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A B S T R A C T

Human–Robot Collaboration (HRC) has a pivotal role in smart manufacturing for strict requirements of human-
centricity, sustainability, and resilience. However, existing HRC development mainly undertakes either a
human-dominant or robot-dominant manner, where human and robotic agents reactively perform operations
by following pre-defined instructions, thus far from an efficient integration of robotic automation and human
cognition. The stiff human–robot relations fail to be qualified for complex manufacturing tasks and cannot
ease the physical and psychological load of human operators. In response to these realistic needs, this paper
presents our arguments on the obvious trend, concept, systematic architecture, and enabling technologies of
Proactive HRC, serving as a prospective vision and research topic for future work in the human-centric smart
manufacturing era. Human–robot symbiotic relation is evolving with a 5C intelligence — from Connection,
Coordination, Cyber, Cognition to Coevolution, and finally embracing mutual-cognitive, predictable, and self-
organising intelligent capabilities, i.e., the Proactive HRC. With proactive robot control, multiple human and
robotic agents collaboratively operate manufacturing tasks, considering each others’ operation needs, desired
resources, and qualified complementary capabilities. This paper also highlights current challenges and future
research directions, which deserve more research efforts for real-world applications of Proactive HRC. It is
hoped that this work can attract more open discussions and provide useful insights to both academic and
industrial practitioners in their exploration of human–robot flexible production.
1. Introduction

In today’s transformation to human-centric, sustainable, resilient
production under Industry 5.0 [1,2], industrial companies are striving
to achieve: (1) transformable production without high changeover
times when new products are introduced by manufacturers [3]; (2)
flexible production of complicated and precise mechanical parts which
relieves manual operation dependence [4]; and (3) occupational health
of employees which prevents musculoskeletal disorders caused by awk-
ward postures, excessive effort, and repetitive movements [5]. To pave
the wave of this human-centric smart manufacturing paradigm [6],
HRC is becoming a prominent production architecture to combine the
high accuracy and strength of robots with the advanced cognition and
flexibility of humans. HRC systems can shift manufacturing processes
to flexible automation and maximise productivity.

HRC in a manufacturing context allows humans to work side by
side with robots in close proximity [7]. In the last decade, numer-
ous studies have explored HRC applications in various production
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activities. These research efforts on human safety [8], operator as-
sistance [9], robot adaptive control [10] promote HRC applications
in manufacturing, such as assembly [11], material handling, welding,
picking-and-placing [12], etc. Nevertheless, nowadays HRC architec-
ture is still stuck in a slave/master mode. The HRC systems fail to
learn knowledge of on-site situations and adjust strategies to fulfil
the best complementary capacity of humans and robots. Hence, by
combining IT, OT, AI, and human intelligence, Proactive HRC [13]
paradigm was introduced to achieve ‘‘a bi-directional, proactive, and
globally optimal collaboration for multiple human operators and robots’’.
Based on knowledge learning of dynamic human–robot–task relations
and timely updated operation arrangements, the robot is like a part
of a human body and proactively coordinates with the human, while
human naturally follows flexible task decisions to enhance their close
collaboration for a common goal. With the leading Proactive HRC
systems changing the production structure of today’s enterprises, it is
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Nomenclature

𝐴𝐺𝑉 Automated Guided Vehicle
𝐴𝐼 Artificial Intelligence
𝐴𝑁𝑁 Artificial Neural Network
𝐴𝑅 Augmented Reality
𝐶𝐶𝐴 Canonical Components Analysis
𝐶𝑁𝑁 Convolution Neural Network
𝐶𝑃 Constraint Programming
𝐶𝑃𝑆 Cyber–Physical System
𝐷𝐿 Deep Learning
𝐷𝑜𝐹 Degrees of Freedom
𝐷𝑇 Digital Twin
𝐷𝑇𝑊 Dynamic Time Warping
𝐸𝐸𝐺 Electroencephalogram
𝐸𝑀𝐺 Electromyography
𝐹𝐵 Function Block
𝐺𝑀𝑀 Gaussian Mixture Model
𝐺𝑃𝑈 Graphics Processing Unit
𝐻𝐻𝑇 Human–Human Team
𝐻𝑅𝐶 Human–Robot Collaboration
𝐻𝑅𝐼 Human–Robot Interaction
𝐻𝑅𝑇 Human–Robot Team
𝐼𝐶𝑃 Iterative Closest Point
𝐼𝐼𝑜𝑇 Industrial Internet of Thing
𝐼𝑇 Information Technology
𝐾𝐷𝐿 Kinematics and Dynamics Library
𝐾𝐺 Knowledge Graph
𝐿𝐷𝐴 Linear Discriminant Analysis
𝐿𝑖𝐷𝐴𝑅 Light Detection and Ranging
𝐿𝑆𝑇𝑀 Long Short Term Memory
𝑀𝐶𝑇𝑆 Monte Carlo Tree Search
𝑀𝐿 Machine Learning
𝑀𝑅 Mixed Reality
𝑂𝐵𝐵 Oriented Bounding Box
𝑂𝑀𝑃𝐿 Open Motion Planning Library
𝑂𝑇 Operational Technology
𝑅𝐿 Reinforcement Learning
𝑅𝑁𝑁 Recurrent Neural Network
𝑅𝑂𝑆 Robot Operating System
𝑅𝑇𝑇 Rapidly-exploring Random Tree
𝑆𝐺 Scene Graph
𝑆𝐿𝐴𝑀 Simultaneous Localisation and Mapping
𝑆𝑉 𝑅 Support Vector Regression
𝑇𝐿 Transfer Learning
𝑈𝐺𝑉 Unmanned Ground Vehicle
𝑉 𝑄𝐴 Visual Question Answering

necessary to figure out (1) how the paradigm evolves from human–
robot relationships, (2) which architecture and attributed modules can
tackle current challenges in manufacturing and present widespread
practical implementations, and (3) what the future perspectives are
when considering a potential combination of cutting-edge technologies,
such as cognitive computing, IIoT, robot learning, etc.

In literature, some reviews have been conducted for the HRC im-
plementation and system classification, especially on the human safety
criteria [14] and specific manufacturing tasks [15]. However, for the
emerging paradigm of Proactive HRC, to the best of the authors’
knowledge, no comprehensive connotation has been declared in this
2

field, let alone to point out its critical intelligent capabilities, technical
challenges, and opportunities. Aiming to fill the gap, this paper at-
tempts to systematically propose an elaborate architecture of Proactive
HRC. It is hoped that this foreseeable manufacturing paradigm can
inspire substantial discussions, debates, and development for real-world
implementation. Firstly, the evolvement of Proactive HRC is elabo-
rated from a 5C intelligence roadmap of human–robot relationships
(Section 2). As key contributions, the mutual-cognitive, predictable,
and self-organising intelligent capabilities of Proactive HRC are devised
and presented in Section 3, Section 4, and Section 5, respectively.
Followed by enabling control technologies of compliance controller and
proactive motion planning, which are illustrated in Section 6. Then,
main challenges and future perspectives are highlighted in Section 7.
Lastly, major contributions and limitations of this study are given in
Section 8.

2. From HRC to proactive HRC

In this section, human–robot relations in manufacturing activities
and the evolution to Proactive HRC are first reviewed. Basic char-
acteristics of Proactive HRC, i.e., enhanced operator capabilities and
human-like robot skills are expounded in the following parts, to reveal
the motivations and research points.

2.1. Human–robot relationship evolvement

Ever since the introduction of industrial robots to large-scale pro-
duction lines, researchers and engineers have spurred a concentration
on human–robot relationships.

As shown in Fig. 1, the evolvement pathway of human–robot re-
lationships towards Proactive HRC can be divided into six phases,
in terms of the two parties’ complementary (horizontal axis) and the
degree of intelligent capabilities (vertical axis). In this context, the hor-
izontal axis (i.e., hexagon) depicts the engagement and responsibility
that humans and robots need to take when performing a collabora-
tive task [16]. In various phases of task execution, there are three
different roles that the human and robotic agents may perform: (1)
an active role which is the dominant decision-maker; (2) a supportive
role which conducts aided operations desired by the teammate; and
(3) an inactive role which acts as an idle spectator and trusts the
teammate’s manipulation. Intuitive human behaviours (physical and
mental stress-free) and adaptive robot control mean humans and robots
can on-demand adjust their roles for time-changing situations, respec-
tively. Meanwhile, the vertical axis represents the smartness levels for
human–robot relationships, derived from a 5C architecture of the CPS
model [17], namely (1) connection, which represents parallelly joint
work capability between humans and robots (e.g., co-assembly of a
gearbox under predefined procedures); (2) coordination, which stands
for simultaneous cooperation skills based on sensorial and perceptual
results of surrounding environments (e.g., obstacle detection by robot
vision); (3) cyber, which denotes synchronous activity from all parties
in a previewable and predictable execution loop with dynamic changes
(e.g., cloud robotics and sharing resources); (4) cognition, which stands
for the cognitive understanding and high-level decision intelligence
for human–robot organisations (e.g., human intention recognition and
robot learning); (5) coevolution, which represents self-fulfilment goals
and collaborative intelligence, like self-organising resource allocation
and ergonomic cooperation. The higher smartness levels inherit and
accumulate characteristics of underlying architectures stepwise. On the
other hand, the unreached degree of active behaviours for human and
robotic agents is denoted with the shaded block (grey) in each smart-
ness level. With these considerations, the critical characteristics of each
paradigm are summarised in the box, and highlighted its evaluation
result in the three-dimensional coordinate accordingly.

Dating far back from 1979, a few researchers explored the possi-
bility of modelling robots as an operator [18], which paved the way
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Fig. 1. An evolvement pathway towards Proactive HRC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Source: Adapted from [13].
to human–robot coexistence in manufacturing tasks [19,20]. Despite
a partially shared workspace at this stage, humans and robots merely
perform respective assigned tasks (black arrows in Fig. 1) and are sep-
arated with fences (black dash line in Fig. 1), without team conscious-
ness. Then, human–robot relationships were enhanced with smart and
intelligent capabilities, and firstly stepped into interaction level [21]
based on sensor and communication technology. HRI allows for seam-
less communication between two agents [22]. In this stage, humans
and robots obey orders from teammates and sequentially complete
operation sequences [23]. Even with the later appearance of advanced
interactive manners, such as physical haptic [24], gestures [25], and
brain–computer interface [26], the HRI allows one partner to act in
supportive behaviours for the other collaborator, but scantily explores
mutual active synergism (blue arrow in Fig. 1). Based on scenario
perception and optimal controller [27], human–robot agents were em-
powered with their own autonomy (active role) and evolved into a
relationship of human–robot cooperation [28], as presented by the
pink arrow in Fig. 1. Then, numerous research efforts on commercial
robotics applications, such as picking-and-placing [29], heavy material
installing [30], and object handover [31], promote the surge of flexible
manufacturing implementations from 2005 onwards [32,33].

