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2 

Abstract 20 

The efficacy of probiotic health products depends on the capability of the constituent probiotic 21 

bacteria to survive through long period of cold storage and the gastrointestinal tract. This study 22 

was to evaluate the protective effects of a high-molecular weight (MW) exopolysaccharide (EPS) 23 

from a medicinal fungus Cs-HK1 on three different bifidobacteria. The EPS had a total dietary 24 

fiber content about 70% (w/w), which was close to its total carbohydrate content. It was resistant 25 

to artificial gastric acid (pH2) with no more than 4% (w/w) hydrolysis in 6 hours. EPS at 5 g/L 26 

significantly increased the survival rate of the probiotic bacteria during cold storage (4 C) and 27 

in simulated gastric acid, reducing the death rate of different bacterial strains by 50% to 70%. 28 

The protective effect of EPS was weaker when the concentration was decreased to 3 g/L or when 29 

the MW of EPS was reduced by partial degradation with power ultrasound. EPS also showed 30 

significantly protective effect on the all bacterial strains in bile juice. The results have 31 

demonstrated the potential value of Cs-HK1 EPS as a novel prebiotic fiber for the formulation 32 

of synbiotic products with probiotic bacteria. 33 

34 

35 

Keywords: Bifidobacteria; Survival; Polysaccharide; Cold storage; Gastrointestinal conditions 36 

37 

38 

1. Introduction39 

Recent years has witnessed an enormous interest worldwide in the development of probiotic, 40 

prebiotic and synbiotic products targeting a healthy human gut microbiota [1, 2]. Human uptake 41 
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3 

of probiotic microorganisms has been regarded as an effective strategy for balancing the gut 42 

microbiota so as to improve gut health and lower the risk of various diseases such as metabolic 43 

syndrome, inflammation the brain and skin [3, 4]. Other potential health benefits of probiotic 44 

ingestion include increase of mineral absorption, immunity enhancement, inhibition of tumor 45 

formation and hypercholesterolemia prevention [5-7]. Bifidobacterium is one of the most 46 

common probiotic species used in functional foods and dietary supplements [8]. As an effective 47 

probiotic product, the constituent bacteria should be resistant to the harsh conditions in the 48 

gastrointestinal tract (GIT), especially gastric acid and bile salt, reaching the large intestine alive 49 

to exert an influence on the gut microflora. The number of viable bacteria is an important quality 50 

index of probiotic products and is also essential for achieving the desired effects on the host [9]. 51 

Various measures have been explored to enhance the survival rate of probiotics, such as 52 

screening for high tolerance strains, encapsulation, and supplementation of polysaccharides and 53 

oligosaccharides [10-12]. Supplementation of carbohydrate fibers is a relatively simple approach 54 

and is also possible to add extra benefits to the products, such as the prebiotic fibers in synbiotic 55 

products. 56 

Edible and medicinal fungi or mushrooms provide a rich and diverse source of natural 57 

polysaccharides which are recognized as potential prebiotic candidates [13]. In addition to the 58 

few well-known β-glucans which have been applied to anticancer and immunotherapy [14], 59 

many homo- and hetero-glycans have been isolated from mushrooms or fungal mycelia [15, 16]. 60 

Most of the bioactive fungal polysaccharides are resistant to the digestive enzymes in the human 61 

GIT and their health benefits and bioactivities such as immunomodulation and anti-inflammation 62 

may involve the modulation of gut microbiota [15, 17]. 63 
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Cordyceps sinensis, the Chinese caterpillar fungus, is a precious medicinal fungus in 64 

traditional Chinese medicine (TCM) for treatment of diseases related to the lung, kidney, 65 

and respiratory systems and for promotion of health and physical performance [18]. Because the 66 

wild caterpillar fungus called Dong Chong Xia Cao in Chinese is very rare and expensive, 67 

mycelial fermentation has become the major resort for Cordycpes sinensis products. The 68 

mycelial culture of a C. sinensis fungus Cs-HK1 has been established in our lab for fermentation 69 

production of the mycelial biomass and polysaccharides [19]. The exopolysaccharides (EPS) 70 

produced by Cs-HK1 fungus in liquid fermentation have shown notable antitumor, 71 

immunomodulatory and antioxidant activities in our previous studies [20]. In our recent studies, 72 

the high MW fractions of Cs-HK1 EPS (~106-108 Da) showed significant protective effects on 73 

bacterial viability in normal culture conditions [21] and during exposure to antibiotics [22]. 74 

