This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.2c02434.

1 Pollution-derived Br₂ boosts oxidation power of the coastal atmosphere

- 2 Men Xia¹, Tao Wang¹*, Zhe Wang², Yi Chen², Xiang Peng⁴, Yunxi Huo¹, Weihao Wang⁵, Qi
- 3 Yuan¹, Yifan Jiang¹, Hai Guo¹, Chiho Lau³, Kenneth Leung³, Alfred Yu³, and Shuncheng Lee¹
- ⁴ ¹Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
- 5 Hong Kong SAR, China
- ⁶ ²Division of Environment and Sustainability, Hong Kong University of Science and Technology,
- 7 Hong Kong SAR, China
- ⁸ ³Air Science Group Environmental Protection Department, Hong Kong SAR, China
- 9 ⁴China National Environmental Monitoring Centre, Beijing, China
- 10 ⁵Hangzhou PuYu Technology Development Co Ltd, Hangzhou, Zhejiang, China
- 11 Correspondence: Tao Wang (tao.wang@polyu.edu.hk)

12 KEYWORDS

- 13 Molecular bromine, anthropogenic pollution, sea sprays, atmospheric oxidation, mercury, air
- 14 quality
- 15

16 ABSTRACT

The bromine atom (Br·) has been known to destroy ozone (O₃) and accelerate the deposition of toxic mercury (Hg). However, its abundance and sources outside the polar regions are not well known. Here we report significant levels of molecular bromine (Br₂)—a producer of Br· observed at a coastal site in Hong Kong, with an average noontime mixing ratio of 5 ppt. Given the short lifetime of Br₂ (~1 min at noon), this finding reveals a large Br₂ daytime source. Based 22 on laboratory and field evidence, we show that the observed daytime Br_2 is generated by the 23 photodissociation of particulate nitrate (NO_3^{-}), and that the reactive uptake of dinitrogen pentoxide 24 (N₂O₅) on aerosols is an important nighttime source. Model-calculated Br concentrations are 25 comparable with the that of OH radical—the primary oxidant in the troposphere, accounting for 26 24% of the oxidation of isoprene, a 13% increase in net O₃ production, and a nearly 10-fold increase in the production rate of toxic Hg^{II}. Our findings reveal that reactive bromines play a 27 28 larger role in the atmospheric chemistry and air quality of polluted coastal and maritime areas than 29 previously thought. Our results also suggest that tightening control of emissions of two 30 conventional pollutants (NO_x and SO₂)—thereby decreasing the levels of nitrate and aerosol 31 acidity—would alleviate the halogen radical production and its adverse impact on air quality.

32 Table of Content art

33

34

35 SYNOPSIS

Br₂ produced from pollution-sea spray interaction boosts atmospheric oxidation and affects coastal
 ecosystem.

38

39 **1. Introduction**

As a potent oxidizer, $Br \cdot has$ been recognized as the key species depleting O_3 in the Arctic and clean maritime atmospheres.¹⁻³ $Br \cdot also$ reacts with oxygenated volatile organic compounds (OVOCs) and alkenes to produce peroxy radicals and can produce O_3 and secondary aerosols in anthropogenically impacted regions.⁴ Moreover, $Br \cdot oxidizes$ elemental mercury (Hg⁰) to form Hg^{II}, which is neurotoxic to humans and other animals.^{5, 6}

45 Br₂ is rapidly photolyzed by radiation, mainly in the wavelengths of 350–600 nm, to produce two Br atoms.⁷ Previous studies have demonstrated that a substantial amount of Br₂ can be 46 47 produced from the liberation of bromide (Br⁻) via heterogeneous reactions on snow or ice; thus, Br₂ is an important source of Br· in the Arctic.⁸ However, only a handful of studies have reported 48 Br₂ concentrations in the extra-polar regions. Finley and Saltzman (2008)⁹ reported an average Br₂ 49 50 mixing ratio of 2.3 ppt at a polluted California coastal site in January 2006, with higher values in the nighttime. The source of Br_2 was not identified in that study. Breton et al. $(2018)^{10}$ reported 51 52 aircraft measurements of Br₂ over the Western Pacific, reporting an average Br₂ mixing ratio of 0.5 ppt in the marine boundary layer (MBL). The observed Br₂ could not be reproduced by a widely 53 54 used global chemical-transport model. Two other studies in continental areas have found that coal burning produces Br₂ and other reactive bromine gases, like BrCl.^{11, 12} In addition to coal burning, 55 the photolysis of particulate NO₃⁻ was implicated as a possible daytime production pathway of 56 reactive bromines.¹² However, the contribution of this pathway to ambient Br₂ was not 57

quantitatively determined. Clearly, our knowledge of the abundance and sources of Br₂ (and other Br·-producing reactive bromines) outside the polar regions is insufficient due to a lack of observations in diverse geographical areas. Moreover, state-of-the-art atmospheric models struggle to predict Br₂ (and other related bromines) due to our limited understanding of their emission and/or chemical processes—especially the photochemical production pathway.^{4, 13, 14} These deficiencies have limited our capability to evaluate the impacts of halogen chemistry on troposphere chemistry, air quality, and climate.

In this work, we present recent field measurements of Br₂ and other reactive halogen species at 65 a polluted coastal site in Hong Kong where very high levels of Cl₂ were reported in a previous 66 study.¹⁵ We found that Br₂ concentrations were the highest around noon, indicating the existence 67 68 of a large photochemical source of Br2. Based on the results from the field and subsequent 69 laboratory experiments, we show that the ambient Br₂ production can be accounted for by the 70 photolysis of NO₃⁻ at the ambient levels of aerosol acidity and Br⁻, and propose that the reactive 71 uptake of N₂O₅ is an important nighttime source of Br₂. Calculations using a photochemical box 72 model indicate that Br. concentrations are comparable with the conventional OH radical and 73 substantially contribute to the oxidation of isoprene—one of the most important biogenic 74 hydrocarbons, O₃ production, and substantial shortening of the lifetime of Hg. Our findings reveal 75 the important roles of Br₂ in the atmospheric chemistry of the polluted maritime environments, as 76 well as the quantitative relationship involved in Br_2 production, which will enable air quality models to better predict the abundance and atmospheric impacts of Br₂. We call for the 77 consideration of reactive halogens in the development of air pollution regulations. 78

80 2. Materials and Methods

81 2.1. Field observations.

82 A field campaign was performed from October 6 to November 24, 2020, at a coastal ground site 83 (22.21° N, 114.25° E) in a rural area (Cape D'Aguilar) at the southeast tip of Hong Kong Island, China (Supplementary Fig. S1). Details of the site are described in a previous study.¹⁵ During the 84 85 observation period, the intercepted air masses were mostly influenced by continental outflows and 86 coastal air masses transporting regional anthropogenic pollution from urban Hong Kong, the 87 adjacent PRD, and other regions of China (Supplementary Fig. S2). Local emission sources 88 include ocean-going vessels traveling in nearby waters, natural vegetation consisting of deciduous 89 and evergreen trees, and sparse country roads near the site. A small village with tens of residents 90 is located ~ 2 km to the west of the observation site. The field study simultaneously measured 91 reactive halogens, trace gases (NO_x, NH₃, CO, SO₂, O₃), aerosol mass concentration (PM_{2.5} and 92 PM_{10} , aerosol size distribution, aerosol ionic compositions (e.g., Cl⁻ and NO₃⁻), volatile organic 93 compounds (VOCs), NO₂ photolysis frequency (iNO₂), and meteorological parameters (T and 94 RH). Here we provide detailed descriptions on reactive halogen measurements and summarize 95 other measurements in the supplementary information.

Reactive halogens were measured by an iodide-adduct time-of-flight chemical ionization mass spectrometer (I⁻-Tof-CIMS, Aerodyne Research). The principles of I⁻-Tof-CIMS have been described in detail by a previous study.¹⁶ The reagent ions (I⁻ and I(H₂O)⁻) were produced by passing 1 Lpm of CH₃I-containing N₂ air through an inline ionizer (²¹⁰Po). We unambiguously identified the peaks of Br₂, BrCl, Cl₂, ClNO₂, HOCl, C₂H₃O₂Br, C₂H₃O₂Cl, N₂O₅, and HONO in the Tof-CIMS via high-resolution peak fitting and the verification of the halogen isotopic ratios, according to the natural isotopic abundance of Cl and Br (Supplementary Fig. S3). The mean mass
resolution was ~4800.