Ever since 2008, HRC became a prevailing phenomenon for in-
dustrial participators, coinciding with the trend towards personalised
production [34–36]. Using technologies of CPS [37] and robot decision-
making [38], humans and robots among HRC systems could share
different capabilities and on-demand resources in the execution loop.
The weakness of this stage is that a high-level understanding of man-
ufacturing tasks remains unattained, thus few active-role behaviours
are promoted in the collaboration (yellow arrow in Fig. 1). For ex-
ample, major explorations in this stage focused on the non-semantic
perception level, like human motion estimation [39], operator stress as-
sessment [40], and safety control strategies [41]. Then, equipped with
cognitive computing and multimodal communication techniques (green
arrow) [42], Symbiotic HRC was proposed to improve manufacturing
performance by combining human and robotic agents’ complementing
competencies [16]. The paradigm is driven by four major aspects,
3

i.e., active collision avoidance, planning and control cockpit, adaptive
robot control, and mobile operator assistance. Following the smartness
evolvement (purple arrow in Fig. 1), Proactive HRC [13] is rising
as a key supplement and the final phase of Symbiotic HRC. The ad-
vanced Proactive HRC is characterised by four pivotal modules: (1)
mutual-cognition and empathy among human–robot–workspace ex-
ecution loop, (2) predictable spatio-temporal collaboration for task
fulfilment, (3) self-organising multi-agent teamwork with dynamic re-
source allocation, and (4) compliance robot control and proactive robot
motion. In this context, the Proactive HRC meets human-centric needs
and reaches the best combination of human–robot intelligent skills for
higher overall productivity and better product quality.

2.2. Human operator engagement

Rather than human–robot separated production, Proactive HRC
focus on treating robot automation as a further enhancement of the
human’s physical, sensorial and cognitive capabilities [43]. The human
in Proactive HRC represents the ‘Operator 4.0’, a smart and skilled col-
laborator who performs operations without physical and mental stress.
The basic prerequisites of smart and skilled operator engagement in the
loop relies on human safety among collaboration, intuitive perception
of sharing resources and services.

Human safety gives the first priority and is a prevailing concern
in HRC. Standards including ISO/TR 7250 [44], ISO 12100 [45], and
ISO/TR 14121-2 [46] state human safety requirements in manufac-
turing tasks, which involve avoidance of physical injuries and risk
reduction of occupational illnesses. For example, Schmidt et al. [47]
monitored minimum human–robot distance from 3D point clouds of
shop floors. Based on detected potential collision events, the system
could warn an operator, stop a robot, and modify the robot path as
the risk reduction measure. Besides, Peternel et al. [48] explored to
improve the cooperation comfort level by monitoring the fatigue of the
human muscles and providing warnings of non-ergonomic movements.
The risk estimation reduces hazards to human body parts.
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The human intuitive role in HRC is embodied in that the hu-
man can naturally perceive sharing information among human–robot–
workspace and make cognitive decisions necessary for teamwork. Mul-
timodal communication technologies, like AR [49], voice recognition,
haptic feedback, and IIoT [50], can allow humans to seamlessly per-
cept surrounding environments. In this context, Hietanen et al. [51]
developed an interactive AR system, which allowed human operators to
obtain real-time robot states and safety zone changes of the workspace.
Liu et al. [52] proposed human-centred robot control with multimodal
intuitive commands in the form of haptics, gesture, and voice. The
enhanced perceptive ability fits in the human operators’ interactive and
cognitive needs, where they can observe and filter sharing resources
and services throughout the collaborative execution loop.

2.3. Robot involvement and control

Other than pre-programmed control codes, collaborative robots
in Proactive HRC need to timely adjust and plan new manipulation
motions, especially in the production of high-mix low-volume prod-
ucts [53]. With human engagement in the execution loop, collaborative
robot programming majorly contains supervisory control [54] and
adaptive path planning [55].

Supervisory control aims to let a robot perform manufacturing
tasks under human supervision and human flexible decisions [56].
Based on continuous sensory feedback (e.g., force and impedance) and
human commands, a robot produces a time-varying stiffness and long-
duration motion accuracy desired by the teammate. The supervisory
robot control has attempted to be integrated into numerous Proac-
tive HRC scenarios, including physical HRI [57], teleoperation [58],
robot path correction [59], and multimodal control [60,61], etc. In
this context, the standard ISO 10218-2 [62] regulates the power and
force limitation and illustrates hazardous situations for collaborative
robots in case of direct and physical contact with human operators.
For example, Kana et al. [63] integrated impedance control and haptic
interaction for human–robot co-manipulation. The system allowed the
robot to respond to human external forces based on viscoelastic cou-
pling. The supervisory control strategy represents the combination of
robots’ accuracy and strength with humans’ cognitive ability to some
extent.

For adaptive path planning, a robot can plan and accomplish mo-
tion trajectories, like a series of positions of the end-effector of a
robot, by integrating inverse kinematics and dynamics systems and
embedded smart algorithms [16]. The embedded smart algorithm con-
structs robot decision-making from a holistic understanding of HRC
scenarios [64], including human operators’ behaviours, detected me-
chanical components, and robot status. Then, the inverse kinematics
and dynamics systems ensure robot movements to the targeted position.
Adaptive robot path planning is crucial to various Proactive HRC ap-
plications, such as collision avoidance, robot path re-planning, mobile
robot assistance, and so on. Meanwhile, speed and separation moni-
toring criteria for robot adaptive motion were defined in the standard
ISO/TS 15066 [65] to eliminate potential contact hazards. For instance,
Ong et al. [66] conducted experiments of robot motion planning via
the KDL and the OMPL in the ROS. By inferring semantic knowledge of
human intentions and task structures, the robot could generate adaptive
path planning to assist human operations and perform precise motions
to complete tasks.

3. Mutual cognition and empathy

Mutual-cognitive capability in Proactive HRC stands for the un-
derstanding of dynamic human–robot relations in task structures and
their operational intentions. Based on this, empathetic collaboration
skills are accordingly obtained to enable humans and robots to execute
4

ergonomic operations desired by teammates. The intelligence of mutual
cognition and empathy among HRC promotes human flexible deci-
sions and improves robot manipulation skills in teamwork. A human
operator shows an advantage in understanding seen situations, but
fails to perceive information invisible now, like robot motion paths,
updated operation procedures, and changing conditions of a manufac-
turing system. Thus, a mutual-cognitive HRC system firstly provides
on-demand information support (like suggestion, guidance, warning,
etc.) to humans. The knowledge support is inferred from task processing
status and procedural operation goals in different task stages. In this
way, the human becomes a super operator with enhanced cognition for
holistic understanding of task execution. The human can also transfer
new judgment on task process situations to a robot via multimodal com-
munication manners, like Web interface, DT [67], VR, AR [68], haptic
feedback, and brainwaves [69]. The mutual-cognition service improves
human wisdom and compensates for human defects that are unable to
perceive digital information. On the other hand, a robot presents empa-
thetic skills to improve human wellbeing in HRC, beyond adaptive path
planning. With knowledge learning of human intentions and ergonomic
analysis of human actions, the mutual-cognitive HRC system assigns a
human-needed task operational strategy to the robot. During the task
execution, the robot performs manipulation comfortable for human
interaction to avoid awkward posture impact and fatigue on human
physical states. Meanwhile, the empathetic robot skill lifts human
mental stress by responding to a worker’s psychological changes with
readability cues when conducting non-contacting path motions. The
mutual-cognitive and empathetic capability in HRC systems is achieved
by a human–robot–workspace perceptual loop, mutual-cognitive and
empathetic decisions, and cognitive services, as shown in Fig. 2.

3.1. Human–robot–workspace perceptual loop

For Proactive HRC systems, the human–robot–workspace perceptual
loop is a pivotal prerequisite for mutual cognition generation and on-
demand collaborative behaviours. Over the past years, a wide variety
of research efforts on human operator perception, readable robot sta-
tus, and workspace parsing have been explored. In this context, it is
important to be conscious of key elements in past efforts that promote
the further perceptual loop among Proactive HRC.

3.1.1. Human operator perception
Human operator perception includes a worker’s physical and psy-

chological states during a co-work, which aims to understand humans’
operation intention and wellbeing in HRC tasks. The human intention
is reflected in the planning of ‘‘how to complete a collaboration task
with robots’’, like a long-term goal for scheduled task fulfilment and
short-term response to a stepwise operation and an unexpected event.
In HRC systems, a worker may express operational intentions in various
manifestations, such as gesture, voice, biological signals, and operation
activities, as shown in Table 1. Simao et al. [70] used wearable sensors
to recognise human static gestures and dynamic gestures. A robot re-
ceived commands from these human gestures, such as stopping motion,
rotating the robot end-effector, and opening/closing the gripper. Then,
Lanini et al. [71] estimated every action change of the human upper
body via signals of force sensors, as commands to the robot. For voice
control in the machine hole drilling process, Birch et al. [72] developed
a system that activated robot motions from voice inputs. For seamless
robot control in a noisy environment, Wang et al. [73] integrated
brainwaves and FB commands to drive adaptive robot actions in engine
assembly, in case that the worker was occupied with other tasks on
hand. For human safety, Buerkle et al. [74] measured mobile EEG
signals to analyse an operator’s motion intention before movement.
The analysis result provided early warning to a robot and allowed
the robot to re-planning paths in advance for collision avoidance.
He et al. [75] estimated human lower limb motion intentions using
surface EMG signals and developed a coupling dynamic model for

exoskeleton robot control. As human motion sequences contain the
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Fig. 2. Mutual-cognitive and empathetic co-work in Proactive HRC.
Table 1
Typical research efforts on the perception of human operator intentions.

Objective Method Superiority Task Ref.