The aim of the present study was to further evaluate the potential of the Cs-HK1 EPS as a 75 

protective additive during the storage of probiotic bacteria and as a dietary, prebiotic fiber in the 76 

human GI environment. Experiments were performed in liquid cultures of some common 77 

probiotic strains of Bifidobacterium. The original EPS from the Cs-HK1 mycelial fermentation 78 

and a partially degraded EPS by power ultrasound were tested together with two well-known 79 

prebiotic fibers inulin and galactooligosaccharide (GOS) on the bacterial survival rate during 80 

cold storage and in simulated gastrointestinal conditions. 81 

82 

2. Methods and materials83 

2.1 Cs-HK1 mycelial fermentation and preparation of EPS fractions 84 
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Cs-HK1 is a fungus species isolated from a wild Cordyceps fruit body by Wu’s group 85 

several years ago and has been maintained in mycelial culture as reported previously [19]. The 86 

liquid medium for Cs-HK1 mycelial culture consisted of 40 g/L glucose, 5 g/L peptone, 1 g/L 87 

KH2PO4, 0.5 g/L MgSO4·7H2O and 10 g/L yeast extract [23]. The Cs-HK1 liquid fermentation 88 

was carried out at 20 oC in a shaking incubator at 200 rpm for 7 days. The mycelial culture broth 89 

was then centrifuged at 12,000 rpm (21,612×g) for 15 min and the supernatant medium was 90 

collected for recovery of EPS. Ethanol (96%, w/v) was added into the supernatant medium at 5:1 91 

volume ratio and maintained at 4 oC overnight for precipitation. The precipitate was separated 92 

by centrifugation at 12,000 rpm (21,612×g) for 15 min and then freeze-dried, yielding the EPS. 93 

Because the original EPS from the Cs-HK1 fermentation had a very high MW and a low 94 

water solubility, it was partially degraded with power ultrasound (US) to a lower MW and higher 95 

water solubility. As reported previously [21], the power US was generated with a VCX 750 96 

processor with a fixed frequency of 20 kHz and a maximum output power of 750 W (Sonics and 97 

Materials Inc., Newton, USA). The Cs-HK1 mycelia culture medium (1 L) was irradiated with 98 

a US probe at a fixed US power (80% amplitude) for 30 min, followed by ethanol precipitation, 99 

centrifugation and freeze-drying, yielding the US-degraded EPS designated EPS-US. 100 

101 

2.2 Measurement of EPS properties 102 

The molecular weight (MW) of EPS and EPS-US were determined by high-pressure gel 103 

permeation chromatography (HPGPC) with the same instruments (Waters 1515 isocratic pump 104 

and a 2414 refractive index detector) and conditions as reported previously [21]. The intrinsic 105 

viscosity [η] of EPS samples was determined as reported previously by the serial d ilution method 106 

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292



6 

with a Ubbelohde viscometer at 25 oC [24]. The apparent viscosity of EPS and EPS-US solutions 107 

was measured by a rheometer (AMETEK Brookfield, USA). The size distribution of EPS and 108 

EPS-US aggregates in water was measured at room temperature by a nanoparticle (405 nm) 109 

tracking analyzer (Nanosight NS300HSBF). The solubility of EPS and EPS-US in water was 110 

determined by the method previously used for starch [25]. 111 

112 

2.3 Analysis of dietary fiber content in EPS 113 

The total dietary fiber content was determined by the assay kit (TDF-100A, Sigma-Aldrich, 114 

USA). Briefly, EPS samples were first treated by heat stable α-amylase, protease and 115 

amyloglucosidase to remove protein and starch. Ethanol (95%, w/v) was then added for 116 

precipitation. The residues were filtrated and washed by ethanol and acetone. After drying, the 117 

residues were analyzed for the protein by Kjeldahl method and ash at 525 oC. The total dietary 118 

fiber was the weight of the residue less the weight of the protein and ash. Calculation equation 119 

was provided by the assay kit. 120 

121 

2.4 Degradation of EPS in simulated gastric acid 122 

EPS and EPS-US were tested for acid resistance according to Tingirikari et al. [26] with 123 

minor modifications. Simulated gastric acid was prepared using hydrochloric acid buffer 124 

containing 8 g/L NaCl, 0.2 g/L KCl, 8.25 g/L NaHPO4·2H2O, 14.35 g/L NaH2PO4, 0.1 g/L 125 

