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Abstract. Understanding the properties of charge dynamics is crucial to many practical appli-
cations, such as electrochemical energy devices and transmembrane ion channels. This work proposes
a Maxwell--Amp\`ere Nernst--Planck (MANP) framework for the description of charge dynamics. The
MANP model with a curl-free condition on the electric displacement is shown to be energy dissi-
pative with respect to a convex free-energy functional, and demonstrated to be equivalent to the
Poisson--Nernst--Planck model. By the energy dissipation law, the steady state of the MANP model
reproduces the charge conserving Poisson--Boltzmann (PB) theory, providing an alternative energy
stable approach to study the PB theory. In order to achieve the curl-free condition, a companion
local curl-free relaxation algorithm, which is shown to naturally preserve the discrete Gauss's law
and converge robustly with linear computational complexity, is developed for the MANP model.
One of the main advantages of our development is that it can efficiently deal with space-dependent
permittivity instead of solving the variable-coefficient Poisson's equation. Many-body effects such as
ionic steric effects and Coulomb correlations can be incorporated within the MANP framework to
derive modified MANP models for problems in which the mean-field approximation fails. Numerical
results on the charge dynamics with such beyond mean-field effects in inhomogeneous dielectric en-
vironments are presented to demonstrate the performance of the MANP models in the description
of charge dynamics, illustrating that the proposed MANP model provides a general framework for
modeling charge dynamics.

Key words. Maxwell--Amp\`ere Nernst--Planck equations, beyond mean field, energy dissipation,
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1. Introduction. Charge dynamics plays a fundamental role in various real-
world applications, e.g., electrochemical devices [3], semiconductors [35], microfluidics
[41], and biological ion channels [11]. At the continuum level, charge dynamics is of-
ten explored by the well-known Poisson--Nernst--Planck (PNP) theory. Based on the
mean-field approximation, the classical PNP theory treats ions as point charges, takes
the screening effect of background medium into account as a continuum of certain
dielectric coefficients, and neglects direct ion--ion interaction details, with ions inter-
acting only through the mean electrostatic potential. With such approximations, the
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 375

Nernst--Planck equations are used to describe the diffusion and convection of ions un-
der the gradient of the electric potential which in turn is governed by the Poisson equa-
tion with charge sources arising from mobile ions and permanent charges in the system.

Despite its great success in various applications, the PNP theory fails in cases,
e.g., concentrated ionic solutions of high valences, where the mean-field approxima-
tions break down [2, 27]. To address these issues, ionic steric effects and Coulomb
correlations are often incorporated in the framework of PNP theory. For instance,
ionic steric effects can be included based on the lattice gas theory, by considering
the entropy of solvent [5, 19, 22, 23, 28]. Hard-sphere interactions between ions can
be modeled by the Lennard--Jones potential energy, which gives rise to a nonlocal
modified PNP model [17]. To get a computationally tractable model, the nonlocal
Lennard--Jones integrals are further approximated to obtain a type of local modified
PNP models [16, 25]. The ionic steric effects can also be described by the fundamen-
tal measure density functional theory [18, 38, 45], which gives rise to a complicated
model with modified nonlocal PNP equations. To account for Coulomb correlation
effects, the self energy of ions governed by the generalized Debye--H\"uckel equation is
taken into account in a modified PNP theory [27]. Such a theory further with ionic
steric effects described by the fundamental measure density functional theory is able
to accurately reproduce molecular simulation results on ionic distributions next to
charged surfaces with dielectric mismatches [27, 31].

It is of interest to observe that the electric potential appears in the PNP equations
in the form of its gradient, i.e., the electric field. This inspires us to use ionic concen-
trations and the electric field, rather than the electric potential, to describe the charge
dynamics. The replacement of the Poisson equation by the Maxwell--Amp\`ere equation
and further coupling with the Nernst--Planck equation to describe charge dynamics
have been first proposed in a series of works [12, 15] by Eisenberg and his collabora-
tors. Also, it has been shown that the formulation based on concentrations and the
electric field has several advantages [1, 40, 46]. For instance, the free-energy functional
of a charged system is convex with respect to ionic concentrations [33]. The convex-
ity is a valuable feature in the design of numerical methods for finding the steady
state of a charged system via minimization [1, 33, 37]. In this work, we propose a
Maxwell--Amp\`ere Nernst--Planck (MANP) model in which the ionic concentrations
and electric displacement, i.e., dielectric coefficient times the electric field, are the
unknown variables. In order to overcome the drawbacks due to the mean-field approx-
imations, ionic steric effects and Coulomb correlations are taken into account in the
framework of the MANP model. We present modified MANP models with excess ener-
gies to account for steric effects, e.g., described by lattice-gas theories [5], and Coulomb
correlations modeled by dielectric self energy of ions and ion--ion correlations [27].

It is also derived that the MANP model is energy dissipative with respect to a
convex free-energy functional. By the energy dissipation law, the steady state of the
MANP model reproduces the charge conserving PB theory [20, 21, 43]. Therefore, our
MANP model provides an alternative energy-stable approach to study the charge con-
serving PB theory analytically and numerically. The electric displacement obtained
from the discretized Maxwell--Amp\`ere equation is updated with a local relaxation
procedure to achieve the curl-free property. It is shown that the local curl-free relax-
ation algorithm is guaranteed to converge and is of linear computational complexity.
Such a local relaxation idea was first proposed in [32, 34] to devise a local molecular
simulation algorithm for the long-range Coulomb interactions. It is later coupled with
the Maxwell equations to obtain the Maxwell equation molecular dynamics (MEMD)
for dynamics simulations [36, 39, 40]. The algorithm has also been extended to deal
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376 Z. QIAO, Z. XU, Q. YIN, AND S. ZHOU

with inhomogeneous dielectrics [13, 14] and solve the PB equations [1] as well as the
PB equations with steric effects [46].

The advantage of the MANP formulation is that it is a local formulation and
avoids solving the Poisson's equation for which the dielectric coefficient could be inho-
mogeneous in cases of practical interests. In each time step, the electric displacement
can be explicitly updated by the discretized Maxwell--Amp\`ere equation with the up-
dated ionic concentrations. Explicit formula for each local relaxation step is available
in the local curl-free relaxation algorithm. Also, numerical tests demonstrate that the
number of relaxation steps in the local relaxation algorithm is small and bounded.
Therefore, the update algorithm for the electric displacement in each time step is of
linear computational complexity. As aforementioned, the MANP model can efficiently
deal with space-dependent permittivity instead of solving the variable-coefficient Pois-
son equation. In addition, due to the local nature of the algorithm for the electric
displacement, the MANP model and corresponding numerical methods can be further
extended to the efficient coarse-grained simulations of charge dynamics with fluctua-
tions [8]. It also has great potential to apply the MANP model to other areas such as
the particle-in-cell simulation of plasma [7, 9]. For example, a Vlasov--Amp\`ere model,
rather an earlier Vlasov--Poisson model, has been applied to particle-in-cell simula-
tions of plasma [7]. In contrast to the one-dimensional simulations performed in the
work [7], our MANP model with the local curl-free relaxation algorithm is promising
to deal with high-dimensional cases.