Hand gesture recognition LSTM and CNN Online classification of dynamic
gestures

Robot teleoperation (stop, move,
rotate)

[70]

Limb pose recognition LDA-based classifier Low computation consuming Human commands (start, stop,
accelerate, and decelerate)

[71]

Voice recognition DTW and user-dependent
dictionary

Analysis of machine noise effects Commands for machine hole
drilling

[72]

Brainwave control Wavelet transform and TL
algorithms

Seamless communication without
disturbing human hand operations

Adaptive robot control in engine
assembly

[73]

EEG-based arm movement
recognition

LSTM and CNN Early warning of human
upcoming movement

Re-planning robot operation for
safety

[74]

EMG-based human lower limb
motion estimation

LSTM and adaptive robust
iterative learning control

Human torque estimation with
impedance force

Exoskeleton robot [75]

Human activity recognition Relation history image extraction Different activities of multiple
persons

Robot assistant [76]

Human activity recognition Spatio-temporal joint based CNN Combination of human activities
with ambient events

Robot assistant [77]

Human group activity recognition Multisensory data and Laplacian
embedding

Pairwise relation between
teammates

Search and rescue with mobile
robot

[78]
operation intention, Gori et al. [76] explored an activity recognition
approach in which humans perform different action types concurrently
and sequentially, beyond short-term operator motions. On this basis,
the semantic context between human activities and ambient events was
explored by Abdelkawy et al. [77], and followed by group activity
recognition from multisensory input data completed by Lu et al. [78].
Based on these detected human activities, robots can make a suitable
decision to conduct assisted operations for human operators.

Human wellbeing denotes ‘‘which level of expectation reaches for re-
source allocation and task completion in teamwork’’, which is reflected in
physical experience (e.g., fatigue) and mental satisfaction (e.g., stress)
among collaborative operations. Extensive overload and improper body
posture may lead to potential health risks and occupational injuries,
such as musculoskeletal disorders. As shown in Table 2, numerous
research efforts have explored the estimation of human wellbeing from
body poses, EMG signals, and EEG states. For instance, Kim et al. [79]
proposed a statically equivalent serial chain model to calculate the
load in human joints and adjusted the robot trajectories for ergonomic
body poses throughout the HRC task. For muscle fatigue management,
Peternel et al. [48] separated the external force into individual muscle
groups and then altered the direction and position of the robot endpoint
5

to selectively offload the force of tired muscles. The muscle fatigue
management system maximised the fatigue-related endurance time and
facilitated ergonomic co-manipulation setups for human workers. In an
HRC polishing task, Makrini et al. [80] introduced a postural optimi-
sation method to improve human poses and decrease workload. The
method used a graphical interface to inform non-ergonomic postures
and control the robot to adjust the pose of a co-manipulated part. Be-
sides, Peternel et al. [81] used EMG sensors to measure human muscle
activities and fatigue for analysis of human physical endurance. With
the information of human behaviours, the robot adjusted reciprocal
execution speed and frequency to let the human continuously recover
strength in different phases of wood sawing tasks. For a sustainable
HRC system, Lin et al. [82] used EMG for detection of muscle signals
and then designed ergonomic HRC cells to reduce loads and ineffective
human motions during assembly tasks of GPU products. To evaluate
cumulative fatigue over time induced by light payloads, Lorenzini
et al. [83] measured whole-body overloading torques by the EMG
signals. The robot in the system continuously adjusted co-manipulated
postures to allow the human to perform a repetitive task in an er-
gonomic way. To improve human wellbeing when facing unexpected
situations, Buerkle et al. [84] used a mobile EEG sensor to detect
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Table 2
Typical research efforts on the analysis of human wellbeing.

Objective Method Superiority Task Ref.

Joint overload estimation of
human body

Statically equivalent serial chain Center of pressure estimation Co-carrying heavy loads [79]

Selective muscle fatigue
management

Force prediction, muscle fatigue
model and impedance controller

Offline calibration and online
muscle force prediction

Co-manipulation tasks of
polishing and drilling

[48]

Postural optimisation of neck,
trunk and leg

Feedback interface and ergonomic
robot controller

Human body model using virtual
kinematics chains (springs and
dampers)

Collaborative polishing tasks [80]

Human muscle fatigue estimation
with EMG

Two-order system for fatigue
estimation and robot control

Humans desired robot task
execution speed and frequency
control

Human–robot wood sawing and
robot-assisted surface polishing

[81]

Sustainable HRC practices Motion analysis, communication
and ergonomic design

Wavelet transform and CNN Assembly line of GPU products [82]

Cumulative effect of the
overloading fatigue

Whole-body fatigue estimation
used RC circuit model

Cumulative human fatigue model
over time

HRC painting task [83]

Awareness of potential
emergencies

Decision tree model and
continuous wavelet transform
peak counting

Visualisation of the classification
logic

Assembly task of 3D printed
boxes

[84]

Cognitive conflict between
human–robot exchanged forces

Independent component analysis
and admittance control

Online estimation of prediction
error negativity for mechanical
resistance

Physical HRI [85]

Objective, subjective, and
physiological assessment

ML and RL Plug-and-play HRC architecture Manual assembly and
collaborative assembly

[86]
potential emergencies in HRC tasks, such as dropping a workpiece,
crushing the piece on the worktable, and performing a malfunction. The
awareness of potential emergencies allows a robot to execute fast ac-
tions and avoid harmful results to humans. Aldini et al. [85] evaluated
the cognitive conflict when users experienced mechanical resistance
opposing their motions during physical HRI. The result could help the
robot to adjust the impedance control, so the operator can comfortably
and safely interact with the robot. To allow HRC systems to adapt
to the uniqueness and dynamic nature of human behaviours, Buerkle
et al. [86] tested objective, subjective, and physiological metrics of a
manual and a collaborative assembly task based on workload from EEG
signals, NASA task load index, task completion time and a number of
errors/assistance requests.

The human operator model among the perceptual loop allows the
robot teammates to reach the full degree of an adaptive role and
perform high-level adjustable behaviours, especially in the following
aspects for the Proactive HRC implementation: (1) adaptive robot
control aware of human intentions, which generates robot re-planning
motions appropriated for humans’ ongoing actions; (2) supervisory
robot control with human cognition, which allows human operators
to guide robot execution via natural action commands; (3) empathetic
robot skills in terms of human wellbeing, where a robot acts assist-
as-needed movements and ergonomic path motions desired by the
human.

3.1.2. Readable robot status
A robot mainly performs supportive operations to assist humans or

assumes active manipulations to complete tasks in HRC. Robotic kine-
matics and dynamics parameters control these motions such as safety
control, intuitive programming, adaptive path planning, etc. As shown
in Table 3, Pupa et al. [87] developed a dynamic system for HRC, to
avoided drastic drops of the robot velocity by continuously checking
infeasible robot trajectory in terms of safety-aware constraints. Besides,
Nascimento et al. [88] proposed a collision-avoidance approach for
physical HRI via combining visual depth data and proprioceptive robot
status. The data fusion method tackled problems of occluded robots in
the camera view and dynamically predicted robot–obstacle distance for
the generation of repulsive forces that control the robot. For intuitive
robot programming, Macchini et al. [89] mapped body pose to robot
control parameters, which realised the natural teleoperation of mobile
robots with high accuracy. Then, Wang et al. [90] proposed a teaching–
learning-collaboration model to allow the robot to learn from human
6

demonstrations. The robot could learn suitable motion trajectories from
human languages and operation sequences to perform a new task. For
adaptive robot control, Cheng et al. [91] proposed an online path
planning algorithm, which modified only the part of the path that
collided with obstacles, and the rest of the path remained close to the
original task trajectory. Dalmasso et al. [92] developed a multi-agent
shared plan model, which allowed a robot to replan path motions under
human goals. Human operators have easy access to these robot statuses
for further correction and modification.

Beyond dexterous robot manipulation, the intention of robot mo-
tions should be easily readable to human operators. The research
effort on robot operation readability is shown in Table 4. In [93],
a robot current position was indicated by lighting skins which could
attract humans’ attention for safety during a manufacturing operation.
Then, Hetherington et al. [94] designed projected arrows and flashing
lights on a mobile robot, which could communicate its path and goal
information. To allow humans to discern robot intent sooner, facial
gestures and human-like motions were added to interaction manners for
social robots [95]. For a higher complicated robot states (e.g., progress
of task completion) expression, Sauer et al. [96] proposed zoomorphic
gesture-based methods and evaluated the user preference (e.g., attrac-
tive, joyful, and intuitive) for the communication manner. With VR
and DT techniques developing, Oyekan et al. [97] utilised the digital
space to represent trajectory information of a physical robot. These
visual indications provide intuitive robot status in HRC systems, and
resist to high noisy environment in factories. Then, an AR-based HRC
system was developed to present robot states in a virtual-reality fusion
environment, which combined accurate robot control and intuitive
information support to humans [55].

Readable robot status aims to intuitively communicate robots’ ac-
tions and planning (predictable and unpredictable) to human operators,
as feedback for humans’ enhanced cognitive decision-making. Past
efforts on robot status understanding cover non-verbal legibility in-
dications from tower lights, zoomorphic actions (e.g., eye gaze, head
orientation, and arm movement) [98] to digital manners such as DT,
VR, and AR. In addition, these shared robot state variables can be
corrected and adapted to be feasible, with human-decision intervention
or continuous self-reaction. Hence, instead of storing invisible robot
status in controllers, Proactive HRC systems encourage robot motion
with legibility cues, for humans’ ‘‘intention reading’’ capability. The
readable robot status promotes humans play the best supportive role
and optimal active decisions in a co-work, with benefits reflected in
the following aspects: (1) humans’ prompt decision and reaction to
robot legibility signals during a manufacturing operation; (2) easy and
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Table 3
Typical research efforts of robot manipulation in HRC.

Objective Method Task Example Ref.

Safety control Dynamic system Adaptive trajectory planning and
scaling

Hindering incidents in HRC [87]

Collision avoidance Depth space representation and
Kalman filtering

Human safety in occluded zones Physical HRI [88]

Robot teleoperation CCA and SVR Body-robot operation mapping Simulated drone to real quadrotor
control

[89]

Robot learning from
demonstration

Speech recognition and operation
learning

Robot learning of task-based
knowledge

Hybrid block assembly task [90]

Online adaptive path planning A GMM-based algorithm Path replanning closer to the task
trajectory

Picking, placing and assembly [91]

Robot replanning Monte Carlo tree search Human semi-autonomous
teleoperation

Collaborative search testbed [92]
Table 4
Typical research efforts on readable robot status.