CaCl2·2H2O, 0.18 g/L MgCl2·6H2O. The pH of the buffer was adjusted to 2 with 5 M HCl. The 126 

EPS was dissolve in water at 5 g/L; 1 mL of the EPS solution was mixed with 2 mL simulated 127 

gastric acid was incubated in 37 oC for 6 h, during which sample was taken every hour. The 128 
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reducing sugar content in the sample was determined by DNS method [27] and total sugar 129 

content was determined by anthrone test [28]. 130 

131 

2.5 Probiotic bacterial species and culture conditions 132 

Three strains of Bifidobacterium were used in this study including B. adolescentis (CICC 133 

6070), B. infantis (CICC 6069), and B. infantis (R33). The first two were obtained from China 134 

Centre of Industrial Culture Collection (CICC) and the third was from Biostime Inc. (Guangzhou, 135 

China). The conditions for storage and incubation of the bifidobacteria have been described 136 

previously [21]. The bacterial culture was initiated by inoculation of each strain taken out of the 137 

storage (30% glycerol at -80 oC) in Reinforce Clostridial Medium (RCM) agar on a petri dish 138 

and incubation for about 2 days. A single colony on the agar plate was picked out and inoculated 139 

into RCM liquid broth and incubated overnight. The bacterial suspension was then subcultured 140 

at 2% (v/v) into RCM broth. All bacterial cultures were incubated at 37 oC under anaerobic 141 

condition in air-tight jars with anaerobic gas generating sachets (AnaeroGen TM, Thermo 142 

Scientific Oxoid, USA) [29]. For liquid cultures, the jar was placed on a shaking incubator 143 

running at 200 rpm. The CFU of the bacterial growth was determined on selected days over 28 144 

days. 145 

146 

2.6 Cold storage of probiotic bacteria and measurement of H2O2 147 

After 24 hours of incubation in broth, the bacterial cells were centrifuged at 5000 rpm for 148 

10 min. The bacterial pellets were washed twice with sterile saline (0.9% w/v NaCl solution) [11] 149 

and then were re-suspended in 2 mL centrifuge tube containing 1 mL EPS sample solution (5 150 
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g/L) or sterile saline (control). These mixture solutions were stored at 4 oC for 28 d. The viability 151 

of the probiotics was determined using RCM agar at 0, 7, 14, 21 and 28 d. Galacto-152 

oligosaccharide (GOS) and inulin (5 g/L) were tested as prebiotic references. According to the 153 

results, EPS had the best effect on bifidobacterial viability at 4 oC so that EPS solution at different 154 

concentrations (1, 3, 5 g/L) was also tested on bifidobacteria at 4 oC. All the media, sample 155 

solutions and centrifuge tubes were sterilized before use by autoclaving at 120 oC for 20 min. 156 

The percentage of death rate reduction was estimated by (1−Rd of EPS/Rd of control), where the 157 

death rate (Rd) is given by (CFU at time 0 −CFU at time t)/t. 158 

It has been suggested that the oxygen-sensitive bifidobacterial species could produce H2O2 159 

in the presence of oxygen which is toxic to the bacterial cells [30]. Therefore the concentration 160 

of H2O2 in the bifidobacterial culture medium after storage at 4 oC was determined by H2O2 assay 161 

kit (BC3595, Beijing Solarbio Science& Technology Co., Ltd, China). 162 

163 

2.7 Probiotic bacteria in simulated gastrointestinal conditions 164 

The sample solution suspended with bacteria was prepared in the same way as that 165 

described in 2.6. The survival rates of the probiotic strains in sample solutions were examined 166 

according to Michida et al. [11] and Chou et al. [31] with slightly modified. 0.5 mL of the 167 

bacterial suspended solution was mixed with 1 mL simulated gastric acid (HCl solution buffer, 168 

pH = 2) or bile juice (0.3% w/v bile salt in saline, pH = 8). pH was adjusted by HCl and NaOH. 169 