104 Background signals of the Tof-CIMS were determined by injecting zero air to Tof-CIMS every 105 two to three days. The background concentrations during the study period were 0.25 ± 0.05 for Br₂ 106 and 0.32 ± 0.06 ppt for BrCl, which were low and relatively stable compared with their respective 107 ambient concentrations. To determine whether the change in ambient conditions affected the 108 background signals, we evaluated the background signals for three days by passing ambient air 109 through an alkaline glass wool scrubber to remove halogens for 4 min every 3 hours. The results 110 confirmed there was little difference between the background signals determined using the two 111 methods (< 20% or 0.1 ppt) (Supplementary Fig. S4). The detection limit was 0.22 ± 0.09 ppt for 112 Br_2 and 0.14 ± 0.04 ppt for BrCl, determined as two times the standard deviation in their signals 113 during the background testing (Supplementary Table S1).

114 The calibrations of Br₂, Cl₂, N₂O₅, ClNO₂, and C₂H₃O₂Cl were performed onsite, and BrCl, 115 HOCl, and HONO were calibrated in the laboratory right after the field study along with Br₂, Cl₂, 116 N₂O₅, ClNO₂, and C₂H₃O₂Cl. Br₂, Cl₂, and C₂H₃O₂Cl were calibrated once in the middle of the 117 campaign using permeation tubes (KIN-TEC) with permeation rates of 150, 110, and 75 ng min⁻¹, 118 respectively. The permeation rates of Br₂ and Cl₂ were verified by chemical titration using 2% KI 119 solution followed by the measurement of light absorption at 351 nm using ultraviolet spectrophotometry.¹² BrCl was calibrated by placing the Br₂ and Cl₂ permeation tubes in the same 120 121 oven where Cl₂ was in excess. HOCl was generated by passing ultrapure N₂ gas through NaOCl solution for HOCl calibration.¹⁷ N₂O₅ was produced by mixing NO₂ and O₃ (NO₂ was in excess), 122 123 and ClNO₂ was produced by passing N₂O₅ through a humidified NaCl slurry placed in a Teflon tube.18 N2O5 and ClNO2 were calibrated three times during the field study (on October 14 and 124

November 7 and 21), and their sensitivity was stable (difference < 10%). The sensitivity for Br_2 was 9.8 cps ppt⁻¹ in the presence of 1 million cps of reagent ions during the field study. To estimate the mixing ratio of C₂H₃O₂Br, we assumed the sensitivity ratio of C₂H₃O₂Br to Br₂ was the same as that of C₂H₃O₂Cl to Cl₂. The sensitivities of all calibrated species are summarized in Supplementary Table S1.

130 The Tof-CIMS was housed in a shelter, where the indoor air temperature was maintained at 25– 28 °C by air conditioners. The sampling inlet was a 0.5-m long PFA tube (outer diameter: 0.50 131 132 inch; inner diameter: 0.44 inch) that penetrated the sidewall of the shelter, 1.5 m above ground 133 level. A blower was used to draw the air sample through the tubing to reduce the residence time 134 of the air in the inlet. A flow rate of 25 Lpm was adopted to achieve laminar flow in the sampling 135 tube; the residence time was 0.1 s. The Tof-CIMS sampled 2 Lpm ambient air from a branch (a 136 0.25-inch PFA tube) of the sampling tube, and the remaining air mass was discarded. We investigated possible inlet artifacts by injecting known concentrations of O₃, N₂O₅, ClNO₂, and 137 138 Cl₂ to the sample inlet onsite, and HOCl and HOBr in the laboratory, similar to our previous study.¹² We concluded that inlet artifacts had little influence on the data of Br₂, N₂O₅, ClNO₂, Cl₂, 139 140 and BrCl (Supplementary Text S1).

141

142 2.2. E-AIM model and HYSPLIT backward trajectory.

The $[H^+]$ in the aqueous phase of ambient aerosols was calculated using the batch mode of the E-AIM model III online (<u>http://www.aim.env.uea.ac.uk/aim/model3/model3a.php</u>; last access: October 2021). Field measurement data of NH_4^+ , Na^+ , SO_4^{2-} , NO_3^- , and Cl^- in $PM_{2.5}$ derived from aerosol filters (Supplementary Text S1) and the daily average of ammonia (NH_3) measured using an NH₃ analyzer were used as the model input. The initial concentration of H^+ in the model was set to balance the anion and cation charges. The E-AIM model configuration is as follows. Water dissociation is always calculated, and both $H^+(aq)$ and $OH^-(aq)$ are regarded as variables in the model. The partitioning of HNO₃, HCl, NH₃, and H₂SO₄ in gas and condensed phases is calculated. The model is configured to allow for the formation of all possible solids in the system. Aerosol pH was calculated as $-log_{10}([H^+])$.

153 The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was obtained online 154 (https://www.ready.noaa.gov/hypub-bin/trajtype.pl?runtype=archive; last access: December 155 2021). The meteorology was selected as GDAS 1°. The source location was input as 22.209 N, 156 114.253 E. The trajectory was obtained every two hours during the observations period. The total 157 run time was 24 h. The level height was selected as 200 m.

158

159 2.3. Calculation of halogen yields from nocturnal N₂O₅ uptake

The halogen production yields from N₂O₅ uptake are defined analogously to those of ClNO₂.
The concept is similar to that in our previous work, in which we observed nighttime correlations
between ClNO₂ and Cl₂ and attributed Cl₂ production to N₂O₅ uptake.¹⁹

163 (E1)
$$\varphi(\text{Br}_2) = \frac{d[\text{Br}_2]/dt}{k(N_2O_5)[N_2O_5]}$$

164 (E2)
$$\varphi(\text{BrCl}) = \frac{d[\text{BrCl}]/dt}{k(N_2O_5)[N_2O_5]}$$

165 where $k(N_2O_5)$ is the first-order loss rate coefficient of N_2O_5 on aerosols.

166 (E3)
$$k(N_2O_5) = \frac{1}{4} \times c(N_2O_5) \times S_a \times \gamma(N_2O_5)$$

where $c(N_2O_5)$ is the average molecular velocity of N_2O_5 , and S_a denotes the surface area density 167 168 of aerosols. We derived $\gamma(N_2O_5)$, $\varphi(ClNO_2)$, $\varphi(Br_2)$, and $\varphi(BrCl)$ in selected cases. The selection criteria are the same to our previous work.²⁰ Briefly, we assumed stable air masses and a steady 169 state of N₂O₅ (i.e., its chemical production equals its loss) during the night.²¹ In addition, the 170 171 products of N₂O₅ uptake should exhibit steady increasing trends and obvious correlations during 172 the night. With these criteria, we found two applicable cases on the nights of November 21 (Fig. 173 2) and November 17 (Supplementary Fig. S5). The halogen yields derived here should be regarded 174 as lower limits, as their loss processes (e.g., dry depositions) are not considered.

175

176 2.4. Laboratory studies.

177 We used a dynamic chamber to measure the Br₂ production rate by illuminating nitrate-halide 178 solutions. The chamber and light source are described in detail in a previous study.¹⁵ Briefly, the 179 chamber is made of TEF Teflon, with the top side of the chamber sealed by a transparent Teflon 180 film. The volume of the chamber is 1.875 L. A high-pressure xenon lamp was used to mimic solar 181 radiations. A quartz petri dish containing 4 mL of solution was placed in the inner center of the 182 bottom side to mimic the aerosol aqueous phase in the atmosphere. The equivalent surface area density of the aqueous phase in the chamber was 5.1×10^5 um² cm⁻³ as calculated by dividing the 183 184 illuminated area of the solution by the volume of the chamber. We added zero air (4 Lpm, 75% 185 RH) in the chamber to deliver gas-phase products for real-time detection in the Tof-CIMS. In the 186 laboratory experiment, the Tof-CIMS was calibrated using the same method as in the field study.

187 The background levels, sensitivities, and detection limits of halogen species and HONO are188 summarized in Supplementary Table S1.

