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ABSTRACT 15 

As construction is labor intensive, improvement in labor productivity is essential for achieving better project 16 

performance. Activity analysis, a widely adopted approach to improve labor productivity, measures the time spent 17 

on specific activities and can identify the root causes of low productivity. The use of automated action recognition 18 

using machine learning-based classification based on data (e.g., accelerations) collected from wearable sensors, 19 

which addresses the limitations of observation-based activity analysis, has been introduced as an effective means 20 

for monitoring and measuring activities. Despite the potential of acceleration-based action recognition, some 21 

challenges still need to be addressed from a practical perspective. For example, action categories defined in 22 

previous studies tend to be based on either body movements (e.g., walking, lifting, sitting, and standing) or work 23 

contexts (e.g., spreading mortar and laying a concrete block), thereby hindering the comprehensive understanding 24 

of the diverse nature of activities in construction. The approach needs to be further tested by noisy and continuous 25 

acceleration data collected from construction sites to validate its applicability and practicality in actual use. This 26 

research proposes a comprehensive hierarchical activity taxonomy (from Level 1 to Level 3) for acceleration-27 

based action recognition by explicitly categorizing diverse construction activities in accordance with body 28 
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movements and work contexts to address these issues. The proposed taxonomy was tested by using acceleration 29 

data collected from 18 construction workers, including formwork and rebar workers, at two construction sites in 30 

Hong Kong. Different machine-learning algorithms were implemented on the basis of hierarchically defined 31 

construction activities. Testing results indicate a competitive classification performance on Level 1 activities with 32 

98% accuracy on the identification of work and idling. The prediction accuracy of Level 2 classification is also 33 

acceptable, with 90.6% and 86.6% classification accuracy for formwork and rebar work, respectively. Level 3 34 

classification, which reaches an accuracy of 77.1% (formwork) and 74.9% (rebar work), requires further 35 

improvement before it can be applied in the construction field. The results of this study shall provide practical 36 

insights into the application of acceleration-based automated activity analysis for productivity monitoring.  37 
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 41 

1. INTRODUCTION 42 

The construction industry is one of the most labor-intensive industries, and a large portion of construction 43 

tasks still relies on the manual workforce (Ng & Tang, 2010). High dependency on manual workforce has been 44 

recognized as one of the fundamental causes of low productivity in construction (Jarkas, 2010). In practice, 45 

activity analysis, a work sampling method, has been widely used to improve labor productivity by continuously 46 

monitoring and measuring construction activities to eliminate the root causes of low productivity (Gouett et al., 47 

2011). In particular, activity analysis quantifies the time spent on specific types of activities that are categorized 48 

as productive or nonproductive and then identifies any existing barriers to minimize nonproductive activities. 49 

However, current activity measurement mainly relies on time-consuming human observation, which may hinder 50 

the application of activity analysis in practice.  51 

Recently, automated action recognition techniques using machine learning-based classification have 52 

been introduced, and in particular, the use of acceleration-based action recognition has shown its potential to 53 

replace human observers with wearable sensors and algorithms for continuous activity measurement without 54 

interfering with ongoing work (Hwang & Lee, 2017). Diverse construction activities involve specific body 55 

movements of construction workers, and these movements create unique acceleration signals. Acceleration-based 56 

action recognition tries to automatically capture these unique patterns from the signals by using machine learning 57 



algorithms and classify diverse construction activities. As action recognition is performed on the basis of a set of 58 

time-series acceleration data, the classification results can be used to automatically measure the time spent on 59 

specific activities in any construction tasks. Several researchers in construction have examined the reliability and 60 

validity of automated activity recognition by using acceleration data collected in laboratory settings or 61 

construction sites and demonstrated its great potential for activity analysis (Akhavian & Behzadan, 2016; Bangaru 62 

et al., 2021b; Cheng et al., 2013; Joshua & Varghese, 2014; Kwapisz et al., 2011; Sanhudo et al., 2021; Weiss et 63 

al., 2016).  64 

Despite the usefulness of acceleration-based action recognition, a few challenges have been identified 65 

concerning its practical implementation in ongoing construction tasks. As machine learning algorithms deal with 66 

multiclass classification problems, their performance will be affected by how activities are defined. In the 67 

construction domain, the action categories tend to be determined on the basis of representative activities of 68 

construction work that are the most repeatedly performed. However, confusion among different activities 69 

frequently occurs because of the lack of consideration of body movements that will directly affect the pattern of 70 

acceleration signals from body-attached sensors. Considering the nonstandardized nature of field operations, the 71 

action recognition algorithms frequently suffer from noisy actions (e.g., actions that are unclearly predefined and 72 

labeled, or transitional actions). These issues will be more remarkable in acceleration data that are continuously 73 

collected in unstructured settings, such as actual construction sites.  74 

This study proposes an acceleration-based action recognition approach by applying a new hierarchical 75 

work taxonomy that considers movement and work contexts. This taxonomy aims to extract useful information 76 

for activity analysis and reduce classification errors from action recognition algorithms that are based on 77 

acceleration data. A comprehensive and universally applicable work taxonomy for construction tasks is proposed 78 

by considering 1) whether activities will contribute to productivity, and 2) whether activities will involve unique 79 

body movements that can create distinguishable acceleration signals using machine learning algorithms. The 80 

proposed taxonomy is validated by using traditional feature-based machine learning and deep learning algorithms 81 

for acceleration-based action recognition. In particular, acceleration data are collected from 18 construction 82 

workers from two construction sites in an uncontrolled manner by using an inertial measurement unit (IMU) 83 

embedded in a smartwatch (i.e., Apple Watch) during concrete work (e.g., formwork and rebar installation) for 84 

two months. The collected data are labeled in accordance with the proposed work taxonomy to evaluate the 85 

validity of the taxonomy and the classification performance by applying various machine learning algorithms. On 86 

the basis of the action classification results, the usefulness of the proposed work taxonomy and its appropriate 87 



level of detail are discussed. Future research directions to enhance the practicability of automated activity 88 

recognition and activity analysis in a construction workplace are explored. 89 

 90 

2. LITERATURE REVIEW ON AUTOMATED ACTION RECOGNITION FOR ACTIVITY 91 

ANALYSIS IN CONSTRUCTION 92 

Although the definition of activity analysis can vary depending on the field of application, it commonly 93 

refers to a continuous process for improving productivity by workforce assessment through work sampling 94 

techniques and then identifying and eliminating factors that inhibit productivity in construction (CII 2010). 95 

Workforce assessment measures the time spent on specific activities and calculates direct-work rates as an 96 

indicator of productivity (Gouett et al., 2011). Work sampling based on observations is one of the widely used 97 

techniques for workforce assessment. Different types of predefined activities are recorded by an observer using a 98 

data collection form in a given time interval, and the recorded data can be used to calculate the direct-work rate. 99 

However, manual observation has been criticized because of the high cost of hiring observers, the possibility of 100 

interfering with ongoing work during observation, and the potential human errors when recording activities based 101 

on the observer’s judgment (Khosrowpour et al., 2014).  102 

Automated approaches for collecting activity data at construction sites by using sensors, including 1) 103 

location sensor-based, 2) visual sensor-based, and 3) wearable sensor-based approaches, have been proposed to 104 

address these issues (Khosrowpour et al., 2014). All these approaches have demonstrated their feasibility and 105 

applicability for efficiently tracking worker activities, and the wearable sensor-based approach has been 106 

recognized as the suitable method for long-term and comprehensive activity analysis during construction tasks 107 

(Chen et al., 2012; Wang et al., 2019). Location data that can be detected by using various location tracking 108 

sensors (e.g., UWB, RFID, GPS, and Bluetooth beacons) may provide useful information to determine idling or 109 

nonidling work, but they cannot differentiate nonidling work at a fixed position (e.g., hammering while standing). 110 