Objective Method Task Example Ref.

Robot position Robot light skin Human safety Assembly of nut, bolt, and washer [93]
Robot motion Projected arrows and flashing lights Motion legibility cues Mobile robot services for pedestrians [94]

Robot motion Facial gestures and motions Robot anticipatory motion Social robot interaction [95]
Robot state Zoomorphic gestures Status preview Robot-to-human communication [96]

Robot trajectory VR & DT Digital information Transportation of boxes [97]
Robot state AR system Accurate robot control Picking and placing [55]
intuitive teamwork in industrial settings with one or more robots that
require different levels of priorities; (3) on-time correction for robot
infeasible status to avoid drastic drops of the robot velocity and led
poorly efficient robot behaviours.

3.1.3. Workspace parsing
Workspace parsing aims for geometric and semantic knowledge

interpretation of the working environment, which includes detection
of static and dynamic objects, their spatial pose estimation, holistic
scene construction and task interpretation [99]. As shown in Table 5,
Rosenberger et al. [100] utilised a deep CNN series model (YOLOv3)
to detect industrial components from a heavily cluttered background.
For higher localisation accuracy, Lee et al. [101] introduced object
segmentation methods (Canny edge detector) to obtain fine shape
information of working-in-progress parts during the electric motor
assembly process. Then, Tsarouchetal et al. [102] estimated the pose
information of shaver handles based on predefined CAD models, for
robotic picking and placing in production lines. Followed by precise
6D pose estimation of mechanical components in manufacturing tasks,
Franceschi et al. [103] adopted OBB to obtain rough results and fur-
ther leveraged the ICP algorithm for refinements. For surrounding
environment construction, Moon et al. [104] utilised a GCN-based 3D
semantic graph map to generate the scene description. Besides, Dias
et al. [105] explored the occupancy grid to represent the positions of
a robot team, which also served as an interactive interface for robot
controlling sequences. Liu et al. [106] constructed the 3D occupancy
status of the HRC workspace via OctMap, for robot active collision
avoidance. To design an HRC workspace, Mateus et al. [107] proposed
a work decomposition structure, which generated multiple options for
each task considering collaborative modes and spatial allocation of both
parts and resources. Then, Bruno et al. [108] defined a strategy for task
assignment, which allocated workload and detailed activity planning
to human and robotic agents by considering their different skills and
assets. For assembly sequence generation, Mateus et al. [109] split
production precedence into sub-assemblies by identifying comprising
parts, parallel task execution, and collision matrices. The generated
assembly sequences optimised elements of resource sharing capability,
collaborative workplace design, and safety requirements.

With the manufacturing task proceeding, workspace parsing pro-
vides real-time information support for adaptive robot control and
7

intuitive human operation. Preliminary exploration on this area adapts
portable and flexible visual sensor systems such as binocular camera,
depth camera, and LiDAR. Combined with advanced computer vision
and DL techniques, the workspace parsing system achieves high recog-
nition accuracy and satisfies strict time constraints, even for heavily
cluttered environments. Supported by the workspace parsing knowl-
edge, humans and robots can reach their largest active roles among
the co-work, which represents in the following aspects: (1) on-demand
task arrangements in response to state changes of HRC settings, such
as time-varying subtask operation and predictable collision avoidance;
(2) high-precision and dexterous robot operations with pose estimation
providing refined spatial and location information of targeted parts;
and (3) active human decision and robot planning based on holistic
scene construction and task process understanding.

3.2. Mutual cognitive and empathetic decision

The mutual-cognitive and empathetic decision intelligence in Proac-
tive HRC is embodied in three parts: (1) task cognition among op-
erational sequences, (2) enhanced human cognition for super oper-
ation skills, and (3) robot cognition for human desired manipula-
tions. Based on mutual cognition, Proactive HRC systems make empa-
thetic task-planning decisions for bidirectional-needed and ergonomic
teamwork.

3.2.1. Task cognition
Task cognition among HRC devotes to learning interpretations of

human–robot–task structures and their intentions from perceptual re-
sults in task processes and embedding decision intelligence to plan
bidirectional-needed ongoing operations. Current visual reasoning and
KG methods advance context-awareness capabilities in HRC from per-
ception to cognition levels, as shown in Table 6. For example, Ahn
et al. [110] proposed Text2Pickup networks, which allowed the HRC
system to generate questions and ask for further communication when
facing ambiguous task instructions. The cognition generated by mutual
communication enables robots to understand the task intention and
pick the user needed objects from the workspace. Then, VQA-based
approaches were leveraged to obtain HRC task understanding by encod-
ing associated cues of speech, gesture, and visual detection [111]. To
capture contextual information of the current scenario, Riaz et al. [112]
utilised a multi-level scene description neural network to predict the

SG in the warehouse environment. The SG was useful for the risk
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Table 5
Typical research efforts on workspace parsing.

Objective Method Key elements Task Ref.

Object detection YOLOv3 Industrial components in a heavily
cluttered environment

Handover [100]

Object segmentation Canny edge detector Shape information of
working-in-progress part

Electric motor assembly [101]

2D pose estimation Shaver handles Mapping 3D CAD model to observed
images

Robot picking and placing [102]

6D pose estimation OBB & ICP Point cloud construction and post
refinement

Bulky component assembly [103]

SG GCN & RNN Graph map of perception results Scene description [104]
2D map 3D CNN and Robot control sequence Occupancy grids-based robot team

position
Robot control interface [105]

3D representation OctMap & PoseNet 3D occupancy status of workspaces Collision avoidance [106]

Hierarchical task analysis Part dependent task complexity and task
functional structure

Work decomposition, creation of task
options, quantitative evaluation

Collaborative workspace design [107]

Task assignment Classification tree Task indicators, task classification, task
assignment

Assembly of a snowplow mill [108]

Assembly sequence generation Liaison and collision matrices Matrix creation, sub-assembly and
precedence determination

Gearbox assembly [109]
Table 6
Typical research efforts on task cognition and HRC applications.

Co-work cognition Method Application Ref.

Understanding of ambiguous task
instructions

Text2Pickup Network for object detection and
language command understanding, question
generation network for human commands feedback

Robot pick-up tasks following
ambiguous commands

[110]

VQA for task instructions Object, detection, and gesture recognition,
symbolic reasoning for answer and instruction

Task-oriented HRC [111]

Scene understanding for safety
analysis

Mask R-CNN for object detection, multi-level SG HRI in warehouse environment [112]

Dynamic SG for co-work strategy
generation

Object detection, link prediction, graph embedding Disassembly of ageing electronic
vehicle batteries

[113]

Inferring semantic properties of
the world

Probabilistic representation for semantic
knowledge, Bayesian formulation for incremental
estimation

Picking and placing Pelican cases [114]

HRC KG for cognitive decisions Holistic scene perception, HRC KG construction,
EvolveGCN for graph embedding

Quality checking of electronic
vehicle batteries

[115]
management process to predict and avoid unsafe situations. Then, to
dynamically infer human–robot operation intentions, Li et al. [113]
leveraged SG to learn scenario interpretation of on-site co-works. The
SG assigns task planning strategies as human information support and
robot commands in the system. With prior factual knowledge, Arkin
et al. [114] inferred task-relevant instructions from both human linguis-
tic descriptions and measurements derived from the robot’s physical
interaction with the environment. The inferred semantic properties of
the world allowed the robot to correct errors in task instructions. Then,
Zheng et al. [115] introduced KG to describe HRC processes, which
contained accumulated expertise in task allocation and planning. Based
on temporal sub-graph construction for real-time perceptual results,
HRC task planning strategies are triggered by the KG and assigned to
human and robotic agents.

With task cognition in Proactive HRC, both humans and robots
are supported with time-changing operation planners for on-demand
task fulfilment strategies. These cognitive co-work planners in Proac-
tive HRC systems enable the best complementation between human
intuitive activities and robot adaptive behaviours, and are derived
from the following aspects. Firstly, cognitive planners are immersed
in the execution loop and provide mutual support and intuitionistic
guidance of suitable operations for human–robotic agents, based on
advanced AR, DT, and IIoT techniques. Then, by understanding human–
robot–task relations, task cognition assigns operations to humans and
robots under a consistent co-work goal. Lastly, these task planners are
the cognitive rethinking of the current task progressing for optimal
resource sharing and assignment.
8

3.2.2. Enhanced human cognition
For enhanced human cognition in HRC systems, it is essential

to improve workers’ perception capability of procedural information,
skills in manual operations, and communication with robots. To date,
research efforts on AR, DT, IIoT, and multimodal interaction illustrate
applications for enhanced human cognition, as shown in Table 7.
For example, Liu et al. [116] utilised AR devices to present intuitive
instructions of assembly guidance to humans during the HRC assembly
of large-scale complex products. Multiple operators among the sys-
tem could obtain and share assembly procedure information with the
help of an AR helmet. Besides, Wang et al. [117] introduced an AR-
based bare-hand interface to provide various modalities of guidance
to assembly operators in different phases of assembly tasks. With a
qualitative evaluation, the HRC system was intuitive, easy to use and
satisfied human domain knowledge support in assembly. In [118], the
decision-making and optimisation of production scheduling from real-
time updating of the shop floor DT are delivered to human operators
via the AR tools, to relieve the worker’s physical and cognitive stress.
Tuli et al. [119] developed a knowledge-based DT, which divided
human activities into actions and predicted interaction regions and
objects. The DT-based HRC system could give human suggestions of
parts potentially to be assembled in the next step. In parallel, Liu
et al. [120] proposed an advance-execution DT system based on func-
tion blocks to performs assembly planning and adaptive robot control.
For a user-friendly communication, Macchini et al. [89] proposed a
user-adapted body–machine interface via personalised body–machine
mapping, which realised the natural teleoperation of mobile robots
with high accuracy. Then, Losey et al. [121] utilised Bayesian inference
to learn interaction strategies between robots and end-users, allowing
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Table 7
Typical research efforts on enhanced human cognition and HRC applications.

Human cognition Method Application Ref.