189 The illuminated solutions were prepared by mixing sodium chloride (NaCl, Sigma-Aldrich 190 brand, 99.999% purity, metal basis), sodium bromide (NaBr, Sigma-Aldrich, 99.999% purity, 191 metal basis), ammonium nitrate (NH4NO3, Sigma-Aldrich, 99.9 % purity), and sulfuric acid 192 (H₂SO₄, Sigma-Aldrich, 98% purity). The molarity of NaCl was fixed at 1 mol L^{-1} , and the 193 molarity of NaBr was adjusted to achieve different Cl⁻ to Br⁻ ratio. The amount of H₂SO₄ was 194 altered to adjust the pH (2-5). We also used the sea water sampled near the observation site to 195 investigate the possible matrix effect of sea water components. In that case, only NH4NO3 and 196 H₂SO₄ were added. We also dried the solutions using ultrapure N₂ air and illuminated the salts 197 remaining in the petri dish in additional experiments. A summary of the illuminated samples is 198 shown in Supplementary Table S2.

We used the method described in Peng et al. (2022)¹⁵ to calculate the production rate of Br₂
(P(Br₂)) in the chamber, shown as follows.

201 (E4) $P(Br_2) = photochemical loss of Br_2 + advected loss of Br_2 from the chamber$

$$202 = \mathbf{j}\mathbf{Br}_2 \times [\mathbf{Br}_2] + Q/V \times [\mathbf{Br}_2]$$

where Q is the flow rate in the chamber (set to 4 Lpm), V is the chamber volume (1.875 L), and [Br₂] is the mixing ratio of Br₂ in the chamber outflow measured by the Tof-CIMS. jBr₂ is calculated using the irradiation spectrum of the lamp and the cross-sections and quantum yields of Br₂, as recommended by the International Union of Pure and Applied Chemistry (IUPAC) (https://iupac-aeris.ipsl.fr/index.html, last access: September 2021). The light absorption and reflection by the transparent Teflon-film window or inner parts of the chamber were not considered in the jBr₂ calculation. A Br₂ photolysis experiment in the empty chamber was performed to determine the real jBr₂ in the chamber, which did not show significant bias from the theoretical value. The photolysis frequency of Br₂ (jBr₂, 8.09 × 10⁻² s⁻¹) in the chamber was ~3.5 times larger than the average daytime jBr₂ in our field study (2.28 × 10⁻² s⁻¹ at 12:00 LT calculated by the Tropospheric Ultraviolet and Visible (TUV) radiation model and scaled by the field-observed jNO₂).

215

216 2.5. Box model.

The Framework for 0-D Atmospheric Modeling (F0AM version 4.0.2)²² was used to investigate 217 218 the impact of reactive bromine chemistry at the field site. We used Master Chemical Mechanism (MCM) v3.3.1²³ (http://mcm.york.ac.uk; last access: January 2022) as the chemical mechanism 219 and incorporated the gas-phase bromine and chlorine chemistry compiled in our previous work.¹² 220 221 The heterogeneous chemistry of reactive halogens was adopted and simplified as gas-phase 222 reactions (Supplementary Text S2). Dilution and deposition were calculated as first-order loss 223 reactions for each species. The diurnal averages of the field-observed reactive halogens and 224 relevant species were constrained in the model every 5 min (Supplementary Table S3). We 225 simulated a 24-h solar cycle for the campaign-averaged condition in three scenarios: (1) "with Br 226 and Cl", where all reactive Br and Cl species (Br₂, BrCl, Cl₂, HOCl, and ClNO₂) were constrained by the observation data; (2) "with Cl", where only reactive Cl species (Cl₂, HOCl, and ClNO₂) 227 228 were constrained; and (3) the base scenario ("without Br or Cl"), where no reactive halogens were 229 constrained. The impact of Br alone was determined by comparing scenarios 1 and 2, and the

230	combined impact of Br· and Cl· was obtained by comparing scenarios 1 and 3. For each scenario,
231	the model was run three times to stabilize intermediates, and the results of the last run were adopted
232	for further analysis.

233 To determine whether the current mechanisms (gas-phase reactions and heterogeneous uptake 234 of HOBr, BrONO₂, and O₃) can explain the observed daytime Br₂, we initialized the observed 235 concentrations of reactive halogens (Br₂, BrCl, Cl₂, HOCl, and ClNO₂) in another model run and 236 predicted the evolvement of these reactive halogens in a daily cycle. We did not assign the initial 237 concentrations of BrO, HOBr, BrNO₂, and BrONO₂ because we did not observe detectable levels 238 of these species during the field study. Other observation data were constrained in the model. 239 Details of the model configurations, input data, treatment of heterogeneous reactions, sensitivity 240 tests, and calculations of O_x production and loss are described in Supplementary Text S2.

241

242 **3. Results and Discussion**

243 3.1. Field measurements of reactive bromines

Ambient levels of reactive bromines were measured using a time-of-flight chemical ionization mass spectrometer (Tof-CIMS, Methods, section 1) at a rural coastal site in South China (Supplementary Fig. S1) during the autumn of 2020. It is the same site where very high levels of Cl₂ were observed in 2018¹⁵. During the observation period, continental outflows transported anthropogenic pollution from urban Hong Kong, the Pearl River Delta (PRD), and other parts of mainland China. The daily maximum mixing ratios of O₃ ranged from 30 to 100 ppb (1-hour averages) with an average of 65 ppb. The average PM_{2.5} concentration was $17.6 \pm 7.6 \ \mu g \ m^{-3}$. Other concurrently measured species are shown in Supplementary Fig. S6 and Table S4. These results indicate a moderate level of pollution during the study period. Biogenic emissions were also evident, and the average mixing ratio of isoprene was 0.17 ppb (Supplementary Table S3).

Significant levels of Br₂ were frequently observed, with a maximum mixing ratio of 11 ppt in 254 255 5-min averages (Fig. 1a). The Br₂ concentration showed an obvious daytime peak, with an average 256 of 5 ppt, and a smaller nighttime peak was also evident (Fig. 1b). Given the short lifetime of Br₂ due to the high photolysis frequency $(2.28 \times 10^{-2} \text{ s}^{-1} \text{ at } 12:00 \text{ local time [LT]})$, high daytime Br₂ 257 258 concentrations indicate the presence of a substantial Br source at the site. The daytime Br₂ levels were two to three times higher than those reported in coastal California⁹, ten times higher than 259 those observed in airborne observations over the MBL of the Western Pacific²⁴, and comparable 260 or slightly lower than those measured in polar areas.⁸ The Br₂ concentrations were higher in the 261 262 continental outflows and much lower after the air masses had traveled over the ocean for 24 hours 263 (Supplementary Fig. S2). As for the other reactive bromines, BrCl was detected and showed a 264 similar diurnal pattern to Br₂ but at lower concentrations. BrO, HOBr, BrNO₂, and BrONO₂ were 265 not detected because their signals were either below the instrument's limit of detection (for BrNO₂ 266 and BrONO₂) or they suffered from interferences as reflected in the lack of correlation between 267 their respective isotopic signals (for BrO and HOBr). High concentrations of reactive chlorine 268 compounds, including Cl₂, HOCl, and ClNO₂, were observed (Supplementary Fig. S6).

Fig. 1 Field observations of reactive bromine at a coastal site (Cape D'Aguilar, Hong Kong). (a) 270 271 Time series of the mixing ratios of Br₂, BrCl, C₂H₃O₂Cl, C₂H₃O₂Br, O₃, and NO₂ photolysis 272 frequency (jNO₂) from October 6 to November 24, 2020. (Note: no halogen data were collected 273 on November 6-10 due to malfunction of the Tof-CIMS). (b) The average diurnal profile of the 274 observed Br_2 and the simulated Br_2 . The orange dots show the jNO₂ values. (c) Relationship between the Br₂ production rate (P(Br₂), unit: ppt s⁻¹) and a proxy of NO₃⁻ photolysis ($iNO_2 \times iNO_3$) 275 276 $NO_3^- \times S_a$). The color of the dots shows the jNO₂ (s⁻¹). The dashed red line shows a reduced major axis (RMA) regression. The P(Br₂), jNO_2 , NO_3^- , and S_a data are daily averages. 277

278

279 Besides reactive bromines, we also observed bromoacetic acid (C₂H₃O₂Br), a previously unidentified brominated OVOC, in the ambient air. C₂H₃O₂Br was moderately correlated with Br₂ 280 $(R^2 = 0.46)$. Supplementary Fig. S7), suggesting that C₂H₃O₂Br could be a product of reactions 281 282 between Br· and ethene. Chloroacetic acid (C₂H₃O₂Cl) was also observed and correlated with Cl₂ $(R^2 = 0.42, Fig. S7b)$. Priestley et al. $(2018)^{25}$ proposed that C₂H₃O₂Cl could be an oxidation 283 284 product of Cl. These results provide observational evidence for the Br and Cl oxidation of 285 hydrocarbons. We also searched for other possible markers of Br-containing volatile organic 286 compounds (VOC) but could not find detectable signals.