Vision-based approaches that can classify activities by analyzing consecutive images from a camera may provide 111 

the most accurate and reliable data for activity analysis. However, cameras installed at construction sites can cover 112 

only limited areas of the sites. The identification of that worker of interest from different video streams is required, 113 

a job that is relatively challenging, to continuously monitor a specific worker by using different cameras. Identity 114 

switches may frequently occur when multiple workers are found in the scene. The existence of blind spots is 115 



another problem of the vision-based approaches. Thus, vision-based approaches will be the best for activity 116 

analysis only at a designated area for a relatively short duration while the workers to be monitored will stay within 117 

the camera view. Compared with the two other approaches, the wearable sensor-based approach has comparative 118 

advantages in the continuous monitoring of multiple workers. Wearable sensors are attached to workers to collect 119 

data associated with construction activities, and the identity of diverse workers can be easily recognized. The 120 

body-attached sensor can collect data continuously throughout the construction site, and the collected data can be 121 

stored and transferred for further analysis by connecting it to a smartphone. Recently, small, and lightweight 122 

wearable sensors, such as wristbands and smart helmets, have become available, thereby minimizing discomfort 123 

during ongoing work.  124 

Wearable sensors have drawn much attention and demonstrated their feasibility in acceleration data 125 

collection and action recognition (Akhavian & Behzadan, 2016). Most of commercial-grade wearable devices, 126 

including fitness trackers or smart watches, have an accelerometer or an IMU with an accelerometer, enabling to 127 

collect real-time acceleration signals that represent body movements. Acceleration-based action recognition aims 128 

to classify predefined activities by using machine learning algorithms based on the assumption that each action 129 

will create its own unique acceleration signals that are specific enough to differentiate diverse activities (Bao & 130 

Intille, 2004; Yang et al., 2008). These algorithms have been tested and validated for various applications, such 131 

as daily activities, sports, and construction activities. Joshua and Varghese (2011) used wired accelerometers to 132 

collect acceleration signals from masonry workers’ waists. The classification accuracy for identifying fetching 133 

and spreading mortar, fetching, and laying bricks and filling joints is reported as 80%, showing a great potential 134 

of acceleration-based action recognition for activity analysis. In a study conducted by Joshua and Varghese (2011), 135 

this approach showed relatively good classification performance in identifying effective, contributory, and 136 

ineffective activities of ironworkers and carpenters. Akhavian and Behzadan (2016) used a smartphone to collect 137 

acceleration data on the participant’s upper arm while simulating construction tasks. The machine learning model 138 

that was trained using the experimental data achieves over 90% accuracy in differentiating between idling and 139 

sawing. The classification accuracy for identifying loading, hauling, unloading, and returning ranges from 70% 140 

to 80%. A classification of laying block, adjusting block, removing mortar, and spreading mortar is reported to 141 

reach an overall accuracy of 88% in the masonry tests conducted by workers, who wore a single wristband on 142 

their dominant hand to collect acceleration information.  143 

Despite the potential of acceleration-based action recognition for continuous and automated activity 144 

analysis, some challenges that need to be overcome before it can be put into practice. Previous studies mainly 145 



tested the feasibility of this approach in laboratory settings where participants were asked to conduct certain 146 

instructed activities (Weiss et al., 2016). However, the activities of interest in these studies, unlike tasks in real-147 

life situations, have higher repetitiveness and fewer transition patterns between activities. For the field validation, 148 

Joshua and Varghese (2014) collected acceleration data from construction workers during actual construction 149 

tasks (e.g., ironwork and carpentry) and focused on classifying three categories of activities (i.e., effective, 150 

contributory, and ineffective tasks). Although the testing results showed approximately 90% and 78% accuracy 151 

for ironwork and carpentry, respectively, such results are achieved from a relatively short duration of data 152 

sampling (e.g., 30–40 min). This fact implies the need for further validations using long-term continuous data that 153 

include noisier signals. Previous studies mainly focused on the validation of the accuracy of action recognition 154 

rather than designing a better activity taxonomy that can offer a better understanding of the ongoing construction 155 

activities. In acceleration-based action recognition algorithms, the defining of actions will affect the classification 156 

performance and the utilization of the classification results. As shown in Table 1, acceleration-based action 157 

recognition studies tend to label acceleration signals in accordance with 1) movement-oriented activities, such as 158 

standing, sitting, walking, hammering, and screwing or 2) work context-oriented activities, such as spreading 159 

mortar, fetching and laying bricks, and filling joints for masonry work. The defining of action categories in the 160 

algorithm based on the characteristics of body movements will have an advantage of more accurate classification 161 

of activities because acceleration signals from the activities will create more distinguishable signals. However, 162 

the additional judgment of the types of activities may be needed to derive knowledge for activity analysis when 163 

applying such categories. The use of work context-oriented activities as labels for action recognition can provide 164 

more intuitive knowledge on measuring work expenditures during activity analysis, thereby helping evaluate work 165 

efficiency and expose delay issues. The work context-oriented activity recognition can result in poor classification 166 

performance, especially when the classified activities include similar body movements. From a work context 167 

perspective, activities for formwork include assembling and stripping of formwork, both of which involve 168 

hammering. Thus, acceleration-based action recognition algorithms cannot correctly classify such activities due 169 

to the similar patterns of acceleration signals. The activity taxonomy for action classification needs to be defined 170 

to include movement and work context to achieve high-performance classification results with rich information 171 

on construction activities. 172 

Taxonomy criteria Activity category1  
Classification 

accuracy2 

Data collection 

method3 
Research  

Motion 

Basic task: 

Connecting, covering, 

cutting, digging, 

- Observation 
Everett and Slocum 

(1994) 



finishing, inspecting, 

measuring, placing, 

planning, positioning, 

spraying, spreading 

Motion 

Walking, 

tying rebar guiding 

crane, between 

activities 

- 
Automation 

(camera) 

Buchholz et al. 

(2003) 

Motion 

Loading, pushing, 

unloading, returning, 

idling 

87% to 97% (user-

dependent) and 

62% to 96% (user-

independent) 

Automation 

(smartphone) 

Akhavian and 

Behzadan (2016) 

Context 
Work, material, travel, 

and idle 
- 

Automation 

(location sensor 

and accelerometer) 

Cheng et al. (2013) 

Context 

Direct work, tools and 

materials, instructions 

and drawings, crane 

deliveries, minor 

contributory work, 

travel, idle, 

unexplained, waiting, 

no contact 

- Observation 
Thomas and Daily 

(1983) 

Context 

Effective work, 

essential contributory 

work, ineffective 

work 

90.1% (iron work) 

and 77.7% 

(carpentry)  

Automation (IMU) Joshua (2014) 

Context 

Spreading mortar, 

laying blocks, 

adjusting blocks, 

removing mortar 

88.1% Automation (IMU) (Ryu et al., 2019) 

Motion 

Sitting, lying down, 

walking, walking 

upstairs, walking 

downstairs, stand-to-

sit, sit-to-stand, sit-to-

lie, lie-to-sit, stand-to-

lie, lie-to-stand 

89.6% 
Automation 

(accelerometer) 

Hassan et al. 

(2018) 

Motion 

Jogging, walking, 

upstairs, downstairs, 

sitting, standing 

97.6% 
Automation 

(accelerometer) 
(Ignatov, 2018) 

Motion Run, walk, still 92.7% 
Automation 

(accelerometer) 
(Lee et al., 2017) 

Motion 

Biological Motion 

Library (BML): 

knocking, lifting, 

throwing, walking. 