The bacteria were maintained at 37 oC for 3 hours, and the viability of the bacteria was 170 

determined using RCM agar at selected time points from 0-3 h for evaluation of gastric acid and 171 

bile juice tolerance. All the media and sample solution were sterilized before use by autoclaving 172 
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at 120 oC for 20 min, and the simulated gastric acid and bile juice were sterilized by membrane 173 

filtration. 174 

175 

2.8 Scanning electron microscopy 176 

The morphology of the bacterial cells and EPS samples and their mixture was monitored 177 

by scanning electron microscope (SEM). Due to the similar trend of the effect contributed by 178 

EPS samples on different bacterial strains, only B. adolescentis was applied for SEM detection. 179 

B. adolescentis was first cultured in RCM broth for 24 h as described in 2.5 and then centrifuged180 

at 5000 rpm for 10 min and the pellets were washed twice with sterile saline and resuspended in 181 

EPS sample solution (5 g/L). Inulin was also tested for comparison. The mixtures were 182 

immediately frozen by liquid nitrogen, followed by freeze drying. The dried samples were coated 183 

with gold. SEM was performed with a JSM 6710 SEM (JEOL Ltd., Tokyo, Japan). 184 

185 

3. Results and discussion186 

3.1 Physical properties of EPS samples 187 

As shown in Fig. 1A, the original EPS had two overlapping high MW peaks around 1.03 × 188 

108 and 1.33 × 107 Da, respectively. After ultrasonic treatment, the two high MW peaks of EPS-189 

US were shifted to lower MW ranges of around 5.99 × 107 and 7.79 × 106 Da, respectively. Both 190 

the intrinsic and apparent viscosity of EPS were decreased by the treatment of ultrasound (Fig. 191 

1B & Table 1) while the solubility of EPS was increased significantly from 8.83 to 20.08 g/L. 192 

The particle sizes of EPS and EPS-US were 17.28 nm and 9.85 nm respectively (Fig 1C & Table 193 

1), implying that the EPS samples existed in the form of hydrocolloids in water. 194 
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The total dietary fiber content in EPS and EPS-US was 68.9% and 60.1%, respectively. As 195 

the total carbohydrate content of EPS was 71%, most of the EPS carbohydrates belong to non-196 

digestible fiber that are resistant to the digestive enzymes in human digestive system. As shown 197 

in Fig. 2 EPS and EPS-US were very resistant to simulated gastric acid, with no more than 5% 198 

(w/w) hydrolyzed to reducing sugar over 6 h. The higher degradation rate of EPS-US (4.15%, 199 

w/w) than EPS (2.64%, w/w) was probably due to the fact that the aggregates of EPS-US were 200 

much smaller and looser, and more accessible for the acid in solution. The high intensity 201 

ultrasound (US) can cause disruption of the EPS aggregates, reducing the solution viscosity and 202 

increasing the water solubility significantly [32]. Inulin, a commercial prebiotic, was hydrolyzed 203 

more than 25% (w/w) in the gastric acidic solution [26, 33]. This suggests that the acidic 204 

tolerance of EPS samples were much higher than inulin. The high resistance of EPS and EPS-205 

US to the digestive enzymes and simulated gastric acid warrants their function as dietary fibers 206 

or prebiotics useful for the gut bacteria in the large intestine. 207 

208 

3.2 Bacterial survival and H2O2 accumulation during cold storage 209 

Fig. 3 shows the viability time courses of three bifidobacteria during cold storage at 4 oC. 210 

All three strains of bifidobacteria in the control, inulin and GOS groups died out within 28 days 211 

or a shorter period. EPS and EPS-US had a significant protective effect on the survival rate of 212 

all strains. B. infantis (R33) was most susceptible among the bifidobacterial strains at low 213 

temperature and died rapidly within two weeks in the control, but retained a survival rate above 214 

102 CFU/mL in the presence of EPS or EPS-US. The protective effect of EPS was slightly 215 

stronger than that of EPS-US for B. adolescentis. 216 
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For a more quantitative comparison of the protective effects of various carbohydrates, Table 217 

2 presents the percentage values of death rate reduction that are derived from experimental data 218 

in Figs 3&5. Overall, the protective effects of EPS and EPS-US on the probiotic bacteria were 219 

much stronger than inulin and GOS. EPS and EPS-US showed significant effect on all bacteria 220 

species in cold storage. Although inulin has been previously shown to maintain the viability of 221 

probiotics [34], it only increased the survival rate of B. adolescentis (CICC 6079) and B. infantis 222 