AR-based assembly guidance 3D reconstruction of environments, multi-operator
interaction, human to machine interoperation

Assembly of large-scale complex
products

[116]

Multi-modality assembly guidance Bare-hand interface, AR guidance manager, user
request interface

Assembly of a Mitsubishi
MEO77789 motorbike alternator

[117]

Decision and optimisation from
DT

AR and wearable devices, IIoT system, DT-based
process design and optimisation

Assembly of a bus [118]

Procedural suggestion from DT Knowledge-based DT, human motion modelling
and simulation, action and attention recognition

Assembly and maintenance [119]

Personalised body-machine
interface

CCA and SVR for personalised motion synergy
identification

Teleoperation of a simulated
drone and a real quadrotor

[89]

Personalised HRI Bayesian inference for human interaction strategy,
inverse RL simulation for robot motion

Robot learning and teaching [121]

Kinesthetic teaching of robot arm
tasks

Human motion recognition and segmentation, a
hybrid sensing interface for motion feature
recording

Human-guided tasks in a KUKA
robot

[122]
for personalised robot teaching. The approach aimed for personalised
HRI which resisted human uncertainty during the interaction process
and reduced confusing results of fixed, predefined interactive strategies.
To ensure high-precise robot motion in kinesthetic teaching, Chen
et al. [122] recognised human action and extracted action features from
the velocity profile, force torque, and gripper information sequentially.
These primitives were then reconstructed to robot trajectories which
could maintain robot motion accuracy in 2.37 millimetres. The person-
alised configuration was capable of achieving humans’ intuitive control
for complex robotic systems.

The enhanced human cognition equips human operators with su-
per operational skills in Proactive HRC, especially for three aspects,
i.e., self-learning capability, enhanced decision-making, and friendly
co-work experience. Firstly, a human operator can constantly learn new
knowledge for personal growth and self-actualisation with on-demand
domain knowledge support in the execution loop. Then, with requisite
procedural information, humans are able to see what is invisible now
and incoming events, like suggestions and warnings from a holistic
understanding of HRC tasks, for further decisions. Lastly, human indi-
vidual wellbeing is improved with more flexible robot control based on
self-adapted interaction. A worker can correct or re-plan robot motions
to respond to humans’ further task understanding and decisions.

3.2.3. Robot cognition
Robot cognition aims to let a robot understand human partners’ be-

haviours and intentions, and correspond with task common goals, then
plan adaptive manipulation desired by humans. The rising robot learn-
ing and ergonomic analysis, such as RL and ergonomic control, pave the
way to cognitive robot operations, as presented in Table 8. For exam-
ple, Sasagawa et al. [123] proposed bilateral control-based imitation
learning, where the robot could adjust force and motion speed when
imitating complex human motions. Sun et al. [124] proposed a human
teaching and robot-learning framework, which allows a robot to assist
humans by learning from demonstrations. Zhang et al. [125] utilised
RL models to generate optimal robot sequences in HRC systems. The
inferred operational sequences ensured successful task fulfilment, no
longer needing human decision-making and reducing human workload.
For suitable robot action selection, Nikolaidis et al. [126] proposed
a probabilistic decision process that balanced the tradeoff between
gathering information on human uncertain behaviours and moving
towards the task goal. The robot acted adaptive motions for a better
way of completing the task. For adaptive robot navigation, Aggravi
et al. [127] presented a decentralised haptic-enabled connectivity-
maintenance control framework for human–robot teams. A mobile
rescue robot adaptively planned easy-to-follow navigation movements
for humans based on the current connectivity level. To achieve robot
path re-planning at any time, Tonola et al. [128] combined online path
re-planning and speed optimisation modulation. The re-planning algo-
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rithm could make the robot able to complete its task despite unexpected
situations, such as the presence of humans or obstacles. For human
desired robot manipulation, Granados et al. [129] utilised physical
feedback from long-term interaction processes to allow the robot to
understand human’s needs and adjust its behaviour. Then, the er-
gonomic risk prediction was applied to picking-and-placing tasks to let
a mobile robot actively assume high-risk actions or repetitive medium-
risk actions over extended time periods [130]. Ansari et al. [131]
explored a task execution and control scheme which could generate
optimal robot forces to reduce human effort in cooperative object
manipulation. The force desired by the human was computed using the
trajectory of the identified task and defined as the input to the robot,
while the robot directly tuned parameters to perform corresponding
tasks with the calculated force. Besides, Khatib et al. [132] exploited
robot kinematics to allow the robot to present a workpiece to humans
following time-changing positions and orientations which were easy for
human coordination.

More than basic characteristics (such as collision avoidance), a
collaborative robot with cognition evolves into an intelligent agent
and embraces empathic teamwork skills for Proactive HRC systems.
Towards the intelligent agent, the first one is human-like cognition,
which is achieved by knowledge representation learning of human
intentions and task planning strategies for adaptive, human-needed
manipulations. Followed by robot learning, a robot can actively assist
human operators or quickly plan appropriate motions by imitating
and learning from human operations and commands. For the empathic
teamwork skills, a robot needs to analyse ergonomic satisfaction of
human postures in co-work, and dynamically changes end-efforts’ po-
sitions and orientations for easy and comfortable human following. In
this way, a robot performs operations with human desired forces, poses,
and speeds by adapting control parameters with human movement
models, relieving human physical and mental stress.

3.3. Cognitive service

The cognitive service focuses on transmitting mutual-cognitive HRC
task planning to human and robotic agents with natural and non-
misleading communication. The cognitive services are provided along
co-work progress in HRC systems, such as necessary information shar-
ing, or on-demand guidance and control commands. In this context,
typical studies are listed in the Table 9. Even in 2005, Marin et al. [60]
developed a remote robot teleoperation system, which transformed
human voice commands into six-DoF motions of robots, such as moving
to a position with permissible speed or grasping an object with a
specific angle. Then, Rey et al. [133] introduced a web interface to
manage manufacturing processes of the production line in a paint
factory. Human operators created and updated orders via the inter-
face, whereas AGV-based robots performed motions following these
orders, like picking and transporting raw materials to mixing tanks. For
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Table 8
Typical research efforts on robot cognition and HRC applications.

Robot cognition Method Application Ref.

Human skills imitation 4ch bilateral control for human–robot cooperative
execution in terms of force information and fast
motion

Scooping and transportation tasks [123]

Robot learning from human
demonstration

A dual-input DL algorithm, online automated data
labelling

A realistic car assembly task [124]

Optimal robot sequence allocation RL algorithms for task allocation, human fatigue
model with adding noise

HRC assembly task for alternator [125]

Two-way robot adaptation to a
human

Bounded-memory adaptation model for human
changing behaviours, mixed observability Markov
decision process for robot actions

Co-carrying a table through a door and
hallway-crossing tasks

[126]

Coordinated mobile robot
movements

Connectivity-maintenance robot control, grid covering
and path planning, wearable haptic feedback for
humans

Urban search and rescue robot [127]

Anytime robot path re-planning PathSwitch algorithm, speed and separation
monitoring, RTT

HRC cases with robot mounted upside
down a work-table

[128]

Ergonomic robot control Ergonomic risk prediction and pattern extraction of
human actions

Picking and placing objects of different
weights and heights

[130]

Robot actions with humans
required force

Velocity identification of the human-performed task,
robots’ contribution to each degree of freedom of the
task, a task-based role allocation control scheme

Cooperative manipulation of a
rigid-body object held jointly by a
human and a robot

[131]

Time-varying poses desired by
humans

Coordinated motion-based collision avoidance,
saturation in the null space algorithm

Surface finishing task [132]
bidirectional information exchange, Casalino et al. [134] used wear-
able vibrotactile rings in HRC tasks. Robots understood the operator’s
forthcoming actions while the human received vibrotactile feedback. To
transfer human experience to a robotic system for delicate sanding of
complex surfaces, Marullo et al. [135] proposed a decentralised control
strategy based on contact and impedance forces. The human utilised
force feedback to fit the robot’s path trajectory to the slightly deformed
surfaces. For human welders’ operation skill transfer, Wang et al. [136]
utilised VR hardware to teleoperate a 6-DoF robot. The VR platform
enabled human welders to intuitively transfer new operation trajecto-
ries to robot manipulations. For natural and seamless communication,
Hietanen et al. [51] utilised an interactive AR system to allow human
operators to monitor real-time robot states and safety zone changes in
the workspace, while the robot could receive users’ instructions on the
fly to execute the corresponding task. Then, Malik et al. [137] used
DT to construct collaborative production systems with high complex-
ity, which achieved resource sharing along the system’s life cycle by
modelling physical–digital space connection of assembly tasks in each
phase and corresponding environment, components, and task alloca-
tion. To exchange information between human physiological response
and robot optimal planning, Liu et al. [138] leveraged wearable EEG
and EMG biosensors to develop a physiological communication inter-
face. The human physiological awareness was obtained and provided
as a precondition to produce logical decisions for robotic control and
manipulations. Besides, Liu et al. [61] fused multimodal commands
from brainwaves, gestures, and voice for an accurate translation of
robot commands. These cognitive services clarify operation schedules
and minimise operation confusion when humans and robots operate
coordinated tasks.

The cognitive services can be achieved via multimodal and bidi-
rectional information exchange between humans and robots, such as
web interfaces on displays and tablets, gesture and motion command
recognised from camera devices, speech information from microphones
and speakers, haptic sensors, DT, VR, AR, brainwaves and so on. Some
typical examples including tasks of welding, assembly, co-grasping, and
robot route planning were explored for the successful implementation
of cognitive services in HRC systems. For natural and intuitive char-
acteristics of cognitive services in Proactive HRC, MR-based execution
loop encapsulated DT and AR technologies require further exploration.
The MR-based cognitive services enhance human context awareness
by providing procedural guidance, information visualisation and user-
adapted configuration in a virtual-reality fusion manner. Then, the
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MR environment online simulates and predicts robot motions with
reasonable permissible speed, replanning trajectories, and navigation
maps, avoiding robotic runtime errors. Lastly, the MR-based cognitive
services allow for natural communication between multiple humans
and mobile robots in a large spatial space, where one or more agents
exchange information and communicate with other multiple parties
who require different levels of priority.