Multimodal Human 

Action Database 

(MHAD): jumping, 

jumping jacks, 

bending, punching, 

waving (two hands), 

waving (one hand), 

clapping, throwing, 

sit-down/stand-up, sit-

down, stand-up 

99% (BML) and 

99% (MHAD) 

Automation 

(magnetic 

induction sensor) 

(Golestani & 

Moghaddam, 2020) 

Motion and context 
PAMAP2 Dataset: lie, 

sit, stand, walk, run, 
94.5% 

Automation 

(accelerometer) 
(Xu et al., 2019) 



cycle, Nordic walk, 

iron, vacuum clean, 

rope jump, ascend and 

descend stairs, watch 

TV, computer work, 

drive car, fold 

laundry, clean house, 

play soccer 

Motion 

MHEALTH Dataset: 

standing still, sitting 

and relaxing, lying 

down, walking, 

climbing stairs, waist 

bends forward, frontal 

elevation of arms, 

knees bending, 

cycling, jogging, 

running, jump front & 

back 

99.6% 

Automation 

(accelerometer and 

ECG) 

(Gumaei et al., 

2019) 

Motion 

Standing, bending-up, 

bending, bending-

down, squatting-up, 

squatting, squatting-

down, walking, 

twisting, working 

overhead, kneeling-

up, kneeling, 

kneeling-down, and 

using stairs 

94.7% Automation (IMU) (Kim & Cho, 2020) 

Motion 

Adjusting levelling 

jacks, carrying 

crossbars, carrying 

levelling jacks, and 

carrying scaffold 

plank, carrying 

scaffold frame, 

dragging scaffold 

plank, hammering, 

inserting jacks into 

scaffold frame, lifting 

scaffold plank from 

elbow to overhead, 

walking, wrenching, 

climb, downstairs, 

climb with tool bag, 

downstairs with tool 

bag 

93.3% 

Automation 

(accelerometer and 

ECG) 

(Bangaru et al., 

2021a) 

Table 1. Activity taxonomy used in activity recognition research 173 

 174 

3. METHODOLOGY  175 

This research proposes a comprehensive activity taxonomy considering the characteristics of workers’ 176 

movements and the work context that will serve as action labels for acceleration-based recognition algorithms and 177 

investigates the validity of the algorithms in practice by using continuously collected field data. Figure 1 illustrates 178 



the overall research framework. A comprehensive activity taxonomy aiming to effectively measure activities 179 

required for identifying productivity issues while minimizing possible confusion in action classification was 180 

proposed. For field validation, two local construction sites in Hong Kong were recruited, and continuous 181 

acceleration data during construction works (e.g., rebar and formwork) were collected by using an IMU-embedded 182 

smartwatch, and videos were simultaneously recorded by using a chest-mounted portable video camera for 183 

labeling activities. Machine learning-based classification algorithms were applied to the collected acceleration 184 

data for automatically classifying diverse activities that were defined on the basis of the proposed activity 185 

taxonomy. The validity of the proposed activity taxonomy for action recognition and the applicability for 186 

workforce assessment were examined on the basis of the classification performance.  187 



 188 

Figure 1. Research framework 189 

 190 

3.1 Activity taxonomy design 191 



The proposed comprehensive activity taxonomy consists of three hierarchical levels of activities to 192 

effectively extract activity-related information and to better understand the work context performed by a 193 

construction worker (Table 2). The first criterion for categorizing activities is whether the activity is relevant to 194 

the production process, and the activities are classified into “idling” (e.g., standing and sitting) or “work” at Level 195 

1. As an offspring activity category of “work,” activities at Level 2 are defined in accordance with activity-related 196 

movements, depending on whether they involve hand-dominant or whole body-dominant movements. As the 197 

acceleration data are collected from a smartwatch, the signals will be more dominantly affected by hand 198 

movements and less affected by whole-body movements. By classifying Level 2 activities into “traveling” that 199 

involves horizontal whole-body movements and “material installation” that is associated with hand-dominant 200 

activities, the acceleration signals from the two activities can be more distinguishable. Three activity categories 201 

at Level 2 that include “stationary,” “traveling,” and “material installation” can provide information to evaluate 202 

work efficiency of the operations to be monitored. For example, the longer time spent on “material installation” 203 

may indicate that the operation will be more efficient for producing outputs. The activities at Level 3 focus more 204 

on understanding the work context that will help identify productivity inhibitors. For this purpose, “traveling” is 205 

further classified into “transportation” and “transferring materials and tools” at Level 3, and “material installation” 206 

is divided into four subactivities, including “material preparation,” “material connecting,” “material placing,” and 207 

“supplement work.” Detecting the problematic activities that can lead to inefficiency in activities at Level 2 is 208 

possible by further classifying activities at Level 3. However, as the activity categories at Level 3 are based on 209 

general work contexts, they can be applicable to any other construction operations that involve delivering and 210 

installing materials for certain building components. However, some activities, including intermittent or 211 

supportive activities for other activities at Level 3, are unclearly classified on the basis of work contexts. These 212 

activities are included in “supplement work”. Table 2 shows examples of basic tasks that can be included in 213 

activities at Level 3 for rebar work and formwork that are operations to be tested in this study. For example, 214 

“material preparation” that refers to producing components for further operation can include several basic tasks, 215 

such as cutting, bending, and drilling. “Material connecting” is the assembling tasks, including fixing, tiling, 216 

screwing, and knocking, and material placing represents the lifting and adjusting of associated components. 217 

“Supplement work” includes all supportive movements that occur during the installation process. The basic tasks 218 

shown in Error! Reference source not found. can be used for a better categorization of the activity taxonomy in 219 

this study and for precisely recognizing in the labeling procedure. Such segmentation of tasks for activities in 220 

Level 3 will help understand the context of activities but will also increase the uncertainty of an automated activity 221 



classification using a wearable sensor. Specifically, the classification of Level 3 activities is questionable due to 222 

the similarity and dissimilarity of acceleration signals from different activities. For instance, knocking and cutting 223 

movements are the offspring activities of “material installation” that will generate cyclic acceleration data with 224 

repetitive hand movements. Consequently, distinguishing the Level 3 activities for “material installation” solely 225 

by hand movements is difficult because each category of the operation comprises dynamic and complex hand 226 

movements. Transportation and transferring of materials/tools will have different hand movements. The hand will 227 

swing periodically in “transportation” activities (e.g., walking) or sway (e.g., adjusting tool while walking) mildly 228 

(e.g., holding material steady while walking) in material or tool “transferring’ activities.” These facts lead this 229 

research to investigate the activity classification performance with a proposed activity taxonomy (Table 2).  230 

Level 1 

Activity  

Level 2 

Activity 
Level 3 Activity Basic task 

Idling 
Stationary 

(Ineffective)  
Standing/sitting Standing, sitting 

Work 

Traveling 

(Supportive 

work)  

Transportation 

Horizontal, vertical and inclined movement, 

jumping, striding, going upstairs/downstairs, climbing 

up/down a ladder 

Transferring 

materials and 

tools 

Carrying materials in horizontal, vertical and inclined 

movement, carrying materials while going 

upstairs/downstairs and climbing ladders, dynamical wrist 

movement while traveling 

Material 

Installation 

(Effective 

work) 

 

Material 

preparation 

Rebar work: cutting, bending 

Formwork: cutting, measuring, and drawing 

Material 

connecting 

Rebar work: fixing, tying, installing stirrup 

Formwork: screwing, drilling, knocking, removing nails 

Material placing 
Rebar work: placing, adjusting, lifting 

Formwork: Attaching, adjusting, lifting formwork 

Supplement work 
 Lifting materials and tools, squatting, standing up, rotating 

trunk, transition movement 

Table 2. Activity taxonomy 231 

 232 

  233 



3.2 Collecting and preprocessing of data  234 

    235 

Figure 2. Site photos for data collection 236 

 237 

Data collection was performed during formwork and rebar work (Figure 2) to study the validity of the 238 

proposed activity taxonomy and the performance of the acceleration-based activity recognition approach. 239 