(R33) during the cold storage. 223 

A possible cause for the cell death during cold storage is attributed to the oxidative stress 224 

produced by the reactive oxygen species such as H2O2. Some of the O2-sensitive bifidobacteria 225 

O2 could produce H2O2 in the presence of O2 which was toxic to the bifidobacteria [35, 36]. To 226 

confirm this postulation, the H2O2 concentration in the liquid medium of three bifodonacteria at 227 

the end of cold storage was measured. As shown in Table 3, B. adolescentis and B. infantis (R33) 228 

produced a much higher level of H2O2 than B. infantis (CICC6069), suggesting that the first two 229 

strains were more sensitive to oxygen. Consistently with the results shown in Fig. 3, the B. 230 

infantis (CICC6069) strain also survived longer than the first two bifidobacterial strains. 231 

Moreover, the addition of EPS and EPS-US significantly decreased the level of H2O2 produced 232 

by B. adolescentis and B. infantis (R33) compared to the control. The reduction of H2O2 233 

production may be attributable to the high viscosity of EPS, increasing the resistance of oxygen 234 

access to the bacteria. Overall, this set of results provided supporting evidence for the postulation 235 

that H2O2 is a major factor contributing to the cell death during cold storage in previous studies. 236 

In this connection, the protective effect of EPS on the bifidobacteria may also be attributable to 237 

its antioxidant activity as reported previously [37].  238 
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Additional experiments were also performed on the survival of bifidobacteria stored at the 239 

normal culture temperature of 37 oC. All three bifidobacterial strains died out much faster than 240 

during cold storage at 4 oC. In the EPS solution (without any growth nutrients), three of the 241 

bifidobacteria strains died out within a week (data not shown) and only B. infantis (CICC 6069) 242 

retained a CFU of 413 ± 97 /mL on day 7 but died out in two weeks. In the normal culture 243 

medium without EPS, all bifidobacteria died within two weeks (Fig. 4). The less significant 244 

protective effect of EPS and EPS-US at 37 oC than at 4 oC was probably attributed to the lower 245 

viscosity at the higher temperature. 246 

247 

3.3 Bacterial survival in gastric acid 248 

Fig. 5 shows the viability trend of probiotic bacteria during incubation in simulated gastric 249 

acid for three hours. Although B. infantis (R33) was very susceptible to oxygen stress and 250 

nutrient deficiency, it was relatively tolerant to the acid stress with slower reduction of viability 251 

in the control group. EPS, EPS-US and GOS significantly increased the gastric acid survival of 252 

all three probiotic bacteria compared to the control group, while inulin showed some positive 253 

effect only on B. adolescentis (CICC 6070). 254 

For a more quantitative comparison of the protective effects of various carbohydrates, Table 255 

2 presents the percentage values of death rate reduction that are derived from experimental data 256 

in Figs 3 & 5. EPS and EPS-US showed significant effect on all bacteria species in both cold 257 

storage and gastric acid. Table 4 presents the percentage values of death rate reduction of EPS 258 

at three different concentrations, 1, 3, 5 g/L. In most cases, the protection effect (death rate 259 

reduction) with EPS was significantly lower at a lower concentration. 260 

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705



13 

Bacterial cells have developed the general stress response (GSR) system to cope with 261 

nutrient starvation and various environmental stresses [38]. It has been reported that GSR can be 262 

triggered at a high cell density [39, 40]. In this study, the GSR mechanism may be a possible 263 

contributor to protective effect of EPS on the probiotic bacteria in various stress conditions as 264 

the bacteria cells were agglomerated in the EPS gels to a high density. In addition, the bacterial 265 

cell density may also affect their acid tolerance due to the quorum sensing. Besides the GSR, 266 

bacterial cells have the acid tolerance response (ATR) system for the better survival in acidic 267 

conditions [3, 41]. As reported by Li et al. [42], the high cell density of Streptococcus mutans 268 

could modulate ATR to gain a significantly higher resistance to lethal pH. This suggests that 269 

cell-cell communication plays an important role in bacterial resistance to acid stress. 270 