287

288 3.2. Pollution-derived Br₂ source

289 Considering the rapid photolysis of Br_2 that caused a photochemical lifetime of merely ~ 1 min 290 at noon in our study, a strong daytime source must exist to maintain and increase Br₂ 291 concentrations in the daytime. The average production rate of Br₂ (P(Br₂)) at 12:00 LT was 0.11 ppt s⁻¹, assuming that P(Br₂) equaled the photolysis rate of Br₂. Laboratory studies have reported 292 293 Br₂ productions from the uptake of O₃ and reactive bromines on acidic Br⁻-containing surfaces, including aerosols, chemical solutions, and snow/ice.²⁶ HOBr uptake on sea-salt aerosols²⁷ and 294 aqueous salt solutions (containing Cl⁻ and Br⁻)²⁸ produces Br₂ and BrCl, which supports the 295 296 autocatalytic release of inert Br⁻ to reactive bromines (the "bromine explosion mechanism") observed in Arctic regions.⁸ Other Br₂ production pathways found in laboratory studies include 297 BrONO₂ uptake²⁹ and O₃ uptake³⁰ on NaBr solutions. However, we found that these mechanisms 298 cannot explain the observed P(Br₂) at our site. We simulated the Br₂ levels by incorporating the 299

300 above heterogeneous reactions into a box model (Methods, section 5 and Supplementary Text S2), 301 initializing the reactive halogens according to our observations. The highest reported uptake 302 coefficient of HOBr (0.6) and unity yield of Br₂ following the halogen uptake reactions were 303 adopted to maximize Br₂ production in the model. The predicted Br₂ dropped to near-zero levels 304 in the morning (Fig. 1b). \sim 50% of Br· was lost via reactions with VOCs and OVOCs (Fig. 4a), 305 which reduced the Br \cdot recycling efficiency and led to decreasing Br₂ levels during the daytime. 306 These results indicate that other source(s) of Br_2 are responsible for the daytime Br_2 observed at 307 our site.

308 We found a significant correlation between the daytime-averaged P(Br₂) and the product of a proxy of nitrate photolysis on aerosol surfaces ($jNO_2 \times NO_3^- \times S_a$) measured during the field study 309 $(R^2 = 0.52, Fig. 1c)$. P(Br₂) was substantially higher in the days with stronger solar radiation (i.e., 310 311 higher jNO₂ in Fig. 1c). The correlation between the P(Br₂) and jNO₂ × S_a was less significant (R^2) 312 = 0.17). This result indicates that NO_3^- plays a major role in the production of Br₂. The Cl₂ production rate (P(Cl₂)) was also correlated with $jNO_2 \times NO_3^- \times S_a$, consistent with our previous 313 findings at the same site.¹⁵ Based on these field results, we propose that NO₃⁻ photolysis produces 314 Br₂ via a mechanism similar to its Cl₂ production pathway¹⁵, i.e., OH produced from NO₃⁻ 315 316 photolysis oxidizes Br⁻ and forms Br₂ under acidic conditions (see reactions R1-R8). In the present 317 study, the aerosol pH was 2.66 ± 0.70 as estimated by the E-AIM model (Method, section 2), 318 indicating a moderately acidic condition.

319 (R1)
$$NO_3^{-}(aq) + hv (< 350 \text{ nm}) \rightarrow O^{-}(aq) + NO_2(g)$$

320 (R2) $O^{-}(aq) + H^{+}(aq) \rightleftharpoons OH(aq)$

321 (R3) $OH(aq) + Br^{-}(aq) \neq HOBr^{-}(aq)$

- 322 (R4) HOBr⁻(aq) + H⁺(aq) \rightleftharpoons HBrOH(aq)
- 323 (R5) HBrOH(aq) \rightleftharpoons Br(aq) + H₂O
- 324 (R6) $Br(aq) + Br^{-}(aq) \rightarrow Br_{2}^{-}(aq) + H_{2}O$
- 325 (R7) $2Br_2^-(aq) \rightarrow Br_2(aq) + 2Br^-(aq)$
- 326 (R8) $Br_2(aq) \rightarrow Br_2(g)$

327 Nocturnal Br₂ production was also observed on some nights and related to the reactive uptake of N₂O₅ on Br⁻-containing aerosols. The Br₂ produced via HOBr and BrONO₂ uptake should be 328 329 negligible because their model-predicted levels dropped to zero at night (Supplementary Fig. S8). 330 Figure 2a shows the nocturnal production of reactive halogens from N₂O₅ uptake on November 21, 2020 (Fig. 2a). The variation in Br₂ concentration was correlated with that of ClNO₂ ($R^2 =$ 331 0.63, Fig. 2b), Cl_2 ($R^2 = 0.85$), BrCl ($R^2 = 0.63$), but not O_3 ($R^2 = 0.11$), HOCl ($R^2 = 0.18$), or other 332 species. This result indicates that reactive halogens (ClNO₂, Br₂, Cl₂, and BrCl) were produced in 333 parallel from N₂O₅ uptake. In our previous study,¹⁹ we observed an obvious correlation between 334 335 nighttime Cl₂ and ClNO₂ and concluded that they were parallel products from N₂O₅ uptake. 336 Accordingly, we suggest that Br₂ was a co-product of CINO₂ that originated from N₂O₅ uptake in this study. Analogous to the Cl₂ production by the $NO_2^+ + Cl^-$ reaction,¹⁹ we suggest that Br₂ can 337 338 also be produced via the oxidation of Br⁻ by NO₂⁺. BrNO₂ was not observed above the detection 339 limit, suggesting efficient conversion from BrNO₂ to Br₂. This view is supported by previous laboratory experiments where simultaneous productions of Br₂ and ClNO₂ were observed after 340 N₂O₅ uptake on halide-doped ice surfaces.³¹ However, this Br₂ production pathway had not been 341 342 observed in the field until the present study. Next, we calculated the kinetic parameters of nighttime Br₂ production, which are currently lacking in air quality models. $\gamma(N_2O_5)$ was 343 determined as 0.055 by a steady-state method²¹, and the Br₂ yield from N₂O₅ uptake was calculated 344

as 8.03×10^{-4} . The yields of other co-products were 0.84 for CINO₂, 2.19×10^{-3} for Cl₂, and 1.23 × 10^{-4} for BrCl (Methods, section 3). A significant correlation between Br₂ and CINO₂ was also observed on the nights of October 14, 25, and 31, and November 17 (Supplementary Fig. S5 and S9) but not every night, indicating the existence of other unknown nighttime sources. As nighttime Br₂ provides "seed bromine" that initiates the autocatalytic bromine cycle in the next morning,³² future investigations of the nighttime production of Br₂ and other reactive bromines are merited.

Fig. 2. A case study of the nocturnal production of reactive halogens from N_2O_5 uptake. (a) Field observations of reactive halogens and related species on the night of November 21, 2020. (b) Correlation between the mixing ratios of Br₂ and ClNO₂ during the night. The color bar shows the number of hours after sunset (18:00 LT). The Br₂ and ClNO₂ data are 5-min averages. (c) A steadystate analysis of N₂O₅ uptake during 19:00–23:55 on November 21 (Methods, section 3). The slope

of the red regression line represents $\gamma(N_2O_5)$. The 5-min averaged data were used to calculate τ^{-1} $K_{eq} \times [NO_2]$ and $0.25 \times c \times S_a \times K_{eq} \times [NO_2]$.