Nineteen individual periods were involved in the data collection, and each period lasted a whole workday. A large-240 

scale dataset that included 498 h of videos and 2.8 billion samples of acceleration data was constructed from 18 241 

construction workers. Each participant was equipped with an Apple Watch, which was embedded with a sensor, 242 

in the dominant hand to record cumulatively 3D acceleration data through a self-developed WatchOS app. The 243 

frequency of data collection was set to 100 Hz, indicating that the wearable sensor recorded 100 acceleration data 244 

sets for each second. A chest-mounted GoPro camera was used to record their hand movements simultaneously 245 

for data labeling. The videos were recorded in 30 FPS, allowing the ground truth of activity information to be 246 

captured and stored in a stable and durable manner. The data collections were conducted for two sessions per day 247 

(i.e., morning session and afternoon session), and each session lasted 2 h or so. The equipment was taken off 248 

during the lunch break because the device needed to be calibrated again before starting the afternoon session. The 249 

collected acceleration signals were labeled for each data point based on the researchers’ observation on video 250 

recordings. Each video frame was labeled by using one of the activities defined at each level of the proposed 251 

activity taxonomy based on the observer’s judgement. Corresponding acceleration signals were labeled by 252 

comparing time information for each data point. In some video scenes, workers’ hand activities were unclearly 253 

captured. In this case, the activities were determined on the basis of the observations of overall sequences of 254 

activities. However, one of the challenges for data labeling is to judge the boundary of consecutive activities. The 255 

boundary was determined on the basis of the starting time of the following activity for consistent labeling. If there 256 



are significant transitions between two consecutive activities, then these transitional activities were labeled as 257 

“supplement work” considering their work contexts. Unqualified data, such as collected under poor light 258 

conditions and data recorded during the break in the restroom, were excluded from further processing to avoid 259 

possible confusion caused by bad judgment on ongoing activity. 260 

 261 

3.3 Machine learning-based activity recognition  262 

Traditional machine learning and deep learning algorithms were applied to test the applicability of the 263 

proposed activity taxonomy. A sliding window technique was applied when segmenting labeled acceleration 264 

signals into patterns of equal size because any human activities should last for a particular duration (Banos et al., 265 

2014)(Banos et al., 2014). The length of the window was determined by considering the nature of construction 266 

activity. On the basis of the experience of previous research (Ryu et al., 2019), this study tested multiple window 267 

lengths (i.e., 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5, and 4.0 s) and determined the optimal window length in accordance 268 

with the classification accuracy. The activity labels of each segmented data were determined on the basis of the 269 

majority voting rule when data points with multiple activity labels were found within the window (Ballabio et al., 270 

2019).  271 

For classifiers of different activities, this study investigated traditional feature-based machine learning 272 

and deep learning approaches for performance comparison. As traditional machine learning classifieds, we 273 

selected three classifiers that had been widely applied for activity recognition, namely, 1) ensemble bagged trees 274 

(Dietterich, 2000), 2) support vector machine (Hsu & Lin, 2002), and 3) k-nearest neighbor (Sutton, 2012). The 275 

Classification Learner app in MATLAB (2019a, MathWorks) was utilized to train and test the models for 276 

identifing the best-performing classifier and corresponding hyperparameters, aiming to validate the feasibility of 277 

the proposed taxonomy. Typical features applied in the activity recognition were time-domain features and 278 

frequency-domain features (Preece et al., 2009). Time-domain features interpret the statistical characteristics of 279 

motion signals, including but not limited to the mean, maximum, median, and variance of the signals (Figo et al., 280 

2010). Specifically, this study used eight time-domain features that consist of mean value, minimum value, 281 

maximum value, range, standard deviation, kurtosis, correlation, and skewness of acceleration signals in X, Y, 282 

and Z axis. Two frequency-domain features, energy and entropy, were used to capture the acceleration streams in 283 

terms of frequency, which evaluate action complexity in acceleration-based activity analysis (Ryu et al., 2019). 284 

Fast Fourier transform was applied to extract frequency-domain features from raw signals (Preece et al., 2009). 285 



This study tested deep learning algorithms that had the comparative benefits of eliminating the need for hand-286 

crafted features and can save time and effort in the selection and optimization of features and the reduction of 287 

human bias (Krizhevsky et al., 2012). This study implemented a bidirectional long short-term memory (BiLSTM), 288 

one of the deep learning algorithms known to provide reliable classification performance for acceleration-based 289 

action recognition (Yang et al., 2020). The designed architecture is shown in Figure 3. 290 

 291 

Figure 3. Architecture of the deep learning algorithm 292 

Two types of cross-validation techniques were applied to evaluate the performance of classifiers for each 293 

level of activities: 1) leave-one-out cross-validation (LOOCV) and 2) leave-one-subject-out cross-validation 294 

(LOSOCV). For leave-one-out cross-validation, the whole data set was randomly separated into five exclusive 295 

subsets of equal sizes. Each subset was utilized as testing data for each trial of validation, and the remaining 296 

datasets were used for training the machine learning models. The average prediction accuracy of the five validation 297 

tests was regarded as the classification performance of the designed algorithm, indicating the overall accuracy of 298 

the trained model (Refaeilzadeh et al., 2009). To investigate subject-to-subject variation, we conducted the 299 

LOSOCV, which selects one worker’s data as testing data once a time and the data from other workers for training 300 

the models (Berrar, 2019). The classification models were trained and tested by using different levels of activity 301 

data (Levels 1, 2, and 3) to examine whether the classification results at each level will be accurate and reliable 302 

for understanding productivity issues during construction operations. The action classification results at each level 303 

of the work taxonomy are presented by using the confusion matrices, where each row represents actual classes, 304 

and each column corresponds to predicted classes (Mantyjarvi et al., 2001). In the confusion matrix, recall 305 

quantifies the fraction of positive observations that are correctly predicted, and precision calculates the ratios of 306 

correct predictions that are actually positive (Davis & Goadrich, 2006). 307 

In addition to randomly selecting the training and testing data, this study tested the algorithms with 308 

continuous data. In particular, the continuous pattern of acceleration data was used for training models, and the 309 

trained model was evaluated with strictly continuous acceleration signals. As continuous acceleration signals 310 

reflect real construction tasks better than randomly selected data, the prediction results are supposed to show more 311 



realistic action recognition performance in practice. Postprocessing techniques were applied to benefit from this 312 

additional information of continuous data (Gil-Martín et al., 2020). On the basis of our preliminary examination 313 

of the results, some errors were frequently observed in the middle of ongoing work for a specific activity, and the 314 

misclassified data were relatively short, lasting only for 1 or 2 s. Considering the context of the construction 315 

activities, this intermittent class found in the classification results will be likely an error. Thus, if the predicted 316 

class of the activity 1) lasts less than the unit length of sliding window and 2) the class is observed in the middle 317 

of other continuously lasting activities, then this intermittent class was regarded as a misclassified class, and the 318 

class was modified as adjacent classes. After the postprocessing procedure, the study then calculated how much 319 

time was spent on each activity, which can potentially help evaluate the productivity of each worker. 320 

 321 

4. RESULT  322 

4.1 Accuracy of the trained models 323 

 Window size is a crucial parameter for accelerometer-based activity recognition. This study investigated 324 

the window size through pretesting, and the optimal window size was decided as 1.5 s after multiple tests. Among 325 

the various machine learning algorithms we used, a bagged-tree ensemble model showed the best classification 326 

performance at the pretesting. Table 3 shows the overall accuracy of classification results for three levels of 327 

activities according to 1) classifiers (i.e., traditional machine learning and deep learning algorithms), 2) validation 328 

methods (i.e., LOOCV and LOSOCV)  and 3) data sampling (i.e., discrete data and continuous data). According 329 

to the results from LOOCV, Level 1 classification shows have excellent performance over 90% of accuracy while 330 

the deep learning model (i.e., BiLSTM) shows slightly better accuracy than the machine learning model (i.e., 331 