271 

3.4 Bacterial survival in bile juice 272 

Table 5 shows the survival rate of probiotic bacteria in bile juice with EPS, EPS-US, inulin 273 

and GOS. All of the three strains had a very low survival rate in bile juice, which was mainly 274 

attributed to the alkaline environment of bile juice (pH 8) plus the antimicrobial activity of bile 275 

salt. Bile salts could cause disruption of the cell membrane and DNA damage [43]. After 276 

incubation in the bile juice for 3 hours, nearly all bifidobacterial cells died out in the control, 277 

GOS and inulin groups, and viable cells were only present in the EPS groups. EPS showed a 278 

significant protective effect on the three bacterial strains with a notable survival rate. The 279 

protective effect of EPS was weak or negligible as the concentration was lowered to 3 g/L and 1 280 

g/L. 281 
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Both inulin and GOS are well-known prebiotic carbohydrates that can support the growth 282 

of probiotic bacteria [44, 45]. The increasing viability of some strains by inulin or GOS can be 283 

partly attributed to their nutritional effect. As reported previously by our group [21], GOS was a 284 

favorable carbon source as glucose, but EPS, EPS-US or inulin was not well utilized for the 285 

growth of bifidobacteria in culture. Therefore, the ability of EPS and EPS-US to sustain the 286 

bacterial survival in various conditions can be mainly attributed to protective effect. In a recent 287 

study [46], a viscous layer formed on the B. adolescentis was regarded as a major contributing 288 

factor for protecting the bacteria from antibiotic damage and atomic force microscope (AFM) 289 

was applied to visualize the layer. Physical interactions of the bacteria cells with the EPS 290 

aggregates and gels in the liquid medium might also contribute to the protective effect in this 291 

study. Moreover, the formation of biofilm by bacteria may also increase the resistance to 292 

detrimental factors and harsh conditions, which is facilitated by an EPS gel matrix surrounding 293 

the bacteria cells [47]. In the following experiments, scanning microscopy (SEM) was applied 294 

to detect these phenomena possibly occurring to the bifiodobacterial cells with the EPS. 295 

296 

3.5 Interactions between bacterial cells and polysaccharides 297 

Fig. 6 shows the SEM images of B. adolescentis cells in three polysaccharide solutions, 298 

EPS, EPS-US and inulin. EPS and EPS-US formed planner sheets of aggregates on which rod-299 

shaped bacteria cells were attached. Inulin appeared as clusters of aggregates with relatively few 300 

bacteria cells protruding from the outer periphery. Many bacteria cells were attached on the EPS 301 

aggregates but very few on EPS-US and inulin. The immobilization or encapsulation of 302 

probiotics by polysaccharide gels is recognized as an important factor contributing to the 303 
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tolerance of probiotic bacteria to environmental stress, thus increasing their survival rate [48, 304 

49]. The bacterial cells attached to or entrapped by EPS and EPS-US aggregates are less exposed 305 

to the stress factors and conditions in their surroundings. Compared to EPS-US, EPS was more 306 

viscous in liquid solution and more capable to immobilize the bacterial cells, conferring a 307 

stronger protective effects. As the concentration of EPS was decreased, the viscosity of solution 308 

decreased and the protective effect was also weaker. 309 

310 

4. Conclusions311 

The EPS from Cs-HK1 mycelial fermentation has shown notable protective effect on 312 

probiotic bacteria in three practical conditions, cold storage, acidic pH and bile salt. The 313 

protective effect was mainly associated with the physical properties of EPS, namely the high 314 

MW and high liquid viscosity, and was weaker after partial degradation by power ultrasound. 315 

The commercial prebiotics such as inulin and GOS with much lower MW showed little or no 316 

protective effect. Firstly, the viscous EPS surrounding the bacterial cells may slow or block the 317 

access of the stress factors to the bacterial cells. Secondly, the immobilization or attachment of 318 

bacterial cells to the EPS gel matrix is also favorable for the bacterial survival under stress. With 319 

the protective effect on the probiotic bacteria in various conditions plus its high dietary fiber 320 

content and high resistance to gastric acid hydrolysis, EPS is a potential health supplement to be 321 

used separately or in combination with probiotic bacteria for improving gut microbiota. 322 
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Table 1 Physical properties of EPS and EPS-US 454 

Intrinsic viscosity (dL/g) Solubility (g/L) Average particle size (nm) 

EPS 6.03 ± 0.98 8.83 ± 0.76 17.28 ± 4.93 

EPS-US 4.65 ± 0.72 20.08 ± 0.63 9.85 ± 2.53 
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Table 2 Reduction (%) of bifidobacterial death rate during cold storage and in simulated gastric 457 

acid with EPS and other carbohydrate fibres (all at 5 g/L in the culture medium). 458 