359

360 3.3. Laboratory study of Br₂ production

361 We conducted a laboratory study to further investigate the role of NO_3^- photolysis in Br₂ 362 production by illuminating solutions that contain NO₃⁻ and Br⁻ in a dynamic chamber. We used 363 solutions to perform experiments because a large proportion of ambient aerosols at our site should 364 be in the aqueous phase under high RH conditions ($75 \pm 11\%$) during the field observation. 365 Detailed information on the laboratory experiments is shown in Methods (section 4). Previous studies³³⁻³⁵ have demonstrated that Br₂ can be produced by irradiating NaNO₃-NaBr solution, and 366 367 that the acidity of the solution is important. In our study, we aimed to develop a quantitative 368 relationship between P(Br₂) and NO₃⁻, Br⁻, and acidity, which is indispensable in air quality 369 models to predict the Br₂ production, and to demonstrate that this mechanism can explain the 370 observed $P(Br_2)$ in the field. Br₂ and HONO were the dominant products in all experiments. BrCl 371 was a minor product, and Cl₂ was not observed above the detection limit (see Fig. 3a for an 372 example). This result is consistent with those of previous studies conducted under similar conditions.³³ To find out whether Br₂ could be produced by the photolysis of HONO in addition 373 374 to nitrate, we conducted another experiment, which showed that Br_2 was not produced in the 375 absence of nitrate (Text S3, Fig. S10). By using two optional filters to remove lights with 376 wavelengths < 360 nm or allow lights with wavelengths in the 300–800 nm range to pass, we 377 confirmed that Br₂ production mainly occurs at wavelengths lower than 360 nm.

378

379 Fig. 3. Laboratory results of Br₂ production from the illumination of nitrate-halide solutions. (a) 380 Production of Br₂, BrCl, and HONO as a function of the time after illuminating a NaBr-NaCl-381 NH₄NO₃ aqueous sample. The blue, orange, and black dashed lines show the operations of the 382 optical filters and light sources, respectively. (b) Production of Br₂, BrCl, and HONO from the 383 illumination of a dried sea-water sample with added NH_4NO_3 and H_2SO_4 . (c) and (d) show the 384 dependence of the Br₂ mixing ratio on H⁺, pH, NO₃⁻, and Br⁻, after 1-h illumination. The pH was 385 calculated as the negative logarithm of $[H^+]$ in the solution. (e) Relationship of P(Br₂) and the 386 product of [H⁺], [NO₃⁻], and [Br⁻] in the solution.

388 To mimic the ambient particles in polluted marine environments, we also illuminated authentic 389 sea salts, which were produced by drying the seawater samples collected near the field site and

doped with NH₄NO₃ and H₂SO₄ (1 mol L⁻¹ NO₃⁻, pH = 3) (Fig. 3b). Interestingly, the product (Br₂, HONO, and minor BrCl) concentrations showed peaks at or before 30 min of illumination and then gradually decreased to negligible levels, probably due to the depletion of surface-bonded NO₃⁻ and Br⁻. This phenomenon indicates that the surface availability and replenishment of NO₃⁻ and Br⁻ are important for Br₂ production and that the aerosol surface area density (S_a) is a critical parameter in Br₂ production.

396 P(Br₂) was quantified in the solution experiments (without using seawater) as a function of 397 NO₃⁻, Br⁻ and pH (or H⁺) using equation (E4). The mixing ratio of Br₂ after a 60-min illumination 398 was adopted in the calculation (Supplementary Text S4). The results show that the Br₂ production 399 was positively correlated with [H⁺] (Fig. 3c), [NO₃⁻], and [Br⁻] (Fig. 3d) in the solution. Thus, the P(Br₂) is correlated with the product of $[H^+]$, $[NO_3^-]$, and $[Br^-]$ (R² = 0.89, Fig. 3d). As NO₃⁻ 400 401 photolysis is an interfacial process on aerosol surfaces, we expect that P(Br₂) would have a linear 402 relationship with the S_a of ambient aerosols. Thus, we propose that the ambient P(Br₂) should be positively correlated with the product of $[H^+] \times [NO_3^-] \times [Br^-] \times jBr_2 \times S_a$ in the ambient air 403 404 (equation E5).

405 (E5)
$$P(Br_2) = k \times [H^+] \times [NO_3^-] \times [Br^-] \times jBr_2 \times S_a$$

where *k* denotes an empirical pre-factor and has no explicit physical meaning, and [H⁺], [NO₃⁻], and [Br⁻] represent the aqueous-phase concentrations derived by the E-AIM model (Methods, section 2). The jBr₂ used here represents a measure of light intensity. In our laboratory experiments, the product of $k \times jBr_2 \times S_a$ corresponds to the slope of Fig. 3e (3.38 × 10⁷). Given that jBr₂ was 8.1 × 10⁻² and S_a was 5.1×10⁵ um² cm⁻³ in the chamber, *k* was determined to be 758.

411 We extrapolated the above laboratory result to estimate ambient $P(Br_2)$ from $PM_{2.5}$ during 412 noontime (12:00 LT) at our site. The average concentrations of H⁺, NO₃⁻, and Cl⁻ in the aqueous phase of aerosols during noontime were calculated as 2.2×10^{-3} , 2.7, and 2.6 mol L⁻¹ by the E-413 414 AIM model (Methods, section 2). The aqueous phase concentration of Br⁻ in aerosols was 415 estimated by assuming the same [Cl⁻] to [Br⁻] ratio in the aerosol liquid phase as that in the sea water (i.e., $[C1^-]$: $[Br^-] = 650:1$). The S_a and jBr_2 at noon in our site were 328 μ m² cm⁻³ and 2.28 × 416 10^{-2} s⁻¹, respectively. By applying these values to equation (E5), the average P(Br₂) in ambient air 417 was calculated to be 0.13 ppt s⁻¹ at noon, which is more than enough to explain the average field-418 observed P(Br₂) of 0.11 ppt s⁻¹ (12:00 LT). Additional Br₂ production occurs on coarse-mode 419 420 particles, which is not quantified in our study. The above analysis considered a simplified chemical 421 system that contains only halide to consume OH. In the real atmosphere, organic components of 422 aerosols are likely to compete with halide for aqueous-phase OH, reducing Br₂ production via NO₃⁻ photolysis.^{36, 37} Despite this uncertainty, we show that NO₃⁻ photolysis is an important Br₂ 423 424 production pathway at our site, and this process can be simulated by air quality models using the 425 equation (E5) derived from our study.

426

427 3.4. Atmospheric impacts and implications

The impact of reactive bromines on atmospheric oxidation was evaluated by a chemical box model (Methods, section 5). The model was constrained by the observed reactive halogen concentrations and related data for campaign-averaged conditions. Br_2 photolysis was the largest primary source of Br, directly contributing 63% Br production (Fig. 4a) and serving as an indirect source by producing BrO that reacts with NO. BrCl was a minor source of Br (2.6% direct 433 contribution) due to its lower concentrations and photolysis frequency. The predicted average 434 concentration of Br· was very high at noon $(3.5 \times 10^6 \text{ molecules cm}^{-3})$, equal to 50% of the OH 435 concentration $(7 \times 10^6 \text{ molecules cm}^{-3})$ (Supplementary Fig. S11) and 15 times higher than the 436 previous Br· levels calculated at a coastal site in California.⁹

437

439 Fig. 4. Impacts of Br. on atmospheric oxidation for campaign-averaged conditions. (a) Diurnal 440 variation of Br. production and loss rates. (b) Percentage contribution to isoprene oxidation by Br. 441 and other oxidants. (c) A comparison of the Hg lifetime calculated in this study with those reported in the literature. References: 1. Finley and Saltzman, 2008⁹; 2. Peng et al. (2020)¹²; 3. Horowitz et 442 al. (2017)³⁸; 4. Saiz-Lopez et al. (2020)³⁹; 5. Holmes et al. (2010)⁴⁰; 6. Holmes et al. (2006)⁴¹. (d) 443 444 Percentage change of RO_x radicals due to Br. The histogram shows the impacts of Br. on OH, 445 HO₂, and RO₂, respectively, at different hours during the daytime. The red line shows the impact 446 of Br on total RO_x. (e) Impact of Br on net O_x (O₃ + NO₂) productions. Left axis: net O_x 447 production rate with Br (red line) and without Br (blue line) constrained. Right axis: the percentile 448 impact of Br \cdot on the net O_x production shown by the orange histogram.