The rest of this paper is organized as follows. In section 2, we derive the MANP
model. In section 3, we present some properties and advantages of the MANP model.
Section 4 presents numerical methods for the MANP model and some results. The
paper ends with some conclusions in section 5.

2. Model. This section begins with an overview of the PNP equations, then
advances to a reformulated model, namely, the MANP equations, and finally shows
the equivalence of the two models. In spite of the mathematical equivalence, we
remark that the MANP framework has its advantages in the incorporation of many-
body effects and the design of numerical schemes.

2.1. PNP equations. Consider an electrolyte solution of M ionic species oc-
cupying a bounded and connected domain \Omega with periodic boundary conditions. Let
c\ell (\bfitr , t) be the ionic concentration for the \ell th species (\ell = 1, . . . ,M) at time t, and
\phi (\bfitr , t) be the electric potential. The electrostatic free energy of the system is given by

(2.1) F [c1, . . . , cM ] =

\int 
\Omega 

\Biggl[ 
\varepsilon 0\varepsilon r| \nabla \phi | 2

2
+ kBT

M\sum 
\ell =1

c\ell 
\bigl( 
log(\Lambda 3c\ell ) - 1

\bigr) \Biggr] 
d\bfitr ,

where \varepsilon 0 is the vacuum permittivity, \varepsilon r is the relative permittivity that can be
spatially dependent, kBT is the thermal energy, and \Lambda is the thermal de Broglie
wavelength. The electrostatic free energy F consists of the electric field energy and
entropic contribution of ions. Here, the electric potential \phi is determined by the
ionic concentrations through the Poisson equation

(2.2)  - \nabla \cdot \varepsilon 0\varepsilon r\nabla \phi = \rho ,

where \rho =
\sum M

\ell =1 z
\ell ec\ell + \rho f is the total charge density, z\ell is the valence, and

\rho f (\bfitr ) : \Omega \rightarrow \BbbR is a given function representing the distribution of fixed charges. Ion
transport in the system is described by the conservation law

(2.3)
\partial c\ell 

\partial t
= - \nabla \cdot \bfitJ \ell ,
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 377

where the ionic flux \bfitJ \ell is given by

\bfitJ \ell = - \gamma \ell c\ell 

kBT
\nabla \mu \ell ,

and \gamma \ell > 0 is the diffusion coefficient. The chemical potential is given by the variation
of the free energy, \mu \ell = \delta F/\delta c\ell , which is

(2.4) \mu \ell = z\ell e\phi + kBT log(\Lambda 3c\ell ).

It follows from periodic boundary conditions that the total ionic mass of each species
conserves in the domain

d

dt

\int 
\Omega 

c\ell d\bfitr = 0.

Therefore, we have
\int 
\Omega 
c\ell (\bfitr , t)d\bfitr =

\int 
\Omega 
c\ell (\bfitr ,0)d\bfitr = N \ell , where N \ell is the total ionic

mass of \ell th ionic species. Coupling (2.3) with the Poisson equation (2.2) leads to the
widely known PNP equations

(2.5)

\left\{   
\partial c\ell 

\partial t
=\nabla \cdot \gamma \ell 

\biggl( 
\nabla c\ell + z\ell ec\ell 

kBT
\nabla \phi 
\biggr) 
, \ell = 1, . . . ,M,

 - \nabla \cdot \varepsilon 0\varepsilon r\nabla \phi = \rho .

We introduce characteristic concentration c0, diffusion constant \gamma 0, and lengths
L and lc = [\varepsilon 0kBT/(e

2c0)]
1/2. Define \~\bfitr = \bfitr /L, \~t= t\gamma 0/(lcL), \~\nabla = L\nabla , \~\rho f = \rho f/(ec0),

\~\gamma = lc\gamma 
l/(L\gamma 0), \varepsilon = \varepsilon rl

2
c/L

2, \~\Lambda 3 = \Lambda 3c0 \~c\ell = c\ell /c0, \~\phi = e\phi /(kBT ), \~N \ell = N \ell /(L3c0),
and \~F = F/(kBTc0L

3). After rescaling, we have the nondimensionalized PNP equa-
tions

(2.6)

\left\{         
\partial \~c\ell 

\partial \~t
= \~\nabla \cdot \~\gamma \ell 

\Bigl( 
\~\nabla \~c\ell + z\ell \~c\ell \~\nabla \~\phi 

\Bigr) 
, \ell = 1, . . . ,M,

 - \~\nabla \cdot \varepsilon \~\nabla \~\phi =

M\sum 
\ell 

z\ell \~c\ell + \~\rho f ,

and the electrostatic free energy

(2.7) \~F [\~c1, . . . , \~cM ] =

\int 
\~\Omega 

\Biggl[ 
\varepsilon | \~\nabla \~\phi | 2

2
+

M\sum 
\ell =1

\~c\ell log \~c\ell 

\Biggr] 
d\~\bfitr + (log \~\Lambda 3  - 1)

M\sum 
\ell =1

\~N \ell ,

with the second equation in (2.6) as the constraint. The last term in (2.7) is a
constant that will be ignored for simplicity. Also, we will drop all the tildes and use
the dimensionless equations for our discussion in the rest of the paper.

2.2. MANP equations. In the PNP equations, charge dynamics of the system
is described by the ionic concentrations and electric potential. Based on an observation
that the electric potential appears in the PNP equations in the form of its gradient, we
can alternatively work on ionic concentrations and the electric displacement \bfitD = \varepsilon \bfitE 
instead, where \bfitE = - \nabla \phi is the electric field. The charge continuity equation reads

(2.8)
\partial \rho 

\partial t
+\nabla \cdot \bfitj = 0,
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378 Z. QIAO, Z. XU, Q. YIN, AND S. ZHOU

where the current density of charge is

(2.9) \bfitj = - 
M\sum 
\ell =1

z\ell \gamma \ell c\ell \nabla \mu \ell .

It follows from the Gauss law \nabla \cdot \bfitD = \rho that

(2.10) \nabla \cdot 
\biggl( 
\partial \bfitD 

\partial t
+ \bfitj 

\biggr) 
= 0.