Ensemble Bagged Trees).  At Level 2, the classification results from LOOCV range from 80%~90%, and again 332 

the deep learning model showed better accuracy especially for formwork. At Level 3, the deep learning model 333 

showed significantly higher classification performance than the traditional machine learning, indicating the use 334 

of the deep learning algorithms would be recommended to classify complex construction activities. However, the 335 

overall accuracy at Level 3 was about 77.0% and 74.9% for formwork and rebar work respectively even when 336 

using the deep learning model. When testing the classifiers using continuous data (i.e., LOOCV with continuous 337 

data) or LOSOCV, the overall accuracy tends to significantly drop, compared with the results from LOOCV. This 338 



may indicate that significant variations may exist in the collected data according to the time when the data 339 

collected and the subjects.  340 

 341 

Work division Formwork Rebar work 

Testing data selection 

 

LOOCV 

with 

discrete 

data 

LOOCV 

with 

continuous 

data 

LOSOCV 

 

LOOCV 

with 

discrete 

data 

LOOCV 

with 

continuous 

data 

LOSOCV 

Prediction 

Accuracy 

Machine 

Learning 

(Ensemble 

Bagged 

Trees) 

Level 1 

activity 
96.2% 95.3% 93.7% 95.7% 96.1% 93.5% 

Level 2 

activity 
83.8% 81.2% 78.5% 79.5% 74.6% 76.6% 

Level 3 

activity 
61.3% 50.3% 42.9% 57.1% 45.3% 44.7% 

Deep 

Learning 

(BiLSTM) 

Level 1 

activity 
98.7% 98.9% 94.7% 98.6% 98.3% 97.2% 

Level 2 

activity 
90.6% 81.6% 77.8% 86.6% 79.3% 77.2% 

Level 3 

activity 
77.1% 55.7% 49.0% 74.9% 57.7% 55.6% 

*LOOCV: leave-one-out cross-validation, LOSOCV: leave-one-subject-out cross-validation 342 

Table 3. Overview of prediction accuracy 343 

Based on the results from LOOCV with discrete data, the confusion matrices of all formwork and rebar 344 

work activities, the predicted category, actual category, precision, recall, and F1 score of each activity are 345 

presented in Error! Reference source not found. and Table 5. As shown in the Level 2 confusion matrix, the 346 

majority of incorrect predictions of traveling are reported as coming from rebar installation or form installation. 347 

For instance, Level 2 classification in Error! Reference source not found. shows that 82.6% of the predictions 348 

are form installation but such results actually belong to traveling. The prediction errors (98.0%) of form 349 

installation are misclassification between form installation and traveling. Given such consequences, the most 350 

significant errors are caused by confusion between traveling and rebar or form installation at Level 2 activities. In 351 

the Level 3 confusion matrices, the fractions of activity that are misclassified as supplement work are 73.4%, 352 

80.5%, 82.6%, 76.5%, and 83.7% in the negative predictions of form placing, form connecting, form preparation, 353 

transferring materials and tools, and transportation, respectively. As shown in Table 5, the same issue is also 354 



observed in the activity recognition for rebar work. In this regard, supplement work at Level 3 activities is the 355 

most dynamic activity that caused considerable confusion with traveling-related activities and other material 356 

installation activities. Such facts might imply that the confusion between form or rebar installation and traveling 357 

at Level 2 is mainly due to the confusion between supplement work and traveling-related activities at Level 3.  358 

Level 1 Activity Predicted category W I Recall (%) 

True category 
W 25894 380 98.6 

I 1183 12759 91.5 

 Precision (%) 95.6 97.1  

 F1 Score 1.0 0.9  

* W: Work, I: Idling 359 

Level 2 Activity Predicted category W_FI W_TR I_SS Recall (%) 

True category 

W_FI 19889 545 459 95.2 

W_TR 4431   845 89 15.8 

I_SS 995 16 12947 92.8 

 Precision (%) 78.6 60.1 95.9  

 F1 Score 0.9 0.3 0.9  

* W_FI: Form installation, W_TR: Traveling, I_SS: Stand/sit 360 

Level 

3 

Activit

y 

Predicted 

category 

W_FI_S

P 

W_FI_P

L 

W_FI_C

T 

W_FI_P

A 

W_TR_

MT 

W_TR_

SP 

I_SS_S

T 

Recal

l (%) 

True 

catego

ry 

W_FI_SP 7863 2 529 738 36 468 372 78.6 

W_FI_PL 643 13 73 100 2 16 42 1.5 

W_FI_C

T 

2818 1 1557 374 8 121 180 30.8 

W_FI_P

A 

3039 2 277 1005 9 118 234 21.5 

W_TR_

MT 

1256 0 73 110 82 131 72 4.8 

W_TR_S

P 

2338 1 149 196 1 4 834 109 22.9 

I_SS_ST 477 0 58 126 5 25 13283 95.1 

Precision 

(%) 

42.3 68.4 57.0 37.6 52.6 48.0 92.9   

 F1 Score 0.6 0.0 0.4 0.3 0.1 0.3 0.9  

* W_FI_SP: Supplement work, W_FI_PL: Form placing, W_FI_CT: Form connecting, W_FI_PA: Form preparation, W_TR_MT: 361 

Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 362 

Table 4. Confusion matrix of formwork activity classification 363 

 364 



Level 1 Activity Predicted category W I Recall (%) 

True category 

W 25001 301 98.8 

I 812 9622 92.2 

Precision (%) 96.9 97.0  

 F1 Score 1.0 1.0  
* W: Work, I: Idling 365 
 366 
 367 

Level 2 Activity Predicted category W_RI W_TR I_SS Recall (%) 

True category 

W_RI 16568 1200 303 91.7 

W_TR 4911 2212 104 30.6 

I_SS 682 42 9714 93.1 

 Precision (%) 74.8 64.0 96.0  

 F1 Score 0.8 0.4 1.0  

* W_RI: Rebar installation, W_TR: Traveling, I_SS: Stand/sit 368 
 369 
 370 

Level 3 

Activity 

Predicted 

category 

W_RI

_SP 

W_RI_P

L 

W_RI_C

T 

W_RI_P

A 

W_TR_

MT 

W_TR_

SP 

I_SS_S

T 

Reca

ll 

(%) 

True 

categor

y 

W_RI_SP 1498 73 362 26 3 434 103 59.9 

W_RI_PL 414 240 211 14 1 169 46 21.9 

W_RI_CT 665 86 688 22 0 236 69 39.0. 

W_RI_PA 307 39 148 92 0 172 52 11.4 

W_TR_M

T 
73 5 13 3 21 98 3 9.7 

W_TR_S

P 
696 43 205 17 2 1188 56 53.8 

I_SS_ST 135 13 39 9 0 53 3059 92.5 

Precision 

(%) 
39.5 48.1 41.3 50.0 77.8 50.6 90.3  

 F1 Score 0.5 0.3 0.4 0.2 0.2 0.5 0.9  

* W_RI_SP: Supplement work, W_RI_PL: Rebar placing, W_RI_CT: Rebar connecting, W_RI_PA: Rebar preparation, W_TR_MT: 371 
Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 372 

Table 5. Confusion matrix of rebar work activity classification 373 

4.2 Activity time estimation  374 

The activity time estimation was performed to further examine the applicability of the action recognition 375 

approach for more detailed activity analysis in the construction field. For the performance measurement, the 376 

duration of each activity was first calculated on the basis of the recorded video data. The average duration of 377 

formwork was 2.8 h, and the average length of a rebar work was 1.9 h. This study cumulated the prediction results 378 

to measure the time spent on each activity category. With the estimated duration of each activity and the ground 379 

truth, the performance of activity time estimation was calculated. As shown in Table 6, the average estimation 380 



accuracies of Level 1 activities are 99.5% and 99.4% for formwork and rebar work, respectively. The trained 381 

models can determine the working time of formwork and rebar work with accuracies of 96.6% and 92.0%, 382 

respectively. The estimation accuracies of Level 3 activities are 65.2% and 74.4%. Such results imply the 383 

feasibility of monitoring the progress of each activity by utilizing wearable data from the construction 384 

environment. In particular, the proposed time estimation method contributes to the precise distinguishing between 385 

effective and ineffective work, and such facts offer an opportunity of implementing countermeasures to the 386 

activity in question.  387 

Work division Sample # 
 Time (hour) 