4. Predictable spatio-temporal collaboration

The predictable spatio-temporal collaboration aims to reason op-
timal task fulfilment plannings and forecast co-work execution pro-
cesses across time, by predicting human–robot motions and system
resource allocation from a holistic vision. A production process consists
of various manufacturing knowledge (e.g., resource management and
operation goals) and can be decomposed into different hierarchical
sub-tasks/stages with tasks progressing. Within one stage, a human
operator cannot understand the complicated procedural knowledge of
an entire manufacturing task and make reasonable co-work strategies
for the next operation goal, especially when facing unexpected task
proceeding situations. The predictable spatio-temporal collaboration
learns prior knowledge from predefined task schedules and infers the
current task process status. By fusing the in-time operational status
and manufacturing prior knowledge, task planning decisions for the
next co-work are triggered and assigned to human and robotic agents
for optimal task completion, especially when facing some industrial
uncertainties. For specific decision execution in a task stage, a human
operator may suffer psychological stress if one is uncertain how about
robot motions and what may happen in the near future. By modelling
and predicting human movements in the execution loop, the pre-
dictable spatio-temporal collaboration also provides previewable robot
trajectories to humans and allows robots to plan proactive motions in
advance. The predictable intelligence in Proactive HRC relieves human
psychological workload and towards foreseeable HRC task accomplish-
ment with human natural participation and robot proactive behaviour.
As presented in Fig. 3, the predictable spatio-temporal collaboration
in Proactive HRC is realised with analysis of human uncertainty and
error operations, task precedence constraint planner, spatio-temporal

task fulfilment, and foreseeable execution loop.
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Table 9
Typical research efforts on HRC cognitive services.

Key element Interface Method Example Ref.

Voice commands (grasp, position,
rotation)

Web interface Remote programming based on
networking protocols

Robotics teleoperation tasks [60]

Manufacturing process management Web interface and manufacturing
system database

Autonomous robot navigation, human
position detection and tracking

Dispersion process of a paint factory [133]

Bidirectional information exchange A wearable vibrotactile ring Human behaviour estimation and
wearable vibrotactile feedback

Box assembly task [134]

Path trajectory for delicate sanding
of complex surfaces

Contact force feedback A decentralised control strategy based
on impedance force

Picking and placing large and heavy
objects

[135]

Welders’ operation skill transfer VR head-mounted display Motion-tracked handle controller, welder
operation prediction

Welding robot teleoperation [136]

Display of robot status, operator
instructions, workspace changes

Projector and a wearable AR gear Interactive AR user interface,
depth-based workspace modelling, safety
monitoring

Engine assembly tasks [51]

Resource sharing along systems’ life
cycle

DT and user interface Physical–digital space connection for
each phase of HRC

An industrial assembly case [137]

Human physiological response and
robot optimal planning

Wearable EEG and EMG biosensors ANN-based classifier, robotic control
system

Collaborative masonry tasks with
UGV

[138]

Translation of brainwave command
phrases into robot commands

Brainwaves, gestures and voice
commands

A DL algorithm for command
classification, function block for robot
control

A partial car engine assembly [61]
Fig. 3. Predictable spatio-temporal co-work in Proactive HRC.
4.1. Human uncertainty and error operation

In HRC tasks, human operations are characterised by uncertain
movements and incorrect operation risks, which may disturb robot
corresponding manipulations or even lead to safety issues. To maintain
fluent task progress and balance the unexpected disturbance, analysis
of human uncertainty and error operations is a critical precondition
of predictable spatio-temporal co-work in Proactive HRC. As shown in
Table 10, Talebpour et al. [139] utilised a constant velocity dynamic
model to predict human motion uncertainty for adaptive risk-based
replanning for multi-robot task allocation. The mobile robot can ac-
tively modify its plans with updated motions about humans. Kim
et al. [140] leveraged radio wave sensors to predict operators’ misuse
of permissible speed control of the robot. By integrating with consid-
eration of robot runaway motions, the HRC system ensured potential
contact force and energy transformation do not cause injury to humans.
To allow a robot to provide the right assistance at the right time,
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Hawkins et al. [141] developed a probabilistic model for human action
prediction. The robot could infer the current state of a task and make
appropriate decisions for human potential actions. Maderna et al. [142]
proposed a DTW algorithm to monitor movement trends of the current
human activity in real-time, in case the human performed a task in
uncertain ways, such as at different speeds, occasional errors, and short
pauses. Thus, a robot could handle the variability of human behaviours.
Then, Tuli et al. [119] developed knowledge-based DT to model human
motions and predict human action intentions. Also, Yi et al. [143]
developed a DT-based HRC assembly for accurate prediction of the
key points of the human skeleton model and high-precision human
body localisation. The robot could assist human workers in terms
of possible human motion sequences and ontologically defined task
descriptions. To model and simulate human motion, behaviour, and
physical load, Maruyama et al. [144] developed digital humans in HRC
systems by real-time monitoring, predicting the full-body dynamics of
workers. The system fused digital human, virtual robot modules, and
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Table 10
Typical research efforts on prediction of human uncertainty and error operations.

Predicted output Method Specification Application Ref.

Human motion uncertainty A hoplites-based multi-robot task
allocation, risk bid estimation of human
uncertainty

Risk-based robot replanning Multi-robot multi-human systems [139]

Human errors and contact risk Radio wave sensors for distance
monitoring, simulation of transfer energy
of contact

Permissible speeds for robots Battery assembly task [140]

Human action prediction Bayes network for task structure
representation, probabilistic model for
action prediction

Robot wait-sensitive planning Toy assembly task [141]

Monitoring of human task
advancement

DTW-based algorithm, template tree for
task description

Robot adaptive manipulations Assembly of a wheeled base [142]

Human action prediction Knowledge-based DT, human motion
capture system

Time reduction for assembly tasks Hybrid assembly system [119]

Human modelling and simulation Digital human analysis of motion,
behaviour and physical load

Real-time prediction and
ergonomic evaluation

A part-picking scenario [144]
production management modules to promote dynamic task scheduling
and improve production efficiency and ergonomic performance.

In HRC systems, the human uncertainty and error operations can be
monitored and predicted in various manners, such as torque sensors,
laser scanners, visual cameras, and DT modelling. The analysis of
human uncertainty is vital for smooth and efficient HRC work, espe-
cially in eliminating contact hazards, detecting geometric occlusions,
optimising robot kinematics status, estimating human joint torque, and
evaluating ergonomics. In this context, the robot completes tasks with
human permissible speeds, risk-based replanning, and less waiting and
idle times. In Proactive HRC, the digital human is a key element for
simulation and prediction of a worker’s physical actions and psycho-
logical states, as shown in the left part of Fig. 3. By real-time updating
and connection with a physical human, a worker’s future attention,
behaviours, and physical and mental load can be predicted in digital
environments. For example, a digital system can simulate the frequency
of individual human gaze at a robot in different operations, and then
proactively provide previewable robot trajectories to humans at the
right time. Besides, a digital human model with production manage-
ment knowledge deserves more attention, which can identify human
uncertainty and correct error operations in advance. The prediction of
human uncertainty and incorrect operations enables HRC systems to
recover irregular and risky situations to the expected co-work strategy,
which facilitates compassion and coevolution of human–robot agents.

4.2. Task precedence constraint planner

The operation precedence constraints exist in hybrid HRC task
proceedings. For example, some manufacturing stages need to be com-
pleted by human manual operations first, followed by robot manipu-
lations or handovers. The task precedence constraint planner is crucial
prior production knowledge which should be learned in HRC systems,
thus achieving a predictable spatio-temporal collaboration. As pre-
sented in Table 11, Pulikottil et al. [145] inferred knowledge of task
temporal constraints based on human and robot operational goals. The
HRC system could plan the best robot motion for fluent collaboration
with knowledge of task constraints. For example, humans were not
allowed to pick robot-handled objects before the robot ends on its
manipulation. Besides, Cheng et al. [146] decomposed a task into hier-
archical and temporal subtasks and plans, and explored the hierarchical
relationship of action sequences to finish the task. Based on task decom-
position and human trajectory prediction, a task planner was developed
for efficient subtask cooperation in advance. To model resources and
workload for shared tasks, Nikolakis et al. [147] utilised a task allo-
cation search tree to online schedule and timely adjust manufacturing
operations when facing unexpected events during task execution. Then,
Ferreira et al. [148] formulated a scheduling problem for multimode
and multiprocessor tasks by considering different production settings
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and eligibility. Based on a CP model and a genetic algorithm, the
generated optimal solutions for collaborative tasks reduced the total
work time, especially when facing numerous precedence constraints
and low robot eligibility. To learn knowledge representation and con-
straint ranking in disassembly tasks, Ding et al. [149] established a task
KG, which could query and search stepwise operations for human and
robot agents. Then, Yu et al. [150] conceived HRC working processes
as a chessboard game with specific rules determined by the constraints
in assembly tasks. With decomposing a product into tasks with step
procedures, a multi-agent RL method was utilised to generate task
schedules for HRC disassembly processes. The task schedule remained
feasible even for a broader product family with similar task structures.

The knowledge representation of task precedence constraints can
be inferred and learned with numerous methods, like the probabilistic
model, tree structure, KG, RL, etc. The understanding of task constraints
is essential to both online scheduling for long-term task fulfilment and
timely strategy generation for close-proximity execution, as presented
in the left-bottom part of Fig. 3. For example, physical structure con-
straints of the product can be regarded as prior knowledge for dynamic
task strategy adjustment when HRC systems assemble or disassemble it.
While the understanding of machining process constraints ensures high
surface quality and precision in HRC grinding systems [151]. To infer
knowledge of various task precedence constraints for product variants,
the cutting-edge technologies including KG and RL provide feasible
solutions. The holistic task structure for the manufacturing of a product
can be learned and linked in a KG. Manufacturing constraints of partial
components of the product are sub-graphs of the entire task structure.
Different HRC task stages are represented by these sub-graphs, whereas
operation sequences in a specific subtask are depicted by edges in
the KG. Besides, the KG can transfer existing knowledge to learn task
precedence constraints for product families with similar structures by
inferring general rules of various node attributes. For HRC production
of a new product in large variants, RL methods can be utilised to learn
the task structure via iterative simulation and optimisation of working
processes in DT environments.

4.3. Spatio-temporal task fulfilment

The spatio-temporal task fulfilment pays attention to preparing
holistic co-work planning for hierarchical HRC subtasks in the future
stage based on current scene understanding and prior manufacturing
knowledge. There are two kinds of situations for the spatio-temporal
task fulfilment (see the right-upper part of Fig. 3). The first one is for
the long-term expected HRC working processes, which are achieved by
learning the task precedence constraints as key prior knowledge for
co-work planning. Meanwhile, the current scene understanding is mon-
itored and reasoned as real-time feedback to ensure fluent and smooth
HRC task completion. The other one targets situations of human uncer-
tainty and error operations in the current scene. The HRC system needs
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Table 11
Typical research efforts on knowledge learning of task precedence constraints.