Such a derivation, combining the charge continuity equation and the Poisson equation,
was first presented in [15]. It then leads to the Maxwell--Amp\`ere equation

(2.11)
\partial \bfitD 

\partial t
+ \bfitj =\Theta ,

where \Theta satisfies the Coulomb gauge condition \nabla \cdot \Theta = 0. Also, it is introduced
as a degree of freedom to enforce \nabla \times (\bfitD /\varepsilon ) = 0, which implies the existence of the
electric potential satisfying the Poisson equation in a connected spatial domain. With
the electric displacement \bfitD , the charge dynamics can be described by the MANP
equations

(2.12)

\left\{                       

\partial c\ell 

\partial t
=\nabla \cdot \gamma \ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 

\biggr) 
, \ell = 1, . . . ,M,

\partial \bfitD 

\partial t
=

M\sum 
\ell =1

z\ell \gamma \ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 

\biggr) 
+\Theta ,

\nabla \cdot \Theta = 0,

\nabla \times \bfitD 

\varepsilon 
= 0,

with certain initial concentrations c\ell (\bfitr ,0) and electric displacement \bfitD (\bfitr ,0).
It is not difficult to show that the PNP equations are equivalent to the MANP

equations (2.12). Taking divergence of both sides of the Maxwell--Amp\`ere equation,
we obtain

(2.13) \nabla \cdot 
\biggl( 
\partial \bfitD 

\partial t

\biggr) 
=

M\sum 
\ell =1

z\ell 
\partial c\ell 

\partial t
.

Integrating it with respect to time results in the Gauss law

(2.14) \nabla \cdot \bfitD =

M\sum 
\ell =1

z\ell c\ell + a(\bfitr ),

where a(\bfitr ) is a time-independent function. From the curl-free equation in (2.12),
there exists a scalar function \phi such that \bfitD /\varepsilon = - \nabla \phi , which can be combined with
the Gauss law to recover the Poisson equation

 - \nabla \cdot (\varepsilon \nabla \phi ) =
M\sum 
\ell =1

z\ell c\ell + a(\bfitr ).
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 379

If the initial electric displacement is prescribed by \bfitD (\bfitr ,0) = - \varepsilon \nabla \phi (\bfitr ,0) with \phi (\bfitr ,0)
determined by

 - \nabla \cdot [\varepsilon \nabla \phi (\bfitr ,0)] =
M\sum 
\ell =1

z\ell c\ell (\bfitr ,0) + \rho f ,

then we can identify a(\bfitr ) = \rho f (\bfitr ) as the distribution function of permanent charges.
The Nernst--Planck equations can be readily recovered with \bfitD = - \varepsilon \nabla \phi .

3. Properties of the MANP formulation.

3.1. Energy dissipation. It follows from (2.7) that the electrostatic free energy
can also be expressed as

(3.1) \scrF [c1, . . . , cM ] =

\int 
\Omega 

\Biggl( 
| \bfitD | 2

2\varepsilon 
+

M\sum 
\ell =1

c\ell log c\ell 

\Biggr) 
d\bfitr , with \nabla \cdot \bfitD =

M\sum 
\ell =1

z\ell c\ell + \rho f .

Obviously, \scrF [c1, . . . , cM ] is a convex energy functional and the proposed MANP model
can be shown to be energy dissipative.

Theorem 3.1. The MANP equations (2.12) satisfy the energy dissipation law

(3.2)
d\scrF [c1, . . . , cM ]

dt
= - \omega \leq 0,

where the energy dissipation functional

(3.3) \omega =

M\sum 
\ell =1

\int 
\Omega 

\gamma \ell c\ell 

\varepsilon 2
\bigm| \bigm| \varepsilon \nabla log c\ell  - z\ell \bfitD 

\bigm| \bigm| 2 d\bfitr .
Proof. Taking derivative of \scrF with respect to time, we have

d\scrF 
dt

=

\int 
\Omega 

\Biggl[ 
\bfitD 

\varepsilon 
\cdot \partial \bfitD 
\partial t

+

M\sum 
\ell =1

\partial c\ell 

\partial t

\bigl( 
log c\ell + 1

\bigr) \Biggr] 
d\bfitr .

It follows from the MANP equations (2.12) that

d\scrF 
dt

=

\int 
\Omega 

\Biggl[ 
\bfitD 

\varepsilon 
\cdot (\Theta  - \bfitj ) +

M\sum 
\ell =1

\nabla \cdot \gamma \ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 

\biggr) \bigl( 
log c\ell + 1

\bigr) \Biggr] 
d\bfitr 

=

\int 
\Omega 

\Biggl[ 
M\sum 
\ell =1

z\ell \gamma \ell \bfitD 

\varepsilon 
\cdot 
\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 

\biggr) 
 - 

M\sum 
\ell =1

\gamma \ell 

c\ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 

\biggr) 
\cdot \nabla c\ell 

\Biggr] 
d\bfitr 

= - 
M\sum 
\ell =1

\int 
\Omega 

\gamma \ell 

\varepsilon 2c\ell 
\bigm| \bigm| \varepsilon \nabla c\ell  - z\ell c\ell \bfitD 

\bigm| \bigm| 2 d\bfitr 
= - \omega \leq 0,

where we have used the integration by parts, periodic boundary conditions, and the
equality

\int 
\Omega 
(\bfitD /\varepsilon ) \cdot \Theta d\bfitr = 0. The latter equality can be shown by the facts that

\nabla \times (\bfitD /\varepsilon ) = 0, \nabla \cdot \Theta = 0, and periodic boundary conditions.

Remark 3.1. When nonperiodic boundary conditions are considered, the energy
evolution of the MANP formulation becomes

d\scrF 
dt

= - \omega +

\int 
\partial \Omega 

\Biggl( 
\phi 
\partial \sigma 

\partial t
+

M\sum 
\ell =1

\gamma \ell c\ell \mu \ell \partial \mu 
\ell 

\partial \bfitn 

\Biggr) 
dS,
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380 Z. QIAO, Z. XU, Q. YIN, AND S. ZHOU

where \bfitn denotes the unit exterior normal at the boundary and \sigma = - \bfitD \cdot \bfitn represents
the surface charge density at the boundary. Again, one can obtain energy dissipation
d\scrF /dt \leq 0, if zero normal ionic flux boundary conditions are imposed for a closed
system and time-independent surface charge density is prescribed as a boundary con-
dition for the electric displacement.

With such an energy dissipative law, it is desirable to design numerical methods
that are able to preserve energy dissipation at discrete level. Structure-preserving
numerical methods for the MANP model will be studied in future works.

3.2. Steady state. The convex free energy \scrF [c1, . . . , cM ] can be shown to be
bounded below by using the inequality x logx \geq  - 1/e. Therefore, the existence of a
steady state of the MANP equations can be established by the energy dissipation law;
cf. Theorem 3.1. It follows from (3.2), (3.3), (2.12), and (2.14) that the steady state
is characterized by equations

(3.4)

\left\{             

\varepsilon \nabla c\ell  - z\ell c\ell \bfitD = 0,

\nabla \cdot \bfitD =

M\sum 
\ell =1

z\ell c\ell + \rho f ,

\nabla \times \bfitD 

\varepsilon 
= 0.

