers. The short cables U1, U2, U13, U14, D1, D2, D13, and D14 are 329 

not considered as their ambient vibration responses are weak. Table 2 presents the parameters and 330 

the measured fundamental frequencies of these cables. It is observed that the dimensionless 331 

parameter   is in the range of 31.58 to 44.90, which indicates that the cables appear to be very 332 

stiff. Note that, before the installation of dampers, the cable can be simply treated as a tensioned 333 

beam with two fixed ends. As such, the actual tension force of the cable can be estimated by 334 

solving a transcendental equation of the cable through an iterative method, assuming no change 335 

on the cable force after the installation of the dampers. 336 

Fig. 11 shows the typical time history of measured acceleration for Cable U4 and its power 337 

spectrum. It is observed that the first four order modes can be clearly identified. As described in 338 

section 4.2, the first order mode generally exhibits the highest identification accuracy, hence in 339 

the study, only the fundamental frequency is considered for further estimation of the cable force. 340 

 

Fig. 10. Hanger cable arrangement of Guitang River Bridge 
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Fig. 12 displays the variation of the dimensionless parameter    before and after the 341 

Table 2. The basic parameters of the cable 

Number L (m) m（Kg/m） 1  (m/m) *
2  (m/m) f1 (Hz) f2 (Hz)   

Up 

stream 

U3 13.251 35.6 0.083 0.187 8.567 9.710 31.62 

U4 15.251 35.6 0.072 0.163 7.606 8.453 37.61 

U5 16.754 35.6 0.066 0.148 6.453 7.210 38.59 

U6 17.758 35.6 0.062 0.140 6.224 6.802 42.03 

U7 18.259 35.6 0.060 0.136 6.224 6.968 44.61 

U8 18.259 35.6 0.060 0.136 6.137 6.723 43.93 

U9 17.758 35.6 0.062 0.140 6.220 6.968 42.00 

U10 16.754 35.6 0.066 0.148 6.594 7.446 39.50 

U11 15.251 35.6 0.072 0.163 7.511 8.608 37.13 

U12 13.251 35.6 0.083 0.187 8.645 10.023 31.93 

Down 

stream 

D3 13.251 35.6 0.083 0.187 8.556 9.987 31.58 

D4 15.251 35.6 0.072 0.163 7.569 8.492 37.45 

D5 16.754 35.6 0.066 0.148 6.555 7.417 39.24 

D6 17.758 35.6 0.062 0.140 6.113 6.662 41.26 

D7 18.259 35.6 0.060 0.136 6.102 6.846 43.78 

D8 18.259 35.6 0.060 0.136 6.268 7.024 44.90 

D9 17.758 35.6 0.062 0.140 6.167 6.839 41.61 

D10 16.754 35.6 0.066 0.148 6.433 6.905 38.47 

D11 15.251 35.6 0.072 0.163 7.484 8.695 36.99 

D12 13.251 35.6 0.083 0.187 8.613 10.149 31.80 

Note: f1: the fundamental frequency of the cable before the installation of the damper. 

f2: the fundamental frequency of the cable after the installation of the damper. 

U: refers to the upstream cable. 

D: refers to the downstream cable. 

 

 

Fig. 11. (a) Time history of accelerations and (b) power spectrum of Cable U4 

(a) (b)
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installation of HDR dampers for the cables. It is observed that the parameter    changes 342 

significantly as the intermediate supports distinctly enhance the overall stiffness of the cable 343 

system. Fig. 13 indicates the comparison of the tension forces between the exact value obtained 344 

from the measurement results before the installation of dampers and that estimated via Model 1 345 

and Model 2. The relative error is thus defined as  346 

i b

b

T T
=

T



                               (20) 347 

where iT  ( 1,2i  ) are the tension forces calculated respectively according to Model 1 and Model 348 

2 after the installation of HDR dampers and bT  is the exact value obtained from a tensioned beam 349 

model with two fixed ends before the installation of HDR dampers. 350 

It is observed that the difference between the exact value and the estimated value via Model 351 

1 is small (<1%) and relatively large (>5%) for Model 2. Moreover, for Model 2, it is also observed 352 

that the relative error decreases as the   value increases, which is consistent with the observation 353 

obtained in section 4.1. From the view of practical application, similarly when   is smaller than 354 

90, it is better to estimate the cable force based on Model 1 so as to obtain acceptable identification 355 

accuracy.  356 

 

Fig. 12. The fundamental frequency of the cable before and after installation of dampers: (a) 

upstream cable and (b) downstream cable 

 (a) (b)
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6.2 Case 2：Half-through arch bridge 357 

As shown in Fig. 14, Sanan Yongjiang Bridge is a half-through concrete-filled steel tubular arch 358 

bridge with a main span of 270 m. The slab structure is composed of simply supported low-profile 359 

 

Fig. 13. Comparison of the calculated results of the two models with the exact values and the 

relative errors for: (a) and (b) upstream cables; (c) and (d) downstream cables 

 

 