449

450 High levels of Br have substantial impacts on VOC degradation, RO_x (= OH + HO₂ + RO₂) 451 radical levels, and O₃ formation. The daily integrated oxidation rates of VOCs were calculated for 452 different oxidants (Br, OH, Cl, NO₃, and O₃) and VOC categories. Br contributes 9.5% to the 453 oxidation of alkenes, 6.6% for carbonyls, and 0.5% for aromatics, with a negligible effect on 454 alkanes (Supplement Fig. S12). Particularly, Br. contributes to 19% of the oxidation of biogenic 455 VOCs (BVOCs, including isoprene and terpenes), comparable to the contribution from NO₃. 456 (20.3%). Br is an especially important oxidant for the degradation of isoprene (contributing 457 24.4%, Fig. 4b), because Br concentrations reach ~50% of OH levels, and Br oxidizes isoprene 458 almost as fast as OH does (Table S5).

459 The Br·-induced VOC oxidation increases the concentrations of OH, HO₂, and RO₂ radicals by 460 2.8%, 11.0%, and 14.2%, respectively, in the daytime (06:00-18:00 LT). Despite consuming O₃ 461 via the reaction of $Br + O_3$, $Br - can promote O_3$ production by enhancing RO_x levels 462 (Supplementary Fig. S13). The net effect is that Br - increases the net daytime O_x ($O_3 + NO_2$) 463 production by 13% (Fig. 4e). This result is consistent with that reported at a continental site in 464 North China¹² but contrasts with the impacts observed in polar regions, where Br - largely465 consumes O_3 .⁸ When combined with Cl -, the halogen atoms (Br - and Cl -) caused even higher net 466 O_x productions (31%), revealing a substantial impact of halogen atoms on the RO_x budget and O_3 467 at the study site.

We also calculated the lifetime of Hg by considering the two-step oxidation of Hg⁰ to Hg^{II} and 468 the thermal decomposition of the Hg^I intermediate (Supplementary Text S5). The model-469 470 calculated 24-h average concentrations of Br·, OH·, and Cl· and the observed NO₂ and O₃ levels 471 were used for the calculations. The Hg lifetime was calculated to be 42 days without considering 472 Br, and only four days when Br was considered. The calculated four-day lifetime is one to two 473 orders of magnitude shorter than that estimated by global models³⁸⁻⁴¹ (Fig. 4c) and comparable with the short lifetime (~two days) at a continental site impacted by coal-burning emissions.¹² Our 474 475 results are relevant to the current debate on the significant overestimate of Hg lifetime by global 476 models and the cause for such discrepancy. A recent study proposed a new Hg oxidation 477 mechanism besides the Br oxidation pathway to reconcile the discrepancy between the observation-derived and modeled Hg lifetimes.³⁹ Our study suggests that the overestimate of Hg 478 479 lifetime could also be due to the underestimation of Br₂ in the polluted MBL and subsequently Br. 480 in current models. The shortening Hg lifetime by Br· would increase the deposition of land-emitted 481 Hg near coastal oceans, adversely affecting marine life and the safety of seafood. As the largest 482 marine fishery in the world, China harvested 15 million metric tons of aquatic products in 2016, mainly near the coasts of the Bohai Sea, East China Sea, and South China Sea.⁴² The consumption 483

of coastal fish is the main pathway of human exposure to Hg, leading to high Hg content in humans
and related health problems in China.⁴³ Thus, atmospheric Hg deposition could aggravate the
threats of Hg to seafood safety and consumers' health.

487 In conclusion, this study reveals higher-than-expected Br₂ concentrations in a polluted coastal 488 area and considerable impacts on atmospheric chemistry and air quality, with implications for 489 seafood safety and marine ecosystems. Such impacts of reactive bromine may have been under-490 recognized due to the lack of ambient reactive bromine measurements outside the polar regions, 491 which limits the awareness of their geographical presence and our ability to assess their impacts. 492 Our study demonstrates that a substantial amount of Br₂ can be produced by activating inert Br⁻ 493 via the photolysis of particulate NO₃⁻ under acidic conditions. The co-existence of these conditions is likely to occur in other places given ubiquitous presence of NO₃^{-,44} aerosol acidity,⁴⁵ and Br⁻ 494 from oceans and anthropogenic activities such as coal burning.^{4, 12} Thus, Br₂ and other reactive 495 496 bromines could exist at sufficient concentrations to affect tropospheric oxidation. Therefore, we 497 call for more studies on the atmospheric abundance of reactive bromines and their sources and 498 impacts, especially in polluted regions.

499 The results of this study have important implications for air-pollution control policies. They 500 suggest that tightening control of emissions of two conventional pollutants, NO_x and sulfur dioxide 501 (SO₂), would yield an air-quality co-benefit, namely, alleviating the halogen radical production and 502 its adverse impact on secondary pollutants from decreasing nitrate production and aerosol acidity. 503 NO_x emission reduction is sometimes controversial in the formulation of air pollution regulations 504 because it can increase ozone pollution in urban areas due to the well-known NO_x titration effect 505 for ozone. Our study indicates that reducing NO_x emission – which slows the production of nitric 506 acid and particulate nitrate – would in turn decrease the promotion effect of reactive halogens on

507	ozone, which may offset some or all the ozone increase due to decrease in NO_x emissions. Our
508	findings, therefore, recommend strengthening the efforts to reduce emission of NO_x (and SO_2).
509	We also suggest controlling anthropogenic halogen emissions in future air pollution regulations.
510	
511	Supporting Information
512	Detailed information about the field observations in Hong Kong, dynamic chamber experiments,
513	box model settings, and calculation processes of the Hg lifetime.
514	
515	Author Information
516	Corresponding Author
517	Tao Wang – Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
518	University, Hong Kong 999077, China; Email: cetwang@polyu.edu.hk
519	Authors
520	Men Xia – Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
521	University, Hong Kong 999077, China
522	Zhe Wang – Division of Environment and Sustainability, Hong Kong University of Science and
523	Technology, Hong Kong 999077, China
524	Yi Chen – Division of Environment and Sustainability, Hong Kong University of Science and
525	Technology, Hong Kong 999077, China
526	Xiang Peng – China National Environmental Monitoring Centre, Beijing 100020, China
527	Yunxi Huo – Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
528	University, Hong Kong 999077, China

530	Weihao Wang – Hangzhou PuYu Technology Development Co Ltd, Hangzhou 311305,
531	Zhejiang, China
532	Qi Yuan – Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
533	University, Hong Kong 999077, China
534	Yifan Jiang – Department of Civil and Environmental Engineering, The Hong Kong
535	Polytechnic University, Hong Kong 999077, China
536	Hai Guo – Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
537	University, Hong Kong 999077, China
538	Chiho Lau – Air Science Group Environmental Protection Department, Hong Kong 999077,
539	China
540	Kenneth Leung – Air Science Group Environmental Protection Department, Hong Kong
541	999077, China
542	Alfred Yu – Air Science Group Environmental Protection Department, Hong Kong 999077,
543	China
544	Shuncheng Lee – Department of Civil and Environmental Engineering, The Hong Kong
545	Polytechnic University, Hong Kong 999077, China
546	
547	Author Contributions
548	T.W. designed the research. M.X., Y.C., and Z.W. performed Tof-CIMS measurements in the

- 549 field. M.X. and Y.C. conducted measurements of particle size distributions, NO_x, O₃, and jNO₂.
- 550 Q.Y. and SC.L. provided online OVOC data. H.G. provided aerosol chemical composition data.
- 551 M.X. and Y.J. performed the laboratory work with the helpful discussions from X.P. and W.W.