Such a system is equivalent to the well-known PB equation. Indeed, from the curl-free
condition we have that the electrostatic potential satisfies \bfitD /\varepsilon =  - \nabla \phi . By the first
equation in (3.4), we obtain the Boltzmann distributions

c\ell = c\ell Ne - z\ell \phi ,

where c\ell N =N \ell /
\int 
\Omega 
e - z\ell \phi d\bfitr is a normalization constant determined by the total ionic

mass N \ell . Substituting the expressions of \bfitD and c\ell into the second equation of system
(3.4), we obtain the charge conserving PB (ccPB) equation [20, 21, 43]

(3.5)  - \nabla \cdot (\varepsilon \nabla \phi ) =
M\sum 
\ell =1

z\ell N \ell \int 
\Omega 
e - zl\phi d\bfitr 

e - zl\phi + \rho f .

Note that, if an open system is connected to a bulk ionic solution reservoir, the
normalization constant can be determined with the bulk ionic concentrations c\ell ,\infty ,
leading to the classical Boltzmann distributions c\ell = c\ell ,\infty e - z\ell \phi . Then, we can obtain
the classical PB equation.

As the governing equation for the steady state, the ccPB equation can be solved
from a variational perspective. The convex structure plays a crucial role in the design
of efficient numerical methods for finding steady states via minimization [1, 37]. In lit-
erature, the energy functional of the electrostatic potential is known to be nonconvex
[6]. In order to have a minimizing principle, rather a stationary principle, the Legendre
transform was used to formulate a local, convex dual functional [33]. Our MANP for-
mulation provides a promising approach to investigate the steady state. Energy dissi-
pating numerical schemes that allow large time step sizes can be used to find the steady
state robustly and efficiently, especially for the system with conserved total ionic mass.

3.3. Beyond mean field. In mean-field approximations, ions are treated as
point charges without direct ion--ion interactions, e.g., steric interactions of short range
and Coulombic correlations of long range. Therefore, the MANP theory proposed
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 381

above does not work well for concentrated ionic solutions of high valences, where the
mean-field approximations break down. To overcome the defects, ionic steric effects
and Coulomb correlations can be included within our MANP framework. Consider a
free-energy functional

(3.6) \scrF [c1, . . . , cM ] =

\int 
\Omega 

\Biggl( 
| \bfitD | 2

2\varepsilon 
+

M\sum 
\ell =1

c\ell log c\ell 

\Biggr) 
d\bfitr +\scrF st +\scrF co,

where \scrF st describes the excess free energy due to steric effects of finite-size ions and
\scrF co represents the excess Coulomb interaction energy. Such two excess energies lead
to the corresponding excess chemical potentials defined by

\mu \ell ,st =
\delta F st

\delta c\ell 
and \mu \ell ,co =

\delta F co

\delta c\ell 
.

There are several models to describe the excess energy due to steric effects in
literature. One popular model is based on the statistical mechanics of ions and solvent
molecules on a cubic lattice of spacing in the continuum limit [2]. In such a model,
the entropy of solvent molecules, in addition to the entropy of ions, accounts for the
excess chemical potential [4, 5, 24, 28]

\mu \ell ,st = - v\ell 
v0

ln (v0c0) ,

where v\ell and v0 are the volume of ions of the \ell th species and solvent molecule,
respectively, and c0 = c0(r, t) is the solvent concentration defined by

c0(r, t) = v - 1
0

\Biggl[ 
1 - 

M\sum 
\ell =1

v\ell c
\ell (r, t)

\Biggr] 
.

Alternatively, the steric effects due to hard-sphere interactions can be described by
the Lennard--Jones potential energy, which gives rise to a nonlocal model [17]. Local
approximations of nonlocal Lennard--Jones integrals can be employed to obtain local
models by Fourier analysis [16, 25]. The excess chemical potential is then given by

(3.7) \mu \ell ,st =

M\sum 
j=1

\omega \ell jcj ,

where (\omega ij)M\times M is a symmetric matrix to represent the cross-interactions between
different species and self-interactions between ions of the same species [10]. Also,
there are other complicated models to describe steric effects, such as the fundamental
measure density functional theory [18, 38, 45].

In addition to ion--ion correlation, the Coulomb correlation includes the dielectric
self energy of ions. The excess chemical potential due to Coulomb correlation is given
by [27, 29, 31, 44]
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382 Z. QIAO, Z. XU, Q. YIN, AND S. ZHOU

(3.8) \mu \ell ,co =
(z\ell )2

2

\biggl[ 
1

4\pi a\ell 

\biggl( 
1

\varepsilon (\bfitr )
 - 1

\biggr) 
+ lim

\bfitr \prime \rightarrow \bfitr 

\biggl( 
G (\bfitr ,\bfitr \prime ) - 1

4\pi \varepsilon (\bfitr )| \bfitr  - \bfitr \prime | 

\biggr) \biggr] 
,

where a\ell is the radius for ions of the \ell th species, and G(\bfitr ,\bfitr \prime ) is the Green function
satisfying the generalized Debye--H\"uckel equation

(3.9)  - \nabla \cdot \varepsilon (\bfitr )\nabla G (\bfitr ,\bfitr \prime ) + 2I(\bfitr , t)G (\bfitr ,\bfitr \prime ) = \delta (\bfitr  - \bfitr \prime ) .

To consider boundary effects, we consider inhomogeneous dielectric permittivity and
the ionic strength profile given by

I(\bfitr , t) =

\left\{     
1

2

M\sum 
\ell =1

(z\ell )2c\ell (\bfitr , t), \bfitr \in \Omega ,

0, \bfitr /\in \Omega .

With the excess contributions from steric effects and Coulomb correlation, our
MANP model becomes

(3.10)

\left\{                       

\partial c\ell 

\partial t
=\nabla \cdot \gamma \ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 
+ c\ell \nabla \mu \ell ,st + c\ell \nabla \mu \ell ,co

\biggr) 
, \ell = 1, . . . ,M,

\partial \bfitD 

\partial t
=

M\sum 
\ell =1

z\ell \gamma \ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 
+ c\ell \nabla \mu \ell ,st + c\ell \nabla \mu \ell ,co

\biggr) 
+\Theta ,

\nabla \cdot \Theta = 0,

\nabla \times \bfitD 

\varepsilon 
= 0.