Accuracy (%) 
Work Idling 

Formwork 

1 
Ground truth 1.9 0.9 

99.2 

Estimation 1.9 0.9 

2 
Ground truth 1.9 0.9 

99.8 

Estimation 1.9 0.9 

3 
Ground truth 1.9 0.9 

99.6 

Estimation 1.9 0.9 

4 
Ground truth 1.9 0.9 

99.9 

Estimation 1.9 0.9 

5 
Ground truth 1.7 1.1 

98.7 

Estimation 1.7 1.1 

Average 99.5 

Rebar work 

1 
Ground truth 1.1 0.9 

99.3 

Estimation 1.1 0.9 

2 
Ground truth 1.1 0.9 

99.7 

Estimation 1.1 0.9 

3 
Ground truth 1.1 0.8 

99.3 

Estimation 1.1 0.9 

4 
Ground truth 1.1 0.8 

99.0 

Estimation 1.1 0.8 

5 
Ground truth 1.1 0.8 

99.8 

Estimation 1.1 0.8 

Average 99.4 



Table 6. Spending time estimation of Level 1 activity 388 

 389 

Work division Sample # 
 Time (hour) Accuracy 

(%) W_MI* W_TR I_SS 

Formwork 

1 
Ground truth 1.5 0.4 0.9 

97.2 

Estimation 1.5 0.4 0.9 

2 
Ground truth 1.5 0.4 0.9 

97.4 

Estimation 1.5 0.4 0.9 

3 
Ground truth 1.5 0.4 0.9 

93.1 

Estimation 1.5 0.3 0.9 

4 
Ground truth 1.4 0.4 0.9 

99.0 

Estimation 1.4 0.4 0.9 

5 
Ground truth 1.3 0.4 1.1 

96.5 

Estimation 1.4 0.3 1.1 

Average 96.6 

Rebar work 

1 
Ground truth 0.7 0.4 0.9 

96.8 

Estimation 0.7 0.3 0.9 

2 
Ground truth 0.7 0.4 0.9 

95.2 

Estimation 0.7 0.3 0.9 

3 
Ground truth 0.7 0.4 0.8 

96.2 

Estimation 0.8 0.3 0.8 

4 
Ground truth 0.7 0.4 0.8 

89.2 

Estimation 0.8 0.3 0.8 

5 
Ground truth 0.7 0.4 0.8 

82.6 

Estimation 0.9 0.3 0.8 

  Average 92.0 

 390 
* W_MI: Material (formwork and rebar) installation, W_TR: Traveling, I_SS: Stand/sit 391 

Table 7. Spending time estimation of Level 2 activity 392 

 393 

Work 

division 
Sample # 

Time (hour) 
Accurac

y (%) 
W_FI

_SP* 

W_FI_

PL 

W_FI_

CT 

W_FI_

PA 

W_TR_

MT 

W_TR

_SP 

I_SS_

ST 

Form 

work 
1 

Ground 

truth 
0.6 0.0 0.4 0.5 0.2 0.2 0.9 

59.3 

Estimation 1.0 0.0 0.3 0.2 0.1 0.3 0.9 



2 

Ground 

truth 
0.6 0.0 0.4 0.5 0.2 0.2 0.9 

67.0 

Estimation 0.9 0.0 0.4 0.2 0.1 0.3 0.9 

3 

Ground 

truth 
0.6 0.0 0.4 0.5 0.2 0.2 0.9 

61.0 

Estimation 0.9 0.0 0.3 0.2 0.1 0.3 0.9 

4 

Ground 

truth 
0.6 0.1 0.4 0.4 0.2 0.2 0.9 

67.8 

Estimation 0.7 0.0 0.3 0.3 0.1 0.4 1.0 

5 

Ground 

truth 
0.0 0.5 0.0 0.2 0.5 0.1 0.3 

70.4 

Estimation 0.0 0.7 0.1 0.4 0.2 0.1 0.3 

Average 65.2 

Rebar 

work 

Sample # 
W_RI

_SP** 

W_RI_

PL 

W_RI_

CT 

W_RI_

PA 

W_TR_

MT 

W_TR

_SP 

I_SS_

ST 

Accurac

y (%) 

1 

Ground 

truth 
0.2 0.1 0.2 0.2 0.0 0.4 0.9 

84.6 

Estimation 0.2 0.0 0.2 0.2 0.0 0.4 0.9 

2 

Ground 

truth 
0.2 0.1 0.2 0.2 0.0 0.4 0.9 

91.4 

Estimation 0.2 0.1 0.2 0.2 0.0 0.3 0.9 

3 

Ground 

truth 
0.2 0.2 0.2 0.2 0.0 0.4 0.8 

66.2 

Estimation 0.0 0.4 0.1 0.2 0.0 0.0 0.4 

4 

Ground 

truth 
0.2 0.2 0.2 0.2 0.0 0.4 0.8 

68.2 

Estimation 0.0 0.3 0.1 0.3 0.0 0.0 0.4 

5 

Ground 

truth 
0.2 0.2 0.2 0.2 0.0 0.4 0.8 

61.8 

Estimation 0.0 0.4 0.2 0.3 0.0 0.0 0.3 

Average 74.4 
* W_FI_SP: Supplement work, W_FI_PL: Form placing, W_FI_CT: Form connecting, W_FI_PA: Form preparation, W_TR_MT: 394 
Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 395 
** W_RI_SP: Supplement work, W_RI_PL: Rebar placing, W_RI_CT: Rebar connecting, W_RI_PA: Rebar preparation, W_TR_MT: 396 
Transferring materials and tools, W_TR_SP: Transportation, I_SS_ST: Standing/Sitting 397 

Table 8. Spending time estimation of Level 3 activity 398 

5. DISCUSSION 399 

5.1 Feasibility of acceleration-based activity recognition in the construction field 400 

Previous research showed the potential of acceleration-based activity recognition to recognize diverse 401 

construction activities. However, the applicability of field activity detection has not been validated in terms of 1) 402 

the reliability of activity recognition in field conditions and 2) the defining of construction activities. The activity 403 

recognition algorithms in previous studies have been tested with discrete or independent data that ignore the noise 404 

and sequence characteristics of continuous acceleration signals collected from construction job sites. Construction 405 

activities in previous research are categorized on the basis of single standards, such as the nature of movement or 406 

contribution of tasks. Therefore, the derived classification results have limitations on providing information for 407 

measuring the efficiency of construction workers or for finding low productivity areas in the construction field 408 



concerned. We propose a new taxonomy to address these issues with consideration of movement and work context 409 

and subsequently validate it by using extensive field data.  410 

The understanding of the exclusive characteristics of different human activities is challenging due to the 411 

complex nature of human activities, which can induce classification confusion. Therefore, defining activities with 412 

a clear and comprehensive understanding of their nature is necessary for developing useful activity taxonomy 413 

(Bulling et al., 2014). Previous attempts in activity definition have primarily oriented toward a single principle 414 

(e.g., nature of the movement or contribution of work), and classifications of construction activities based on such 415 

principle have been validated in many previous studies. (Akhavian & Behzadan, 2016; Joshua & Varghese, 2014; 416 