552	M.X. performed the box model simulation with contributions from X.P. and W.W M.X.
553	performed the E-AIM model simulation. Y.J. obtained the backward trajectory. M.X. and T.W.
554	analyzed the field, laboratory, and modeling data. T.W. and M.X. wrote the paper. All authors
555	contributed to paper revisions.
556	Funding Sources
557	This work is funded by the Hong Kong Research Grants Council (T24-504/17-N to T.W.).
558	Notes
559	The authors declare that they have no conflict of interests.
560	
561	ACKNOWLEDGMENT
562	We thank the Hong Kong Environmental Protection Department for providing the field study
563	site and data on trace gases, PM mass concentrations, VOCs, and OVOCs, the Hong Kong
564	Observatory for providing the meteorological data, and the Hong Kong Polytechnic University
565	Research Facility in Chemical and Environmental Analysis for providing the Tof-CIMS. We are
566	grateful to Steven Poon for his help in logistics, and to Zhouxing Zou and Enyu Xiong for helpful
567	discussions on the box model.
568	
569	REFERENCES

570 1. Barrie, L. A.; Bottenheim, J. W.; Schnell, R. C.; Crutzen, P. J.; Rasmussen, R. A., Ozone 571 destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. *Nature*572 **1988**, *334* (6178), 138-141.

573 2. Solberg, S.; Schmidbauer, N.; Semb, A.; Stordal, F.; Hov, Ø., Boundary-layer ozone
574 depletion as seen in the Norwegian Arctic in spring. *Journal of Atmospheric Chemistry* 1996, 23
575 (3), 301-332.

- 576 3. Foster, K. L.; Plastridge, R. A.; Bottenheim, J. W.; Shepson, P. B.; Finlayson-Pitts, B.
- 577 J.; Spicer, C. W., The role of Br₂ and BrCl in surface ozone destruction at polar sunrise. *Science*
- 578 **2001**, *291* (5503), 471-474.
- 579 4. Li, Q.; Fu, X.; Peng, X.; Wang, W.; Badia, A.; Fernandez, R. P.; Cuevas, C. A.;
- 580 Mu, Y.; Chen, J.; Jimenez, J. L.; Wang, T.; Saiz-Lopez, A., Halogens Enhance Haze
- 581 Pollution in China. *Environmental Science & Technology* **2021**, *55* (20), 13625-13637.
- 582 5. Streets, D. G.; Horowitz, H. M.; Jacob, D. J.; Lu, Z.; Levin, L.; Ter Schure, A. F.;
- Sunderland, E. M., Total mercury released to the environment by human activities. *Environmental science & technology* 2017, *51* (11), 5969-5977.
- 585 6. Obrist, D.; Kirk, J. L.; Zhang, L.; Sunderland, E. M.; Jiskra, M.; Selin, N. E., A review
- 586 of global environmental mercury processes in response to human and natural perturbations:
- 587 Changes of emissions, climate, and land use. *Ambio* **2018**, *47* (2), 116-140.
- 588 7. Sander, S. P.; Abbatt, J.; Barker, J.; Burkholder, J.; Friedl, R.; Golden, D.; Huie, R.;
 589 Kolb, C.; Kurylo, M.; Moortgat, G., Chemical kinetics and photochemical data for use in
- 590 atmospheric studies, Evaluation No. 17. *JPL Publication* **2006**, (10-6).
- 8. Wang, S.; McNamara, S. M.; Moore, C. W.; Obrist, D.; Steffen, A.; Shepson, P. B.;
 Staebler, R. M.; Raso, A. R.; Pratt, K. A., Direct detection of atmospheric atomic bromine
 leading to mercury and ozone depletion. *Proceedings of the National Academy of Sciences* 2019,
 201900613.
- 595 9. Finley, B.; Saltzman, E., Observations of Cl₂, Br₂, and I₂ in coastal marine air. *Journal of Geophysical Research: Atmospheres* 2008, *113* (D21).
- 597 10. Breton, M. L.; Hallquist, Å. M.; Pathak, R. K.; Simpson, D.; Wang, Y.; Johansson,
 598 J.; Zheng, J.; Yang, Y.; Shang, D.; Wang, H., Chlorine oxidation of VOCs at a semi-rural
 599 site in Beijing: significant chlorine liberation from ClNO₂ and subsequent gas-and particle-phase
 600 Cl–VOC production. *Atmospheric Chemistry and Physics* 2018, *18* (17), 13013-13030.
- CI = V OC production. Atmospheric Chemistry and Thysics**2010**, 10 (17), 15015-15050.
- 601 11. Lee, B. H.; Lopez-Hilfiker, F. D.; Schroder, J. C.; Campuzano-Jost, P.; Jimenez, J. L.;
- 602 McDuffie, E. E.; Fibiger, D. L.; Veres, P. R.; Brown, S. S.; Campos, T. L., Airborne
- 603 observations of reactive inorganic chlorine and bromine species in the exhaust of coal-fired power
- 604 plants. Journal of Geophysical Research: Atmospheres 2018, 123 (19), 11,225-11,237.
- 605 12. Peng, X.; Wang, W.; Xia, M.; Chen, H.; Ravishankara, A. R.; Li, Q.; Saiz-Lopez,
- 606 A.; Liu, P.; Zhang, F.; Zhang, C.; Xue, L.; Wang, X.; George, C.; Wang, J.; Mu, Y.;
- 607 Chen, J.; Wang, T., An unexpected large continental source of reactive bromine and chlorine with
- 608 significant impact on wintertime air quality. *National Science Review* **2020**, *8* (7), nwaa304.

- 609 13. Monks, P. S.; Archibald, A.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.;
- 610 Fowler, D.; Granier, C.; Law, K. S.; Mills, G., Tropospheric ozone and its precursors from the
- 611 urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and
- 612 *Physics* **2015**, *15* (15), 8889-8973.
- 613 14. Wang, X.; Jacob, D. J.; Downs, W.; Zhai, S.; Zhu, L.; Shah, V.; Holmes, C. D.;
- 614 Sherwen, T.; Alexander, B.; Evans, M. J., Global tropospheric halogen (Cl, Br, I) chemistry and
- 615 its impact on oxidants. *Atmospheric Chemistry and Physics* **2021**, *21* (18), 13973-13996.
- 616 15. Peng, X.; Wang, T.; Wang, W.; Ravishankara, A. R.; George, C.; Xia, M.; Cai, M.;
- 617 Li, Q.; Salvador, C. M.; Lau, C.; Lyu, X.; Poon, C. N.; Mellouki, A.; Mu, Y.;
- 618 Hallquist, M.; Saiz-Lopez, A.; Guo, H.; Herrmann, H.; Yu, C.; Dai, J.; Wang, Y.;
- 619 Wang, X.; Yu, A.; Leung, K.; Lee, S.; Chen, J., Photodissociation of particulate nitrate as a
- 620 source of daytime tropospheric Cl₂. *Nature Communications* **2022**, *13* (1), 939.
- 621 16. Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Kurtén, T.; Worsnop, D. R.; Thornton, J.
- 622 A., An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer:
- Application to Atmospheric Inorganic and Organic Compounds. *Environmental Science & Technology* 2014, 48 (11), 6309-6317.
- 17. Lawler, M. J.; Sander, R.; Carpenter, L. J.; Lee, J. D.; von Glasow, R.; Sommariva,
 R.; Saltzman, E. S., HOCl and Cl₂ observations in marine air. *Atmospheric Chemistry and Physics*2011, *11* (15), 7617-7628.
- 628 18. Xia, M.; Peng, X.; Wang, W.; Yu, C.; Wang, Z.; Tham, Y. J.; Chen, J.; Chen, H.;
- 629 Mu, Y.; Zhang, C., Winter ClNO₂ formation in the region of fresh anthropogenic emissions:
- seasonal variability and insights into daytime peaks in northern China. *Atmospheric Chemistry and Physics* 2021, 21 (20), 15985-16000.
- Kia, M.; Peng, X.; Wang, W.; Yu, C.; Sun, P.; Li, Y.; Liu, Y.; Xu, Z.; Wang,
 Z.; Xu, Z.; Nie, W.; Ding, A.; Wang, T., Significant production of ClNO₂ and possible
 source of Cl₂ from N₂O₅ uptake at a suburban site in eastern China. *Atmospheric Chemistry and Physics* 2020, *20* (10), 6147-6158.
- 636 20. Wang, Z.; Wang, W.; Tham, Y. J.; Li, Q.; Wang, H.; Wen, L.; Wang, X.; Wang,
 637 T., Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and industrial plumes
 638 observed in the nocturnal residual layer over the North China Plain. *Atmospheric Chemistry and*639 *Physics* 2017, *17* (20), 12361-12378.