Remark 3.2. Solving the generalized Debye--H\"uckel equation (3.9) is challenging
due to the high-dimensional Green function G(\bfitr ,\bfitr \prime ). For channel problems which
are often studied in nanodevices, asymptotic solutions by using Wentzel--Kramers--
Brillouin approximation can be employed; see [30, 31] for the recent work. Moreover,
the Coulomb correlation (3.8) only requires the self-Green function. Numerically,
this corresponds to the diagonal of the inverse of the operator matrix and can be
calculated efficiently with linear scaling [42] by coupling the selective inversion with
the hierarchical interpolative factorization.

3.4. Local curl-free relaxation. One advantage of using the MANP model is
featured by a local relaxation algorithm that is Gauss-law satisfying, which can solve
the curl-free constraint in the MANP equations efficiently and robustly. The local
curl-free relaxation algorithm is derived by considering the minimization of a convex
electric field energy

(3.11) \scrF pot[\bfitD ] :=

\int 
\Omega 

| \bfitD | 2

2\varepsilon 
d\bfitr 

with \bfitD subject to the Gauss law. Define the Lagrangian

\scrL [\bfitD , \lambda ] :=

\int 
\Omega 

| \bfitD | 2

2\varepsilon 
d\bfitr  - 

\int 
\Omega 

\lambda (\nabla \cdot \bfitD  - \rho )d\bfitr ,

where \lambda is the Lagrange multiplier. By the Lagrange multiplier method, the minimizer
of the constraint optimization problem satisfies

\bfitD = - \varepsilon \nabla \lambda and \nabla \cdot \bfitD = \rho .
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 383

This implies that the Lagrange multiplier \lambda is the electrostatic potential and
\nabla \times \bfitD /\varepsilon = 0. Therefore, in order to achieve the curl-free condition, one can de-
sign an algorithm that can decrease the electric field energy most in each update step
for \bfitD .

Another perspective is based on the general solution to the Gauss law: \bfitD /\varepsilon =
 - \nabla \phi +\nabla \times \bfitQ , where \bfitQ is the rotational degrees of freedom. As such,

\scrF pot[\bfitD ] =

\int 
\Omega 

\varepsilon 

2

\Bigl[ 
(\nabla \phi )2 + (\nabla \times \bfitQ )

2
\Bigr] 
d\bfitr .

Thus, the minimization corresponds to the elimination of the rotational degrees of
freedom in \bfitD , which is dominated by a torque [34].

Specifically, we consider spatial discretization in a rectangular domain \Omega =
[0,L1]\times [0,L2] with periodic boundary conditions. The domain is covered by a uni-
form grid with the grid spacing \Delta x and \Delta y in the two coordinate directions. Denote
by \Delta \Omega =\Delta x\Delta y the area of a unit cell. Let Nx and Ny be the number of grid points
along each dimension. Let \bfitD = (Dx,Dy). In particular, c\ell i,j stands for the numerical
approximation of c\ell on the grid point (i\Delta x, j\Delta y), and Di+1/2,j stands for the numer-
ical approximation of Dx on the grid point ((i+ 1/2)\Delta x, j\Delta y) for i = 1, . . . ,Nx and
j = 1, . . . ,Ny. Analogously, Di,j+1/2 stands for the numerical approximation of Dy

on the grid point (i\Delta x, (j + 1/2)\Delta y).
With central differencing, the electric field energy in the optimization problem

(3.11) is approximated with second-order accuracy by

(3.12) \scrF h
pot =

\Delta \Omega 

2

\sum 
i,j

\Biggl( 
D2

i+ 1
2 ,j

\varepsilon i+ 1
2 ,j

+
D2

i,j+ 1
2

\varepsilon i,j+ 1
2

\Biggr) 
,

and the Gauss law is approximated by

(3.13) (\nabla \cdot )h\bfitD i,j :=
Di+ 1

2 ,j
 - Di - 1

2 ,j

\Delta x
+

Di,j+ 1
2
 - Di,j - 1

2

\Delta y
=
\sum 
\ell 

z\ell c\ell i,j + \rho fi,j .

Our relaxation starts from the solution to the discrete Maxwell--Amp\`ere equation.
Successive local updates of the electric displacements in each cell are proposed to
minimize \scrF h

pot [34]; see a schematic diagram shown in Figure 3.1. For instance,
consider a grid cell which has four nodes with indices (i, j), (i + 1, j), (i, j + 1),
(i+ 1, j + 1), and four respective edges. Denote by Di+1/2,j , Di+1,j+1/2, Di+1/2,j+1,
and Di,j+1/2 the four electric displacement components defined on the four edges.
The arrows on the edges in Figure 3.1 indicate the predefined positive directions. In
the update, a flux \eta that rotates along four edges is introduced in such a way that the
discrete energy \scrF h

pot is locally minimized. Specifically, the updates of displacements
are given by

(3.14)

Di+ 1
2 ,j
\leftarrow Di+ 1

2 ,j
+

\eta 

\Delta y
,

Di+1,j+ 1
2
\leftarrow Di+1,j+ 1

2
+

\eta 

\Delta x
,

Di+ 1
2 ,j+1\leftarrow Di+ 1

2 ,j+1  - 
\eta 

\Delta y
,

Di,j+ 1
2
\leftarrow Di,j+ 1

2
 - \eta 

\Delta x
.

It is remarkable that the Gauss law is still rigorously maintained at all four nodes with
such an update scheme, i.e., the constraint of the discrete Gauss law (3.13) is satisfied
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Di+1
2
,j+1

−

η

∆y

Di,j+1
2

−

η

∆x

Di+1
2
,j +

η

∆y

Di+1,j+1
2

+ η

∆x

(i, j + 1)

(i, j) (i + 1, j)

(i + 1, j + 1)

Fig. 3.1. Update diagram of the electric displacements in a single cell.

for each update. The associated change in the energy after updates in displacements
reads

(3.15)

\delta \scrF h
pot[\eta ] =

\eta 2

2

\Biggl[ 
\Delta x

\Delta y

\Biggl( 
1

\varepsilon i+ 1
2 ,j

+
1

\varepsilon i+ 1
2 ,j+1

\Biggr) 
+

\Delta y

\Delta x

\Biggl( 
1

\varepsilon i,j+ 1
2

+
1

\varepsilon i+1,j+ 1
2

\Biggr) \Biggr] 

+ \eta 

\Biggl[ 
\Delta x

\Biggl( 
Di+ 1

2 ,j

\varepsilon i+ 1
2 ,j

 - 
Di+ 1

2 ,j+1

\varepsilon i+ 1
2 ,j+1

\Biggr) 
+\Delta y

\Biggl( 
Di+1,j+ 1

2

\varepsilon i+1,j+ 1
2

 - 
Di,j+ 1

2

\varepsilon i,j+ 1
2

\Biggr) \Biggr] 
,

which is minimized with

(3.16) \eta = - 
\Delta y(\Delta x)2

\biggl( 
D

i+1
2
,j

\varepsilon 
i+1

2
,j
 - 

D
i+1

2
,j+1

\varepsilon 
i+1

2
,j+1

\biggr) 
+\Delta x(\Delta y)2

\biggl( 
D

i+1,j+1
2

\varepsilon 
i+1,j+1

2

 - 
D

i,j+1
2

\varepsilon 
i,j+1

2

\biggr) 
(\Delta x)2

\biggl( 
1

\varepsilon 
i+1

2
,j
+ 1

\varepsilon 
i+1

2
,j+1

\biggr) 
+ (\Delta y)2

\biggl( 
1

\varepsilon 
i,j+1

2

+ 1
\varepsilon 
i+1,j+1

2

\biggr) .