Ryu et al., 2019; Weiss et al., 2016). Although movement-based activity taxonomy has a high classification 417 

accuracy, it still has several limitations when dealing with practical problems. First, depending on the context, 418 

similar movements can be delivered from different activities. In this case, the classification algorithms will perform 419 

poorly, especially when the activities being classified have largely similar characteristics of movements. Second, 420 

a movement-based activity taxonomy (e.g., lifting, sitting, and walking) cannot deliver sufficient information to 421 

solve practical problems, such as the identifying of low productivity operations in the field.  422 

To overcome these issues, several studies have introduced a context-based activity taxonomy that 423 

categorizes construction activities based on their contributions to the project (Forde & Buchholz, 2004; Hallowell 424 

& Gambatese, 2009; Joshua & Varghese, 2014) for evaluating productivity in a rough manner. However, most 425 

construction activities consist of diverse tasks (e.g., effective work of an ironworker includes fetching, adjusting, 426 

and tying rebar). Previous context-based activity taxonomies are insufficient to reveal the root causes of low 427 

productivity due to the lack of detailed information about ongoing activities. In an attempt to solve such problems, 428 

this study considered movement- and context-based taxonomy when defining an activity. Theoretically, 429 

acceleration signals collected from the dominant hand are regarded as an integrated response of whole-body 430 

movements and hand movements (Ryu et al., 2019). Therefore, a different combination of body and hand 431 

movement is an intuitive standard for identifying activities that share a distinct acceleration response. However, 432 

activities that have similar movements (e.g., lifting material from the ground, squatting, and standing up) are 433 

difficult to be accurately identified in accordance with the movement-based system. The context standard was 434 

introduced to enrich the textural information of activity and to extend the classification categories. In this regard, 435 

the capability of activity recognition for identifying low productivity issues is enhanced. 436 



The construction activities are formatted as a three-level taxonomy with a hierarchical structure (Error! 437 

Reference source not found.), which allows classifying specific activities by zooming in or out the action level 438 

and identifying the optimal classification level by trading off between performance (i.e., accuracy) and outcomes 439 

(i.e., information extracted from the results) (Blanke & Schiele, 2010; Krishnan et al., 2013). On the basis of the 440 

result shown in *LOOCV: leave-one-out cross-validation, LOSOCV: leave-one-subject-out cross-validation 441 

Table 3, the neural network algorithms can train more powerful classifiers. The classification accuracy at 442 

Level 1 (i.e., “idling” and “work”) shows over 90% accuracy because “idling” involves mostly no movement on 443 

hands, which can be easily distinguished from “work,” which involves significant arm and body movements, and 444 

has substantial changes in acceleration signals. At Level 2, we further divide “work” into two subcategories, 1) 445 

traveling, and 2) installing tasks considering that they have different work contexts (e.g., traveling is a supportive 446 

activity, and installing material is a value-added task) and body movements (e.g., “traveling” involves abundant 447 

body movements and few cyclic movements from hands, and “installing” involves abundant hand movements and 448 

few body movements). The classification accuracy at Level 2 is over 80%, and the algorithm can differentiate 449 

between horizontal whole-body movements (e.g., “traveling”) and hand-dominant activities (e.g., “material 450 

installation”). In accordance with the confusion matrix at this level (Error! Reference source not found. and 451 

Table 5), the most significant errors result from the confusion between “traveling” and “material installation” 452 

because “material installation” frequently involves a temporal allocation (e.g., moving 1–2 m to pick up materials), 453 

which has a large similarity with “traveling” (e.g., moving to another work zone). The accuracy of Level 3 activity 454 

classification is lower than that of Level 1 and Level 2, showing 50%–60% accuracy because more detailed work 455 

contexts were contained. The classification results show that the significant confusion within the offspring 456 

categories of Level 2 activity, “material installation” occurs. This finding may indicate that the proposed algorithm 457 

cannot recognize the considerable interclass variability in Level 3 activities due to the similar nature of body and 458 

hand movements for these activities. As the types of activities at Level 3 were more frequently changed during the 459 

operation, the acceleration signals may include the noise data from transition patterns between activities. However, 460 

in terms of measuring spending time for Level 3 activities, the accuracy increased up to approximately 75% (Table 461 

8), showing the potential for being used to understand the productivity issues during construction operations. 462 

The classification results at Level 2 are accurate, allowing to identify productivity issues by providing 463 

meaningful information, such as the time expenditure of workers. For instance, two continuous patterns of 464 

acceleration data were sampled from two form workers who were at the same site and worked simultaneously. The 465 



activity percentage values were calculated on the basis of the spending time estimation method in Section 4.2, and 466 

the percentages were plotted in a time series domain, as shown in Figure 4. In particular, the activity percentages 467 

of the two form workers were calculated on the basis of 10 min. The productivity of form worker No. 2 was higher 468 

in the selected 100 min because his effective work rate remained at a relatively high level without any huge drop 469 

by comparing Figure 4 (a) and Figure 4 (b). The cause of the low productivity issues can be exposed. Taking form 470 

worker No.1 in Figure 4 (a) as an instance, the effective work rate dropped during the time from 30 min to 40 min, 471 

and the ineffective rate increased extremely at the same period. This finding indicates that the increasing proportion 472 

of ineffective work is the cause of the low productivity issue in the selected period. The root cause of low 473 

productivity issue of form worker No. 2 from 50 min to 60 min can be recognized as the increasing percentage of 474 

supportive work by using the same method. Considering the ineffective work is not dominant and the effective 475 

work rate remains at 40%, the worker was on short travel between two installation trades. 476 

  477 

            a. Form worker No.1     b. Form worker No.2 478 

Figure 4. Time series line plot illustrating activity percentage in every 10 min 479 

 480 

5.2 Remaining challenges to enhance the classification performance 481 

Although the classification result at Level 2 activity can distinguish low productivity issues, it is insufficient 482 

to expose the root cause. In this regard, the Level 3 activity is necessary for finding the cause of the delay. However, 483 

the current performance of Level 3 activity classification does not satisfy the demand in the construction field 484 

because recognizing a sequence of activities from an uncontrolled environment (i.e., construction field) is 485 

challenging. In addition to the human variability, several remaining challenges exist, and they are 1) difficulty in 486 



handling the transition effect between activities, 2) inaccurate segmentation of time-series movement data, and 3) 487 

information loss during the machine learning process. The first challenge deals with the transition moment in 488 

continuous human activities (Minnen et al., 2006). In Figure 5 (a), sequence A refers to a real activity stream, 489 

which indicates that a transition pattern (i.e., pattern from t1 to t3) shall exist between two explicit activities (e.g., 490 

traveling and lifting) considering that human activity changes gradually. However, such transition has been 491 

disregarded in this study because 1) the duration of the transition activities is relatively short compared with other 492 

activities that are explicitly defined in the taxonomy in Error! Reference source not found. (Lara & Labrador, 493 

2012); 2) the temporal boundaries of transitions are difficult to determine by human observation because the 494 

transition activity and its neighboring activities share similar movements as recorded in videos. A sample of a 495 

labeled sequence (i.e., sequence B) can be found in Figure 5 (a), which shows that activity 1 lasts from t1 to t2, and 496 

the following activity (i.e., activity 2) lasts from t2 to t4. A comparison between the real sequence (i.e., sequence 497 

A) and the recognized sequence (i.e., sequence B) shows that the two transition patterns (i.e., activity from t1 to t2 498 

and activity from t2 to t3) are mistakenly recognized as activity 1 and activity 2, respectively. Considering the 499 

transition effect is widespread in the continuous activity patterns, the massive mislabeling of the activity category 500 

induces significant errors when training the dataset and the ground truth. Thus, the misclassification rate is 501 

considerably high, and the classification system is unacceptable for field productivity evaluation.  502 

One of the alternatives is to regard “transition” as an extra activity to address this issue (Zhang et al., 2010). In 503 

previous research, Rednic et al. (2013) used a transition filter to improve the classification accuracy and stability. 504 