- 640 21. Brown, S.; Ryerson, T.; Wollny, A.; Brock, C.; Peltier, R.; Sullivan, A.; Weber, R.;
 641 Dube, W.; Trainer, M.; Meagher, J., Variability in nocturnal nitrogen oxide processing and its
 642 role in regional air quality. *Science* 2006, *311* (5757), 67-70.
- 643 22. Wolfe, G. M.; Marvin, M. R.; Roberts, S. J.; Travis, K. R.; Liao, J., The framework for
- 0-D atmospheric modeling (F0AM) v3.1. Geoscientific Model Development 2016, 9 (9), 3309-
- 645 3319.
- 646 23. Jenkin, M.; Young, J.; Rickard, A., The MCM v3.3.1 degradation scheme for isoprene.
 647 *Atmospheric Chemistry and Physics* 2015, *15* (20), 11433.
- 648 24. Le Breton, M.; Bannan, T. J.; Shallcross, D. E.; Khan, M. A.; Evans, M. J.; Lee, J.;
 649 Lidster, R.; Andrews, S.; Carpenter, L. J.; Schmidt, J., Enhanced ozone loss by active inorganic
 650 bromine chemistry in the tropical troposphere. *Atmospheric Environment* 2017, *155*, 21-28.
- 25. Priestley, M.; Breton, M. I.; Bannan, T. J.; Worrall, S. D.; Bacak, A.; Smedley, A.
 R.; Reyes-Villegas, E.; Mehra, A.; Allan, J.; Webb, A. R., Observations of organic and
 inorganic chlorinated compounds and their contribution to chlorine radical concentrations in an
 urban environment in northern Europe during the wintertime. *Atmospheric Chemistry and Physics*2018, *18* (18), 13481-13493.
- 656 26. Ammann, M.; Cox, R. A.; Crowley, J. N.; Jenkin, M. E.; Mellouki, A.; Rossi, M. J.;
- Troe, J.; Wallington, T. J., Evaluated kinetic and photochemical data for atmospheric chemistry:
- 658 Volume VI heterogeneous reactions with liquid substrates. *Atmospheric Chemistry and Physics*
- 659 **2013**, *13* (16), 8045-8228.
- Abbatt, J.; Waschewsky, G., Heterogeneous interactions of HOBr, HNO₃, O₃, and NO₂ with
 deliquescent NaCl aerosols at room temperature. *The Journal of Physical Chemistry A* 1998, *102*(21), 3719-3725.
- 663 28. Fickert, S.; Adams, J. W.; Crowley, J. N., Activation of Br₂ and BrCl via uptake of HOBr
 664 onto aqueous salt solutions. *Journal of Geophysical Research: Atmospheres* 1999, *104* (D19),
 665 23719-23727.
- 29. Deiber, G.; George, C.; Calvé, S. L.; Schweitzer, F.; Mirabel, P., Uptake study of
 ClONO₂ and BrONO₂ by Halide containing droplets. *Atmospheric Chemistry and Physics* 2004, 4
 (5), 1291-1299.
- 669 30. Sakamoto, Y.; Goda, M.; Hirokawa, J., Kinetics Study of Heterogeneous Bromine Release 670 from the Reaction between Gaseous Ozone and Aqueous Bromide Solution. *The Journal of*
- 671 *Physical Chemistry A* **2018**, *122* (10), 2723-2731.

- 672 31. Lopez-Hilfiker, F.; Constantin, K.; Kercher, J.; Thornton, J. A., Temperature dependent
- halogen activation by N₂O₅ reactions on halide-doped ice surfaces. *Atmospheric Chemistry and*
- 674 *Physics* **2012**, *12* (11), 5237-5247.
- 675 32. Simpson, W. R.; Brown, S. S.; Saiz-Lopez, A.; Thornton, J. A.; von Glasow, R.,
- Tropospheric halogen chemistry: Sources, cycling, and impacts. *Chemical reviews* **2015**, *115* (10),
- 6774035-4062.
- 678 33. Abbatt, J.; Oldridge, N.; Symington, A.; Chukalovskiy, V.; McWhinney, R. D.;
- Sjostedt, S.; Cox, R. A., Release of Gas-Phase Halogens by Photolytic Generation of OH in Frozen
 Halide–Nitrate Solutions: An Active Halogen Formation Mechanism? *The Journal of Physical*
- 681 *Chemistry A* **2010,** *114* (23), 6527-6533.
- 682 34. George, I. J.; Anastasio, C., Release of gaseous bromine from the photolysis of nitrate and
 hydrogen peroxide in simulated sea-salt solutions. *Atmospheric Environment* 2007, *41* (3), 543684 553.
- 35. Richards, N. K.; Finlayson-Pitts, B. J., Production of gas phase NO₂ and halogens from the
 photochemical oxidation of aqueous mixtures of sea salt and nitrate ions at room temperature. *Environmental science & technology* 2012, *46* (19), 10447-10454.
- 36. Herrmann, H.; Schaefer, T.; Tilgner, A.; Styler, S. A.; Weller, C.; Teich, M.; Otto,
 T., Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a
 Changing Gas Phase. *Chemical Reviews* 2015, *115* (10), 4259-4334.
- 37. Anastasio, C.; Newberg, J. T., Sources and sinks of hydroxyl radical in sea-salt particles. *Journal of Geophysical Research: Atmospheres* 2007, *112* (D10).
- 38. Horowitz, H. M.; Jacob, D. J.; Zhang, Y.; Dibble, T. S.; Slemr, F.; Amos, H. M.;
 Schmidt, J. A.; Corbitt, E. S.; Marais, E. A.; Sunderland, E. M., A new mechanism for
 atmospheric mercury redox chemistry: implications for the global mercury budget. *Atmospheric Chemistry and Physics* 2017, *17* (10), 6353-6371.
- 69739. Saiz-Lopez, A.;Travnikov, O.;Sonke, J. E.;Thackray, C. P.;Jacob, D. J.;Carmona-698García, J.;Francés-Monerris, A.;Roca-Sanjuán, D.;Acuña, A. U.;Dávalos, J. Z.,
- 699 Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the
- troposphere. *Proceedings of the National Academy of Sciences* **2020**, *117* (49), 30949-30956.
- 40. Holmes, C. D.; Jacob, D. J.; Corbitt, E. S.; Mao, J.; Yang, X.; Talbot, R.; Slemr, F.,
 Global atmospheric model for mercury including oxidation by bromine atoms. *Atmospheric Chemistry and Physics* 2010, *10* (24), 12037-12057.

- 41. Holmes, C. D.; Jacob, D. J.; Yang, X., Global lifetime of elemental mercury against
 oxidation by atomic bromine in the free troposphere. *Geophysical research letters* 2006, *33* (20).
- 706 42. Zhang, W.; Liu, M.; Sadovy de Mitcheson, Y.; Cao, L.; Leadbitter, D.; Newton, R.;
- Little, D. C.; Li, S.; Yang, Y.; Chen, X., Fishing for feed in China: Facts, impacts and
 implications. *Fish and Fisheries* 2020, *21* (1), 47-62.
- 43. Zhang, L.; Wong, M. H., Environmental mercury contamination in China: sources and impacts. *Environment international* 2007, *33* (1), 108-121.
- 711 44. Bian, H.; Chin, M.; Hauglustaine, D. A.; Schulz, M.; Myhre, G.; Bauer, S. E.;
- 712 Lund, M. T.; Karydis, V. A.; Kucsera, T. L.; Pan, X., Investigation of global particulate nitrate
- 713 from the AeroCom phase III experiment. Atmospheric Chemistry and Physics 2017, 17 (21),
- 714 12911-12940.
- 715 45. Pye, H. O. T.; Nenes, A.; Alexander, B.; Ault, A. P.; Barth, M. C.; Clegg, S. L.;
- 716 Collett Jr, J. L.; Fahey, K. M.; Hennigan, C. J.; Herrmann, H.; Kanakidou, M.; Kelly, J.
- 717 T.; Ku, I. T.; McNeill, V. F.; Riemer, N.; Schaefer, T.; Shi, G.; Tilgner, A.; Walker,
- 718 J. T.; Wang, T.; Weber, R.; Xing, J.; Zaveri, R. A.; Zuend, A., The acidity of atmospheric
- 719 particles and clouds. *Atmospheric Chemistry and Physics* **2020**, *20* (8), 4809-4888.