This gives an optimal flux for the displacement changes in terms of minimizing the
discrete energy. Such a local update loops over all the grid points for certain steps
until a stopping criterion \varepsilon tol is met. Since analytical expressions are available for
each update step, it is clear that the complexity of the algorithm is \scrO (N), where
N =Nx \cdot Ny.

This local curl-free relaxation uses the intrinsic dynamics of the electric field, i.e.,
the propogation of a retarded and diffusive vector field. The equilibrium of the local
curl-free relaxation gives the electrostatic interactions essentially [32]. The whole
relaxation can be regarded as a projection of the electric displacement from the non--
curl-free space to the curl-free space, while maintaining in the Gauss law satisfying
surface at the same time.

Remark 3.3.

(1) The convergence of the local relaxation algorithm with respect to iteration
steps can be proved by the fact that \scrF h

pot is nonnegative and \delta \scrF h
pot(\eta ) \leq 0

when \eta is given by (3.16).
(2) Taking the derivative of the updated electric field energy with respect to flux

\eta gives the torque which drives the circulatory dynamics. It explains why
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 385

the curl-free condition is satisfied when the relaxation converges. In 2D, the
discrete curl of \bfitD /\varepsilon is approximated by

(\nabla \times )h
\Bigl( \bfitD 
\varepsilon 

\Bigr) 
i+ 1

2 ,j+
1
2

=
1

\Delta x

\biggl( 
Di+1,j+ 1

2

\varepsilon i+1,j+ 1
2

 - 
Di,j+ 1

2

\varepsilon i,j+ 1
2

\biggr) 
+

1

\Delta y

\biggl( 
Di+ 1

2 ,j

\varepsilon i+ 1
2 ,j

 - 
Di+ 1

2 ,j+1

\varepsilon i+ 1
2 ,j+1

\biggr) 
.

It follows from (3.15) and (3.16) that \delta \scrF h
pot = 0 is achieved if and only if

\eta = 0, which is in turn equivalent to (\nabla \times )h(\bfitD /\varepsilon )i+1/2,j+1/2 = 0. Therefore,
the curl-free constraint is achieved as the local relaxation algorithm converges.

(3) Starting from \bfitD \ast , the local curl-free relaxation gives rise to the updated
\bfitD n+1 \in \bfitD \ast +\BbbV , where the space \BbbV := \{ \bfitv | (\nabla \cdot )h\bfitv = 0\} .

(4) It is easy to extend this relaxation algorithm to nonuniform grids by consid-
ering the integration of the Gauss law.

(5) In each update step, an explicit expression for \bfitD is available. Numerical tests
in section 4.2 demonstrate that with a good guess for \Theta using an extrapola-
tion, the local curl-free relaxation only takes a few iteration steps. Thus, the
local curl-free relaxation algorithm is expected to have linear complexity.

4. Results. In this section, we shall present the whole numerical method for the
MANP model and simulation results to demonstrate the attractive features of the
model.

4.1. Numerical method. Let \Delta t be the time step size. Denote by c\ell ,n and \bfitD n

the approximations to c\ell and \bfitD , respectively, at time tn := n\Delta t for a nonnegative
integer n. An Euler discretization of the time derivative leads to a semi-implicit
scheme for the Nernst--Planck equations, c\ell ,n+1 = c\ell ,n  - \Delta t\nabla \cdot \bfitJ \ell ,n, with the flux
\bfitJ \ell ,n =  - \gamma \ell (\nabla c\ell ,n+1  - z\ell c\ell ,n+1\bfitD n/\varepsilon ). Similarly, the Maxwell--Amp\`ere equation is
discretized by

(4.1) \bfitD \ast =\bfitD n +\Delta t

\Biggl( 
 - 

M\sum 
\ell =1

z\ell \bfitJ \ell ,n +\Theta n

\Biggr) 
,

where \bfitD \ast is an intermediate approximation to \bfitD n+1. Then, \bfitD \ast is further corrected
to satisfy the curl-free constraint in (2.12). See section 3.4 for the details. Notice that
the numerical scheme (4.1) for the Maxwell--Amp\`ere equation is explicit once c\ell ,n+1 is
obtained. There are several options for \Theta n, as long as it satisfies the divergence-free
condition. In our numerical simulations, we test the performance of the scheme by
comparing results with the following choices:

\Theta n
1 = 0,(4.2)

\Theta n
2 =

\bfitD n  - \bfitD n - 1

\Delta t
+

M\sum 
\ell =1

z\ell \bfitJ \ell ,n - 1,(4.3)

\Theta n
3 =

3

2

\Biggl( 
\bfitD n - \bfitD n - 1

\Delta t
+

M\sum 
\ell =1

z\ell \bfitJ \ell ,n - 1

\Biggr) 
 - 1

2

\Biggl( 
\bfitD n - 1 - \bfitD n - 2

\Delta t
+

M\sum 
\ell =1

z\ell \bfitJ \ell ,n - 2

\Biggr) 
.(4.4)

Notice that an appropriate choice of \Theta n can provide a better approximation \bfitD \ast to
\bfitD n+1 and reduce the relaxation steps needed in the correction from \bfitD \ast to \bfitD n+1.
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386 Z. QIAO, Z. XU, Q. YIN, AND S. ZHOU

Algorithm 1 Numerical method for the MANP equations.
Input: Final time T , stopping criterion \varepsilon tol for the local curl-free relaxation, initial
ionic distributions c\ell ,0, and the corresponding displacement field \bfitD 0 that satisfies
the Gauss law;
1: Solve the Nernst--Planck equations to get c\ell ,n+1, \ell = 1, . . . ,M ;
2: Given a divergence-free \Theta n shown in (4.2)--(4.4), solve the Maxwell--Amp\`ere

equation with the scheme (4.1) to obtain an intermediate displacement field \bfitD \ast ;

3: Perform the local curl-free relaxation on \bfitD \ast to obtain \bfitD n+1.
4: If T \leq tn+1, stops; Otherwise, go to step 1.