On the basis of the assumption that more recent posture has a higher correlation with the actual posture, the 505 

weighted-voting methods can filter out unreasonable postural vibrates located in the high-frequency domain. The 506 

filtering process is validated as useful for increasing the certainty of the transition boundaries. However, the 507 

improvement in accuracy is limited. Rather than setting clear-cut boundaries, some researchers (Abonyi et al., 508 

2005) introduced the idea of fuzzy clustering (i.e., data points can belong to more than one cluster) that helps to 509 

determine the fuzzy boundaries of time-series data (e.g., the continuous acceleration data). Fuzzy segmentation 510 

(i.e., setting fuzzy boundaries for the activity pattern) is then adopted in the activity recognition to overcome the 511 

transition effect (Zhang et al., 2014). The researchers defined the fuzzy boundaries with Gaussian membership and 512 

a time variable, and translated the segmenting issue into an optimizing problem. The bias caused by the transition 513 

effect can be restricted by solving the optimization problem. In future research, we will apply the proposed 514 

approaches and test the feasibility of reducing transition effect in continuous field data. 515 



In the classification of human activities, continuous sensor data are segmented into sequences for the 516 

feature extraction process. However, the setting of data windows of activities without introducing any classification 517 

errors is still a challenging task (Bao & Intille, 2004). A sliding window technique for data segmentation was 518 

primarily applied, investigated, and validated in previous research (Bulling et al., 2014). Similar to previous studies, 519 

we used a sliding window technique with fixed window size. As shown in Figure 5 (b), the acceleration data 520 

collected during construction activities (i.e., activities from T0 to T5) are segmented into three windows (i.e., 521 

independent activity pattern). Specifically, window 1 lasts from T0 to T2, window 2 lasts from T1 to T3, and 522 

window 3 lasts from T2 to T4. The durations of the windows (i.e., T0 to T2, T1 to T3, T2 to T4) are constant, and 523 

the overlapping between two consequent windows is set to 50%. However, the use of the fixed-size sliding window 524 

can induce considerable misclassification due to two causes of errors (Gu et al., 2009). The duration of the different 525 

activity categories is diverse due to the different natures of human movement. The spending time of the same type 526 

of activity can vibrate during the work. In these regards, a fixed-size window cannot purely and fully include a 527 

single type of activity, leading to extreme errors when preparing training data and testing data. Therefore, 528 

enhancing classification performance by window size optimization is difficult (Huynh & Schiele, 2005). Previous 529 

research demonstrated that the algorithms can perform better if the features and length of windows are considered 530 

as separate activity categories.  531 

The multiclass problem is another observed issue related to the sliding window approach (Yao et al., 532 

2018). As shown in Figure 5 (b), multiple categories of activity can be found in the same window (e.g., window 1 533 

consists of activity 1 and activity 2; and window 2 includes activity 1, activity 2, and activity 3). However, 534 

following the majority voting principle, a single activity label should be assigned to each data window, which can 535 

bring about a significant loss of activity information and result in considerable misclassification. The ground truth 536 

of the activity may be disturbed because the true label is different from the label selected for the window. For 537 

instance, the data of activity 2 were labeled as activity 1 in the segmenting process in window 1 in Figure 5 (b). 538 

Therefore, the data of activity 1 were accidentally polluted by the activity 2 data, resulting in the misleading of the 539 

algorithms. Laguna et al. (2011) proposed a dynamic segmenting approach to address these limitations. In this 540 

approach, the starting and end times of the window and the window length are concluded as core parameters to 541 

determine the windows dynamically. Therefore, changes in activities are integrated into formulas as a significant 542 

variable for indicating the beginning and ending points of window. The results show that the dynamic window 543 

approach effectively reduces classification confusion. Yao et al. (2018) proposed a dense labeling scheme that 544 

labels each individual data point rather than labeling the data segment . Each data point can be regarded as a 545 



“window” that includes only one datum. The data point is assigned a unique label that will not be adjusted by any 546 

vote-based filtering. Therefore, the problems of information loss and label confusion caused by the sliding window 547 

method can be overcome.  548 

The last issue of the current model is that the sequential characteristic of continuous construction activity 549 

is still ignored. In a sequential activity for construction (i.e., activities that occur in a certain order), an activity can 550 

affect the action that occurs after it. For instance, if the prior activity is “sitting,” then the subsequent behavior 551 

cannot be “walking” or “running” because the activity “standing up” cannot be avoided between “sitting” and 552 

“walking.” A transition from “walking” to “standing up” is also impossible based on the context. In this study, 553 

such unreasonable sequences are frequently observed from the classification model, resulting in significant errors. 554 

To overcome this issue, Panahandeh et al. (2013) introduced the continuous hidden Markov model (HMM) to 555 

analyze gait phase and joint activity via IMU measurements. Five individual activities, namely, going upstairs, 556 

going downstairs, running, standing, and walking, are discussed in the study. The HMM model integrates the 557 

activity influence through two objects: 1) discrete chain of activities, which reflects the order and relationship 558 

between activities, 2) probability density functions of the future variables, which add the influence on the 559 

classification algorithms. The final classification accuracy of this probabilistic activity ranges from 90% to 99%, 560 

indicating a great potential for solving the classifying continuous human activity classification problem. Future 561 

research can test the continuous HMM with the field-collected data to reduce any unreasonable sequences existing 562 

in the classification results. 563 



 564 

   a. transition effect    b. sliding window approach 565 

Figure 5. Illustration of errors induced by transition effect and segment method 566 

 567 

6. CONCLUSION 568 

This study investigated the validity of action recognition algorithms with a newly proposed 569 

comprehensive and universally applicable work taxonomy that was designed considering movement and 570 

construction contexts. In particular, the performance of the proposed approach was studied by using acceleration 571 

data collected in a construction site during unstructured ongoing concrete work. Acceleration signals during 572 

formwork and rebar work were labeled with activities defined at three hierarchical levels based on the proposed 573 

activity taxonomy and used for testing traditional machine learning- and deep learning-based action recognition 574 

algorithms. The testing results show that the classification performance for Level 1 activities for formwork and 575 

rebar work is relatively reliable with higher than 95% accuracy, and the prediction accuracies range from 74.6% 576 

to 83.8% for Level 2 activity classification. The classification accuracies for Level 3 activities vary from 45.3% to 577 

61.3%.  578 

The classification results for activities at Level 1 and Level 2 demonstrate that 1) the proposed taxonomy 579 

can convey comprehensive activity information (i.e., activity context information and movement information) and 580 

reduce confusion among the categories in the same level, and 2) the performance of acceleration-based activity 581 

recognition algorithm is acceptable when dealing with noisy data (i.e., long-term and continuous data collected 582 



directly from the construction site). However, the rather low accuracy for activities at Level 3 may indicate the 583 

limitation of the use of acceleration signals for micro-level activity analysis. This study evaluated the spending 584 

time estimation of long-term continuous signals collected from the field, which reported high accuracies in 585 

measuring the activity duration of Level 1 and Level 2 activity. On the basis of the duration data, the time spent 586 

ratio of each activity can be evaluated through the timeline. Therefore, evaluating the work efficiency is possible 587 

by comparing it with the benchmark. The root cause of the low-efficiency problem can be exposed by analyzing 588 

the time spent ratio, which will help optimize the construction trade for improving productivity.  589 

The measuring of workers’ activities can provide quantitative evidence for identifying productivity issues 590 

from the perspective of individual workers. Acceleration-based action recognition is regarded as a useful means 591 

for automated activity analysis, but it suffers from a nonstandardized definition of activities and a lack of validity 592 

in a practical setting. This study may provide a solid foundation for automated activity analysis by proposing a 593 

practical approach on how to define and analyze construction activities using acceleration data. The comprehensive 594 

validation of action recognition algorithms using unstructured field data in this study can convince practitioners 595 

about the reliability of acceleration-based action recognition for Level 1 and Level 2 activities in practice.  596 
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