Bacterial species GOS Inulin EPS EPS-US 

Cold storage (4°C, 28 days) 

B. adolescentis (CICC 6070) 0.7 25.3 49.9 48.3 

B. infantis (CICC 6069) 0.4 -1.3 65.8 47.6 

B. infantis (R33) 35.4 34.6 71.8 72.6 

Simulated gastric acid 

B. adolescentis (CICC 6070) 33.6 26.5 68.0 50.3 

B. infantis (CICC 6069) 36.9 -5.5 49.3 40.3 

B. infantis (R33) 30.8 6.7 70.8 70.0 
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Table 3 Accumulation of H2O2 (µmol/mL) by bifidobacteria after cold storage at 4 oC. 461 

Bacterial strains Control GOS inulin EPS EPS-US 

B. adolescentis 0.47 ± 0.14 0.55 ± 0.12 0.27 ± 0.12 0.14 ± 0.03* 0.23 ± 0.10 

B. infantis (R33) 0.74 ± 0.08 0.59 ± 0.16 0.44 ± 0.11 0.36 ± 0.07* 0.52 ± 0.06* 

B. infantis (CICC6069) 0.19 ± 0.16 0.16 ± 0.14 0.14 ± 0.04* 0.16 ± 0.08 0.15 ± 0.09

*: significant at p ˂ 0.05 by t-test 462 
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Table 4 Reduction (%) of bifidobacterial death rate during cold storage and in simulated gastric 464 

acid with different concentrations of EPS in the culture medium. 465 

Bacterial species EPS-1 EPS-3 EPS-5 

Cold storage (4°C, 28 days) 

B. adolescentis (CICC 6070) 24.8 23.4 49.0 

B. infantis (CICC 6069) 54.2 55.1 67.3 

B. infantis (R33) 50.5 72.2 72.4 

Simulated gastric acid 

B. adolescentis (CICC 6070) 4.4 76.2 80.9 

B. infantis (CICC 6069) -1.6 32.5 39.2 

B. infantis (R33) 16.5 30.6 55.3 

Note: EPS-1, EPS-3 and EPS-5 for EPS added to the culture medium at 1, 3, and 5 g/L, 466 

respectively. 467 
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Table 5 Survival rate (%) of bacterial strains after 3 h incubation in bile juice with EPS and other 469 

carbohydrate fibers (all at 5 g/L or specified concentrations in culture). 470 

B. adolescentis

(CICC 6070) 

B. infantis

(CICC6069) 

B. infantis

(R33) 

Control ˂ 0.001 ˂ 0.010 ˂ 0.010 

GOS ˂ 0.001 ˂ 0.010 ˂ 0.010 

Inulin ˂ 0.001 ˂ 0.010 ˂ 0.010 

EPS 0.063 ± 0.030 0.67 ± 0.20 0.97 ± 0.18 

EPS-US ˂ 0.001 ˂ 0.010 ˂ 0.010 

EPS at different concentrations (EPS-1,-3,-5: EPS at 1, 3, 5 g/L). 

Control ˂ 0.001 ˂ 0.010 ˂ 0.010 

EPS-1 ˂ 0.001 ˂ 0.010 ˂ 0.010 

EPS-3 ˂ 0.001 ˂ 0.010 0.47 ± 0.11 

EPS-5 0.055 ± 0.020 0.84 ± 0.17 1.01 ± 0.28 
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<Figure captions> 473 

Fig. 1. Physical properties of EPS and EPS-US. 474 

Fig. 2. Hydrolysis of EPS and EPS-US (to reducing sugar) in simulated gastric acid (37 oC). 475 

Fig. 3. Viability of bifidobacteria with EPS and other carbohydrate fibers (5 g/L) during cold 476 

storage at 4oC for 28 d. 477 

Fig. 4. Viability change of bifidobacteria maintained in liquid culture medium (RCM broth) at 478 

37oC and 200 rpm over long period. 479 

Fig. 5. CFU of Bifidobacteria in simulated gastric acid with different polysaccharide solution (5 480 

g/L) during 3 h incubation. 481 

Fig. 6. SEM image of B. adolescentis trapped by different polysaccharides. 482 
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