The effect of different choices of \Theta n+1 on relaxation steps will be thoroughly studied
in next section. It follows from (4.1) that

\nabla \cdot \bfitD \ast  - \nabla \cdot \bfitD n =
\sum 
\ell 

z\ell (c\ell ,n+1  - c\ell ,n).

Thus, it is straightforward to verify that \bfitD \ast given by (4.1) satisfies the Gauss law,
i.e., \nabla \cdot \bfitD \ast =

\sum 
z\ell c\ell ,n+1 + \rho f , provided that \bfitD n satisfies the Gauss law.

Central differencing and upwinding schemes are employed to discretize the spatial
derivatives. Our numerical method equipped with the curl-free relaxation for the
MANP model is summarized in the following algorithm.

4.2. Effect of \Theta . We study the effect of different choices of \Theta on the local relax-
ation algorithm, and conduct a series of simulations to demonstrate the performance
of our MANP model in the description of charge dynamics.

In simulations, we consider binary electrolytes in a rescaled domain \Omega = ( - 1,1)\times 
( - 1,1) with periodic boundary conditions. The charge dynamics is described by the
MANP equations \left\{                       

\partial c\ell 

\partial t
=\nabla \cdot \gamma \ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 

\biggr) 
, \ell = 1,2,

\partial \bfitD 

\partial t
=

2\sum 
\ell =1

z\ell \gamma \ell 

\biggl( 
\nabla c\ell  - z\ell c\ell \bfitD 

\varepsilon 

\biggr) 
+\Theta ,

\nabla \cdot \Theta = 0,

\nabla \times \bfitD 

\varepsilon 
= 0.

We take the parameters \gamma \ell = 0.01, z1 = 1, and z2 = - 1. The permanent charge in the
system is given by the distribution function

\rho f (x, y) = e
 - 100

\Bigl[ 
(x+ 1

2 )
2
+(y+ 1

2 )
2
\Bigr] 
 - e

 - 100
\Bigl[ 
(x+ 1

2 )
2
+(y - 1

2 )
2
\Bigr] 

 - e
 - 100

\Bigl[ 
(x - 1

2 )
2
+(y+ 1

2 )
2
\Bigr] 
+ e

 - 100
\Bigl[ 
(x - 1

2 )
2
+(y - 1

2 )
2
\Bigr] 
.

We consider a rescaled dielectric coefficient given by

\varepsilon (x, y) =
\varepsilon w  - \varepsilon m

2
[tanh (100d - 25) + 1] + \varepsilon m,
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 387

where \varepsilon w and \varepsilon m are the dielectric constants for solvent and solute, respectively, and

d=

\left\{                                 

\sqrt{} \biggl( 
x - 1

2

\biggr) 2

+

\biggl( 
y - 1

2

\biggr) 2

, 0<x\leq 1,0< y\leq 1,\sqrt{} \biggl( 
x - 1

2

\biggr) 2

+

\biggl( 
y+

1

2

\biggr) 2

, 0<x\leq 1, - 1\leq y\leq 0,\sqrt{} \biggl( 
x+

1

2

\biggr) 2

+

\biggl( 
y - 1

2

\biggr) 2

,  - 1\leq x\leq 0,0< y\leq 1,\sqrt{} \biggl( 
x+

1

2

\biggr) 2

+

\biggl( 
y+

1

2

\biggr) 2

,  - 1\leq x\leq 0, - 1\leq y\leq 0.

The initial concentrations are given by

c\ell (x, y,0) = 0.1, \ell = 1,2,

and the initial electric displacement is given by\bfitD (x, y,0) = - \varepsilon \nabla \phi , where \phi is obtained
by solving the Poisson equation

 - \nabla \cdot (\varepsilon \nabla \phi ) =
2\sum 

\ell =1

z\ell c\ell (x, y,0) + \rho f (x, y).

To understand the effect of different choices of \Theta on the convergence of our local
curl-free relaxation algorithm, we study the number of relaxation steps, denoted by
Rs, that are needed to meet the stopping criterion \varepsilon tol in each time step. Numerical
tests are performed with different choices of \Theta , i.e., \Theta n

1 , \Theta 
n
2 , and \Theta n

3 in (4.2)--(4.4).
From Figure 4.1, one can see that, with a stopping criterion \varepsilon tol = 1E - 7, the

number of relaxation steps Rs behaves significantly differently for different \Theta . For
the trivial choice \Theta n

1 , Rs grows rapidly in the first stage and levels off and oscillates
in the late stage about 10. For \Theta n

3 , it requires less steps, and Rs grows to the same
plateau value as that for \Theta n

1 in the late stage. It is of interest to find that Rs for
\Theta n

2 only takes less than 5 steps in first a few steps and quickly decreases to 1 step.
This can be explained by the fact that the first-order Euler discretization is used in
the numerical method and \Theta n

2 is a first-order extrapolation of \Theta . Overall, the study
on the number of relaxation steps Rs reveals that, a better estimate of the \Theta leads
to \bfitD \ast that is closer to curl free, lowering the relaxation steps in the local relaxation
algorithm. With \Theta n

2 , the relaxation steps can be as low as 1, indicating that the local
relaxation algorithm is of linear computational complexity. It is expected that the
local relaxation algorithm will be more efficient than the standard Poisson solvers for
variable coefficients.

4.3. Charge dynamics. In this section, we perform a series of numerical exper-
iments to study the effects of inhomogeneous dielectrics, ionic sizes, and correlations
on charge dynamics. We use a uniform mesh with Nx = Ny = 200 and a time step
\Delta t= 0.1\Delta x. To understand various effects, we conduct systematic numerical tests on
the following cases:

\bullet Case 1: \varepsilon m = \varepsilon w = 2E - 4;
\bullet Case 2: \varepsilon m = \varepsilon w = 2E - 4 with steric effects;
\bullet Case 3: \varepsilon m = 2E - 4 and \varepsilon w = 1.56E - 2 with Coulomb correlations.
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Fig. 4.1. The number of relaxation steps Rs against time in the local curl-free relaxation
algorithm for different choices of \Theta with a stopping criterion \varepsilon tol = 1E - 7.

\bullet Case 4: \varepsilon m = 2E - 4 and \varepsilon w = 1.56E - 2 with both steric effects and Coulomb
correlations.

Solving the generalized Debye--H\"uckel equation (3.9) numerically is rather challenging
in high dimensions. We here ignore the second term in (3.8) for simplicity when
considering Coulomb correlations.