Key element Method Specification Application Ref.

Explicit temporal constraints of
task sequences

Maximum entropy inverse optimal
control for human goals, partially
observable Markov decision process for
robot goals

Next robot action Quality check of workpieces [145]

Hierarchical subtask plan Bayesian inference for trajectory
prediction, DTW distances based plan
recognition, a planner for robot motions

Hierarchical and temporal
decomposition of a task

A desktop assembly task [146]

Task online scheduling Task allocation search tree for
decision-making, FB for connection of
execution status

Shared task scheduling Assembly of a turbocharger [147]

Task scheduling under different
settings

A CP-based model for various constraints
limiting the search space, a genetic
algorithm for near optimal solutions

Shorten cycle time in co-work An hybrid working cell [148]

Task KG A domain knowledge representation
model for collaborative disassembly, KG
establishment

Domain knowledge support Roller chain disassembly task [149]

Task scheduling with specific
rules

Product decomposition, a
Deep-Q-Network based multi-agent RL
algorithms

Task structure for a product
family

Desk assembly task [150]
Table 12
Typical research efforts on spatio-temporal task fulfilment.

Predicted output Objective Method Example Ref.

Next operations to perform Three agents scheduling DT of HRC cell, AND-OR tree and Petri
Nets-based scheduling algorithm, visual
and tactile interface

Assembly tasks of emergency
buttons

[152]

Task scheduling with temporal
constraints

Task performance prediction of
each agent

Simple temporal networks, mixed-integer
linear program

LEGO kit assembly [153]

Online task scheduling with
specific rules

Two agents scheduling An MCTS and CNN-based RL algorithm Desk assembly tasks [154]

Re-scheduling of task operations System response to resource
breakdown

A hybrid hierarchical model for both
resources and workload, intelligent
search for task allocation and
re-rescheduling

Assembly of vehicle supercharger [155]

Disassembly sequence planning Task planning with rules and
constraints

A graph model for disassembly rules,
sequence planning optimisation

Disassembly of a wooden toy box [156]

Dynamic task assignment Task allocation with changing
attributes

Intuitionistic fuzzy number definition,
three-way decision theory

A numerical example [157]
to re-plan and dynamically adjust the next task operation arrangements
by integrating the prior manufacturing knowledge for successful co-
work execution. To date, some research efforts have explored efficient
solutions for the achievement of spatio-temporal task fulfilment in HRC
systems, as shown in Table 12. Maderna et al. [152] developed an
HRC system with flexible scheduling and tactile communication. The
scheduling algorithm accounted for the variability in the duration of
human tasks and the occurrence of robot faults to online generate
task allocation and sequences, which were delivered to a human and
two robotic agents for their next operations. With considerations of
temporal constraints and human task duration, Liu et al. [153] explored
real-time scheduling and optimisation of future team activity allocation
for human and robot agents. Besides, Yu et al. [154] utilised an RL
algorithm based on MCTS and CNN to generate the working sequences
in the HRC system by considering some specific rules. The RL algorithm
could be trained to perform task scheduling without any supervi-
sion or domain knowledge guidance. In case of unexpected events
in HRC systems, such as resource breakdown, Nikolakis et al. [155]
used a hierarchical model for resources and workload representation,
then leveraged intelligent search to online adjust and schedule new
task allocation. Then, Lee et al. [156] introduced a graph model to
address disassembly sequence planning problems by complying with
disassembly rules, such as disassembly cost by robot and human, the
various starting points, the safety consideration for human operators,
and the feasible operations for a robot. Lastly, Zhang et al. [157]
utilised attribute weights in intuitionistic fuzzy environments, which
generated task assignments in HRC systems with human uncertainty
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considerations.
The spatio-temporal task fulfilment can be achieved with advanced
techniques, like KG, RL, and DT. The current focus of HRC task ful-
filment mainly lie on task scheduling problems, rather than arranging
reasonable operation sequences for humans and robots in future stages,
which impedes their truly collaborative execution with task proceeding.
For the widespread implementation of spatio-temporal task fulfilment
in Proactive HRC, the first feasible solution is to construct KG of
working processes containing various levels, such as components, op-
erations, and task decomposition. The HRC KG links different prior
knowledge including task structure, geometrical property, and resource
allocation together for task planning in each stage with detailed op-
erating instructions. The second one embeds prior knowledge into
RL algorithms for HRC task planning. In this case, when generating
task planning instructions for a new and ever unseen task, the RL
algorithm can be speeded up to search efficient schemes by avoiding
redundant trials and errors. The last one is to build knowledge-based
DT environments for HRC task re-planning. The knowledge-based DT
can distill current scene representation, such as human action, skeleton
torque, robot kinematics, and contact hazards. By inserting the scene
understanding into holistic prior knowledge of a task, the knowledge-
based DT can dynamically simulate, predict and re-plan the specific
next operations for human and robotic agents.

4.4. Foreseeable execution loop

The foreseeable execution loop aims to promote robot proactive
actions to coordinate with human intention in advance and avoid

potential error operations, as shown in the right-bottom part of Fig. 3.
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Table 13
Typical research efforts on foreseeable execution loop.

Predicted output Type Method Example Ref.

Human’s reaching motion Robot manipulation without interference GMM algorithms and unsupervised
learning

Picking and placing [158]

Human on-going action Robot turn-taking event and motion
starting

LSTM for action prediction with
multimodal signals

A robotic scrub nurse system [159]

Human motion trajectory Proactive robot movements based on
human future locations

A RNN model for motion prediction Assembly of a car engine [160]

Human trajectory and obstacle Robot action selection Hybrid motion prediction, game
theoretical action selection strategy

LEGO bricks assembly [161]

Human near future intention Proactive robot path planning Multimodal human action prediction,
decision tree

Brackets assembly in aircraft
cabins

[162]

Human assembly rate and risk
perception

In-time robot response to human
requests

A hidden semi-Markov model GPU assembly line [163]
On one side, a robot can reason, re-plan and reach interactive points
ahead of time, based on the prediction of future human movements.
On the other side, the HRC system is capable of making decisions
and assigning a robot’s next manipulations with early detection of
human motions and operational intentions. As presented in Table 13,
Luo et al. [158] leveraged a GMM-based algorithm to predict hu-
man reaching motion in a shared workspace. Thus, the robot could
move and perform operations without interfering with human actions.
To allow a robot to comprehend a human’s on-going actions, Zhou
et al. [159] introduced an LSTM model to predict a surgeon’s early
actions. Meanwhile, a robot nurse could foresee the precise time of
a turn-taking event and execute its action to reduce human waiting
time. Besides, Zhang et al. [160] utilised an RNN model to predict
human motion trajectories in HRC settings, based on which a robot
could proactively plan actions to assist human operations, like picking
up tools and reaching predicted handover positions in advance. For
suitable robot actions in HRC, Oguz et al. [161] predicted the motion
of a human teammate and utilised a game theory strategy to plan
and select robot operations. Then, Li et al. [162] proposed multimodal
action prediction methods with a partial observation of visual and
skeleton data of human operations. Among the HRC system, a decision
tree is leveraged to generate proactive robot path planning based on
the predicted human intentions in near future. Lastly, Lin et al. [163]
predicted human assembly rate in task and used a hidden semi-Markov
model to link predicted human behaviours and robot responses. The
robot could respond in time to human requests in HRC systems, which
reduced the assembly cycle time and operators’ waiting time.

For a foreseeable execution loop, the leading AI models including
DL, TL, and multimodal learning pave the way to robust and accurate
human action prediction. In Proactive HRC, the foreseeable execution
loop can be further enhanced by embedding a knowledge model, which
learns and indicates the priority of different prediction elements. For
example, human actions with turn-taking events and risk properties
desire more attention, like handover, interaction, and contact hazards.
While smooth and long-playing human operations are relatively not
sensitive to time limitations, such as the unscrewing process standing
in one location. Besides, the DT environment should be immersed in
the foreseeable execution loop, which can simulate and predict human
fatigue, working ergonomic conditions and runaway motions in real
time. With the DT and knowledge model, a robot can infer, reason, and
plan suitable path planning in advance to reduce human waiting time,
increase efficiency and enhance naturalness in a collaborative task.

5. Self-organising multi-agent teamwork

The self-organising multi-agent teamwork focuses on coordinated
and synchronous activities between multiple human and robotic agents
in a large and unstructured space based on their qualified capabilities
and operational roles, to satisfy stringent requirements of required
execution time, resource availability, minimum energy consumption,
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etc. The multiple agents in a Proactive HRC system consist of human
operators, fixed robot arms, and mobile robots. The self-organising
intelligence is the central brain of Proactive HRC, which bridges the
information island between multiple agents and reasons for global
optimal co-work processes by learning knowledge of human–robot
preferable operations and task policies. In this way, the self-organising
knowledge is learned from four aspects, (1) task structures and decom-
position, (2) dynamic environment and event relations, (3) resource
occupation constraints and ergonomics, and (4) capable agent execu-
tion rules in unstructured space. The demonstration of self-organising
multi-agent teamwork in Proactive HRC is shown in Fig. 4. From the
organisation level, a working cell design for multiple agents in HRC
is a vital precondition, which should distill the knowledge of general
rules of human–robot qualified operations. Therefore, the HRC system
can transfer learned knowledge to quickly generate task arrangements
even facing product variants. From the task level, the self-organising
multi-agent teamwork relies on three key aspects: (1) information com-
munication between multiple humans for various scenarios in different
places, (2) resource allocation and management between collective
robots for optimal task planning, and (3) interaction and role-playing
between hybrid human–robot agents for global task assignment. For the
interplay of human–human, robot–robot, and human–robot organisa-
tions, the participators can share their different capabilities for various
specific tasks with these essential techniques of information exchange,
task planning, and task assignment.