Fig. 14. View of Sanan Yongjiang Bridge 
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T beams and directly supported by prestressed concrete transverse beams. The beam is suspended 360 

at two ends each by a pairs of hanger cables. The suspender system, as shown in Fig. 15, consists 361 

of 21 pairs of hanger cables with a distance of 10 m in longitudinal direction on each transverse 362 

side of the bridge, resulting in a total number of 84 hanger cables in the bridge. The HDR 363 

compression-type dampers with the height of 150 mm, the thickness of 45 mm, and the modulus 364 

of elasticity of 8 MPa are installed at both ends of the hanger cable. The supporting stiffness of 365 

the damper is 62.32 10k   N/m. Note that there is no force transducer at the anchorage zone of 366 

the hanger cable, thus, the actual tension force is not available for further comparative study. Since 367 

the arch bridge has no strictly defined longitudinal beam, the actual tension force of the hanger 368 

cable can be directly determined according to the weights of the transverse beams, the top low-369 

profile T beams and the pavement system acted on the hanger cable within every two transverse 370 

beam.  371 

The ambient vibration test is conducted to measure the tension forces of upstream hanger 372 

cables numbered as Cable U2-1, U2-2 to Cable U11-1, U11-2. The basic parameters of the cable 373 

are shown in Table 3. It is indicated that the value of dimensionless parameter   is in the range 374 

of 34.28 to 116.38, and the support position 1  and *
2  are respectively in the ranges of 0.035 375 

(long cable) to 0.129 (short cable) and 0.027 (long cable) to 0.101 (short cable). 376 

 

Fig. 15. Hanger cable arrangement of Sanan Yongjiang Bridge 
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Fig. 16 shows the comparison of the tension forces between the exact values calculated from 377 

the weights acted on the hanger cable and those estimated via Model 1 and Model 2. It is observed 378 

that for Model 1, the relative errors of tension force for all hanger cables are within 3%, whereas 379 

for m2, the relative errors are within 7%. In particular, for Cables U2-1, U2-2 with 40   , 380 

1 0.12   and *
2 0.09  , the relative error is about 1% for Model 1 and 6% for Model 2, which 381 

indicates that Model 1 considering the effect of flexural rigidity is capable of identifying the cable 382 

force with the higher accuracy. The accuracy from Model 2 is relatively small when directly 383 

estimating the tension force of the stiff hanger cable without considering its flexural rigidity. 384 

Furthermore, with the increase of   from 79.48 for Cable U5-1 to 113.06 for Cable U11-2, the 385 

difference between Model 1 and Model 2 decreases to an acceptable level, which demonstrates 386 

Table 3. The basic parameters of the cable 

Number L(m) m/( Kg·m-1) 1  (m/m) *
2  (m/m) 

Exact value 

(kN) 
f/HZ ξ 

U2-1 8.86 20.5 0.129 0.101 1280 17.06 34.28 

U2-2 9.49 20.5 0.121 0.094 1306 15.89 37.09 

U3-1 13.9 20.5 0.082 0.064 1096 9.29 49.76 

U3-2 14.45 20.5 0.079 0.062 1070 8.8 51.11 

U4-1 18.33 20.5 0.062 0.049 1060 6.78 64.53 

U4-2 18.82 20.5 0.061 0.048 1050 6.58 65.95 

U5-1 22.16 20.5 0.052 0.040 1100 5.65 79.48 

U5-2 22.58 20.5 0.051 0.040 1128 5.69 82.01 

U6-1 25.4 20.5 0.045 0.035 1190 5.05 94.75 

U6-2 25.74 20.5 0.044 0.035 1192 4.78 96.10 

U7-1 28.05 20.5 0.041 0.032 1093 4.37 100.28 

U7-2 28.32 20.5 0.040 0.032 1062 4.23 99.80 

U8-1 30.11 20.5 0.038 0.030 1145 4.15 110.18 

U8-2 30.31 20.5 0.038 0.030 1148 4.13 111.05 

U9-1 31.58 20.5 0.036 0.028 1100 3.86 113.26 

U9-2 31.72 20.5 0.036 0.028 1140 3.92 115.81 

U10-1 32.48 20.5 0.035 0.028 1098 3.74 116.38 

U10-2 32.55 20.5 0.035 0.027 1112 3.76 117.37 

U11-1 32.8 20.5 0.035 0.027 1036 3.60 114.16 

U11-2 32.8 20.5 0.035 0.027 1016 3.53 113.06 
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that in such cases Model 2 and Model 1 have the similar accuracy.  387 

 388 

6. Conclusions 389 

This paper proposes two analytic models to estimate the tension force of a cable with two 390 

intermediate supports from the measured frequencies. We derived an accurate model (Model 1) 391 

considering the flexural rigidity and a simple model (Model 2) without considering it. The effect 392 

of two intermediate supports on the identification accuracy of the cable tension force is 393 

analytically investigated via parametric analysis. The relative error is further analyzed to 394 

investigate the effects of non-dimensional parameters including damper location   , support 395 

stiffness K , flexural rigidity  , and mode order of the cable. It is theoretically concluded that 396 

Model 2 provides an acceptable accuracy level at 90  . 397 

Numerical study about the effect of K  and   on the identification accuracy of Model 1 398 

and Model 2 indicates that the simplified Model 2 can be employed for practical engineering only 399 

at a certain range of  . Generally, in the case of 90  , the relative error of the cable force 400 

obtained from Model 2 is in the range of 5%. Furthermore, field tests on the hanger cables of two 401 

 

Fig. 16. Comparison of the calculated results of the two models with the exact values and the 

relative errors for: (a) and (b) upstream cables; (c) and (d) downstream cables 
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real-world arch bridges are conducted for further verification of two models. It is observed that 402 

Model 2 can be used in practical engineering when 90   in the case of slender cable, yielding 403 

the relative error of smaller than 5%. Whereas the complicate Model 1 can be applied to any cable 404 

system with two known intermediate support stiffness.  405 
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