In Case 1, we consider a spatially uniform dielectric coefficient with \varepsilon m = \varepsilon w =
2E - 4. Figure 4.2 shows the snapshots of the electric displacement | \bfitD | , potential \phi ,
and concentrations at time T = 0.05, T = 0.1, and T = 2. One can see that the
concentration of ions accumulates at the permanent charges of opposite signs due to
the electrostatic attractions. Meanwhile, the magnitude of the electric displacement
first develops ring peaks close to the four permanent charges and later gets screened
quickly by the mobile ions as time evolves. Such results on the evolution of \phi , c1,
and c2 agree well with previously reported results that are calculated with the PNP
equations [26]. To further understand ion dynamics, Figure 4.4(a) displays the evo-
lution snapshots of cation concentrations at a cross section with y =  - 0.5. Clearly,
the cations are attracted by electrostatic interactions to the negative fixed charges.
Also, it is interesting to find that the distribution of cations is radially nonmonotonic
in equilibrium, due to the charge conservation in the system.

In Case 2, we still study a uniform dielectric coefficient but with additional ionic
steric effects. The results are presented in Figures 4.3(b) and 4.4(b). Comparing
with the results of Case 1, one finds that the counterion concentration peaks at fixed
charges lower due to the steric repulsion between ions. With less accumulated ions,
the electric displacement is less screened and therefore its magnitude is much stronger
than Case 1.

To further assess the Coulomb correlation effects, we perform numerical simu-
lations with variable dielectric coefficients and Coulomb correlations, as shown in
Case 3 and 4. In contrast to previous cases, the dielectric coefficient away from
the four permanent charges is 78 times larger, enhancing the local screening ef-
fects, to mimic the big dielectric variation across sharp transition interfaces. The
results are displayed in Figures 4.3(c)--(d) and 4.4(c)--(d). A salient difference be-
tween the plots in upper and lower panels is the emergence of the ring structures in
both electric displacement and concentration distributions across the sharp dielectric
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A MAXWELL--AMP\`ERE NERNST--PLANCK MODEL 389

Fig. 4.2. The snapshots of | \bfitD | , \phi , c1, and c2 at time T = 0.05, T = 0.1, and T = 2 for Case 1.

Fig. 4.3. The snapshots of | \bfitD | and c1 at time T = 0.05, T = 0.1, and T = 2. Panels (a)--(d)
correspond to Case 1--Case 4, respectively. The scales of colorbars are the same as Figure 4.2.
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Fig. 4.4. The snapshots of cation concentrations for Case 1--Case 4 at a cross section with
y= - 0.5.

variations. Further detailed comparisons based on Figure 4.4 reveal that the Coulomb
correlation drives ions to regions with higher dielectric coefficients, forming a marked
depletion ring region. The cation concentration has an abrupt transition at the region
where the dielectric coefficient has a sharp variation. The concentration snapshots
at T = 0.01 and T = 0.02 also demonstrate that the Coulomb correlation comes into
effect earlier than electrostatic interactions in ion dynamics. Moreover, it is observed
from the snapshots that the system relaxes to the steady state faster with the inclusion
of Coulomb correlations. Comparing the plots in left and right panels in Figure 4.4,
one again can observe that the ionic steric effect lowers concentration peaks by ionic
steric repulsions. Overall, the exhibited rich ion dynamics results from the competi-
tion among electrostatic interactions, steric effects, and Coulomb correlations. The
magnitude of the electric displacement is relatively stronger with dielectric inhomo-
geneity. This can be ascribed to the less screening arising from the partly expelled
counterions by the additional steric effects and Coulomb correlations, especially in the
regions where counterions are almost depleted. This accounts for the eminent ring
structures both for the electric displacement and concentration distributions.

To further understand the impact of various effects on ion dynamics, we inves-
tigate the evolution of discrete energies \scrF h for Case 1 to Case 4. Figure 4.5 shows
the discrete energies which are normalized by the difference between the initial and
steady-state energies. From the curves, one can see that the free energy decreases
monotonically, as proved in Theorem 3.1. Also, it is easy to find that the steric effects
have minor impact on the evolution of the free energy. Nonetheless, the Coulomb cor-
relations and dielectric inhomogeneity have significant impact on ion dynamics. Being
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Fig. 4.5. The evolution of normalized discrete energies \scrF h for Case 1 to Case 4.

Table 4.1
The minimum concentration for both cations and anions on the computational grid for the

whole time.

Case 1 Case 2 Case 3 Case 4

1.8139E - 3 9.5848E - 6 2.8764E - 18 1.5079E - 24

consistent with Figure 4.4, the system reaches the steady state much faster with ad-
ditional Coulomb correlations. In addition, we also pay attention to the positivity
of the numerical solutions to ionic concentrations. Table 4.1 lists the minimum ionic
concentration values on the computational grid for the whole time. One can observe
that the numerical concentrations remain positive all the time, and the cases with
Coulomb correlations and dielectric inhomogeneity have extremely small minimum
values due to strong convection caused by the Coulomb correlations and dielectric
inhomogeneity.

5. Conclusions. In this work, we have proposed an MANP framework, based
on the ionic concentrations and electric displacement, for the description of charge
dynamics. It has been shown that the MANP model with a curl-free condition on
the electric displacement is equivalent to the PNP theory. The MANP formulation is
proved to be energy dissipative with respect to a convex energy functional. According
to the energy dissipation law, the steady state of the MANP formulation has been
shown to be the charge conserving PB theory [20, 21, 43]. Thus, the MANP formula-
tion offers an energy stable approach to investigate the PB-type theories analytically
and numerically. To efficiently achieve the curl-free condition, the newly derived
MANP formulation has been equipped with a companion local curl-free relaxation
algorithm. It has been shown that the algorithm naturally preserves the discrete
Gauss law, has robust convergence, and is of linear computational complexity. Our
MANP formulation also provides a versatile modeling framework to derive models for
charge dynamics. Modified MANP models beyond the mean-field theory have been
presented to describe cases in which ionic steric effects and Coulomb correlations are
not negligible. Results on the ion dynamics with steric effects, Coulomb correlations,
and dielectric inhomogeneity have been presented to demonstrate the performance of
the proposed MANP model.

It is expected that, with further refinement on the description of ionic interac-
tion details, the proposed MANP model with the local curl-free relaxation algorithm
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392 Z. QIAO, Z. XU, Q. YIN, AND S. ZHOU

can be extended to the efficient coarse-grained simulations of charge dynamics with
fluctuating permanent charges [8]. Also, the MANP model equipped with the local
curl-free relaxation algorithm exhibits promising potential in practical applications,
especially for the cases involving the variable-coefficient Poisson equation. For in-
stance, a Vlasov--Amp\`ere model, instead of a Vlasov--Poisson model, has been applied
to particle-in-cell simulations of plasma [7]. However, only one-dimensional simula-
tions have been performed in the work. The proposed MANP model with the local
curl-free relaxation algorithm is able to handle high-dimensional cases.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their constructive comments and suggestions, which have helped them greatly
improve this work.
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