5.1. Working cell design and configuration

The working cell design and configuration focus on adaptable work-
ing station design for human–robot layout in tasks and functional struc-
ture configuration for robot participators. As presented in Table 14,
Gopinath et al. [164] designed a layout of a collaborative assembly cell
that contained a large industrial robot and a human worker, by taking
risk assessment and productivity concerns into account. In the station
cell, the robot could flexibly lift tools to aid the human operator. For
robotic cells with one or more robots and accessory equipment, Zhang
et al. [165] proposed a systematic layout planning method with an
objective of time and cost efficiency. The approach tackled problems
of the proper configuration for a given HRC task by involving con-
siderations of the robot programming system, collaborative tool chain,
scheduling optimisation of robot motions, and gripper design. Then,
Arkouli et al. [118] designed an HRC work cell that included multi-
typer and multi-purpose robots. With decision-making in the DT-based
HRC, high payload robots and mobile manipulators were used to handle
heavy operations. Meanwhile, humans’ physical and cognitive stress
was relieved by exoskeletons and AR tools. For robot configuration,
Salvietti et al. [166] designed a soft gripper and a wireless ring-shaped
interface in HRC. The design both guarantees a safe interaction and
enables bidirectional communication through the haptic feedback in-
formation. Besides, Pang et al. [167] designed a soft robot skin with the
features of softness, variable stiffness, and sensitivity. By inflating the
internal air pressure and loading external force, the stiffness of the skin
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Fig. 4. Self-organising multi-agent teamwork in Proactive HRC.
Table 14
Typical research efforts on HRC working cell design and configuration.

Structure Method Example Ref.

Layout design of a collaborative assembly
cell with a worker and a robot

Risk assessment, system safety, feedback
interface

Assembly of a flywheel housing cover [164]

Optimal design of a robotic cell layout with
one or more robots

Configuration selection for tasks, cell layout
scheduling, tooling optimal design

3C (Communication, computer and
consumer electronics) manufactory

[165]

Working cell design for multi-typer and
multi-purpose robots

AR tools for operator support, VR tools for
ergonomic optimisation, DT-based
simulation

Assembly of large-scale parts [118]

Soft gripper, wearable ring-shaped interface
embedded with a vibrotactile motor

Bluetooth communication protocol,
perceptual thresholds for the vibrating ring

Pipe grasping test [166]

Robot skin composed of an array of
inflatable units and sensing units

Adjusting the internal air pressure supplied
to inflatable units

Physical HRI [167]

Mechanical and control design of industrial
exoskeleton with high payload ratio

Compliant actuator modelling, trajectory
tracking controller, safety-based fuzzy logic
controller

Manipulation tasks for heavy parts [168]
could be adjusted to reduce the peak impact force. To assist humans
in onerous work, Mauri et al. [168] proposed mechanical and control
design solutions for a low-cost hardware industrial exoskeleton. The
industrial exoskeleton with a high payload ratio could help a human
operator to lift and transport heavy parts, such as a car bumper.

The working cell design and configuration are the first procedure
to achieve self-organising multi-agent teamwork in Proactive HRC.
For the design of a configurable working station layout with task-
oriented robots and human operators, two potential research directions
still require more exploration. The first one is AI-based HRC cell
generation, such as RL methods. The AI-based HRC cell generation
can learn from the historical experience of working station design and
create a reasonable human–robot layout by iterative optimisation from
constraint rules, such as human’s limited physical strength in doing
repetitive labour tasks. The HRC cell avoids assigning humans with
durable tasks over time beyond one’s physical limit. The other one is
wearable and augmented robots, like a light exoskeleton with active or
passive actuation. The wearable exoskeleton robot can enhance human
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payload abilities and their symbiotic relations with safe hardware de-
sign and user-friendly software interfaces. With the working cell design
and robot configuration, the next step is to achieve self-organising
resource allocation in multi-agent HRC systems, including human–
human communication, robot–robot management, and human–robot
task assignment.

5.2. Multiple human communication and collaboration

Information communication and collaboration between multiple
humans are common in a lot of working scenarios. The two sides
in communication may be in close proximity or remotely staying in
different places. Intuitive and natural multiple human communication
and collaboration should adapt to different user-playing roles, oper-
ation habits, and tendencies of interactive actions. As presented in
Table 15, Shang et al. [169] used Unity3D tools to develop an AR-based
multiplayer collaboration system for disassembly tasks of ship power
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Table 15
Typical research efforts on multiple human communication and collaboration.

Key element Method Example Ref.

Multiplayer collaboration without conflicts of
synchronisation and access

Unity3D development and data transformation
in Server/Client mode

Disassembly of ship power
equipment

[169]

User decision for quality assessment with AR
headset

3D model of components, surface discretisation,
AR alignment

Surface polishing tasks [170]

Knowledge transmission between remote
experts and local workers

A projector-based MR system, calibration of a
projector and cameras

Water pump assembly [171]

Information communication between operators
of different roles

AR assembly guidance, TCP/IP server for
message communication

Assembly of large-scale complex
products

[116]

Differences and similarities between HHT and
HRT

Nine considerations based on dimensions of
teamwork

HRT design [172]

Trust violations in HHT and HRT interactions A mixed factorial design in a social context Anthropomorphic robots [173]
equipment. The system tackled problems of scenario synchronisation
and access conflicts in multiple human communication. Then, Ferraguti
et al. [170] developed an online quality assessment system for polished
surfaces in AR devices. Multiple users could see metrology data pro-
jected on the mould to learn about the automatic robot polish process
and make faster decisions about where are required polish again for
refinements. To transmit domain knowledge between remote experts
and local workers, Wang et al. [171] developed a projector-based
MR system. The system allowed a remote expert to project gestures
into the real worksite to guide a local worker, thus improving the
co-work performance, co-presence awareness, and user collaboration
experience. Liu et al. [116] developed an AR-assisted assembly system
that supported collaboration between multi-operators and machines.
The system contained operators in four roles, e.g., group leader, main
operator, auxiliary operator, and apprentice. Through the AR helmet,
multiple humans exchanged real-time information and completed the
teamwork with different duties. Then, Tokadli et al. [172] investigated
differences and similarities between HHT and HRT for interaction adap-
tation between different kinds of teams. The results provided potential
interaction paradigms for HAT design with considerations of commu-
nication, coordination, and cooperation. Lastly, Alarcon et al. [173]
investigated the effects of trust violations in HHT and HRT interactions.
For anthropomorphised robots, the result demonstrated that there was
no significant difference in trustworthiness perceptions between human
partners or robot partners in a social context.

In complex industrial settings, human–human communication and
collaboration are characterised by social wellness and esteem needs.
The multiple human collaboration in HRC mainly contains different
playing-role assignments, human resource management, expert guid-
ance, and interactive co-manipulation. In Proactive HRC, the fusion of
AR and DT provides communication tools to achieve self-organising
multiple human co-work, with three critical aspects requiring more
attention. The first one is the time consistency between multiple hu-
man communication. When different interaction events happen, it is
necessary to assure synchronous access without conflicts in network
communication mechanisms. Thus, various working scenarios can syn-
chronously switch and deliver to multiple humans via display devices
at the same time, for information communication and further co-work.
The second part is the space consistency for scenario visualisation be-
tween multiple humans in remote spaces. With tracing and positioning
technologies, such as SLAM, human operators in different locations can
share a holographic display of the same view of a manipulated product
and conduct operations for a common task goal. Lastly, visible fidelity
and immersion during information communication are key to improv-
ing naturalness and fluency between multiple human teammates. For
example, when an onsite worker receives domain knowledge from a
remote expert, the AR and DT tools can enhance their coexistence
relationships and user experience by adapting to their action habits,
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personalised interactive gestures, and working roles.
5.3. Multiple robot management and task planning

Multiple robot management aims for optimal task planning and
resource allocation between collective robots, such as fixed robot arms,
AGV, and mobile robots. Nowadays, numerous research efforts on
multiple robot collaboration have affirmed its broad applications in
manufacturing tasks of complicated products, as shown in Table 16.
For example, Hassan et al. [174] developed a multi-robot collaboration
system for optimal robot positions and orientations when conducting
surface coverage tasks. Robots in the system were able to share in-
formation on the environment mapping, operation status, and their
capabilities for team objectives. For task trajectory planning of multiple
underwater robots, An et al. [175] introduced an integral sliding mode
controller to guide a large group of robots to destinations along desired
paths. The system also built an acoustic communication system under
low noise ratio conditions for information transmitted between multiple
robots. For multi-agent path planning, Chang et al. introduced deep
RL models to learn optimal control policies for UAV [176]. Besides,
Liu et al. [177] proposed a multi-agent visual semantic navigation
system, which allowed multiple mobile robots to collaboratively find
multiple target objects in unseen scenes. The system was developed by
semantic mapping of perceived scenarios, prior knowledge learning of
relationships between surrounding objects, and a real-time communica-
tion module. Then, Liau et al. [178] developed a task allocation model
for one human with two robots by considering the task characteristics
and resources, i.e., each agent’s capability to perform a task. In the
task allocation model, the work process was decomposed into a series
of functional actions based on the component’s geometrics, tolerance,
and required force exertion in motions. For dynamic task allocation
between a human operator, a mobile manipulator, and a dual-arm
manipulator, Karami et al. [179] utilised an AND-OR graph to represent
concurrent and sequential operations in the team.

The multiple robot collaboration in industrial settings can achieve
optimal manipulation trajectories, mobile navigation maps, and global
task allocation. Multiple robot management and task planning advance
HRC systems from a traditional leader-follower manner to an intelligent
multi-agent system, which improves fault tolerance. The self-organising
multiple robot teamwork in Proactive HRC plays a key role to minimise
task completion time, less occupation of capable agents, and ergonomic
risk of humans, which can be achieved by following aspects. The first
one is to use cutting-edge techniques, such as KG to decompose a
complex manufacturing task into a sequence of executable subtasks.
These subtasks are constructed into nodes in a graph across different
task levels with attributes of constraints of resources, execution time,
relation rules, and costs. Then, with the knowledge distilling from
task decomposition, the characteristics and capabilities of different
robot agents are analysed to find the agent assignment preference
for each manipulation trajectory, navigation path, and subtask. Lastly,
each robot in Proactive HRC systems can autonomously explore the
dynamic environment, determine relations of surrounding objects, and
communicate with others for feedback on task execution goals.
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Table 16
Typical research efforts on multiple robot management and task planning.

Key element Method Example Ref.

Optimal robot positions and orientations
considering team objectives

Discretisation of the search space, multiobjective
optimisation

Surface coverage tasks in
unstructured environments

[174]

A multi-robot control strategy based on a
leader–follower scheme

Acoustic communication system, Lyapunov
analysis-based control law

Spherical underwater robot [175]

Path planning for multiple robots under human
supervision

A deep RL model with consideration of dynamic
environments

UAV [176]

Visual semantic navigation for multiple agents and
objects

A hierarchical decision based on semantic
mapping, scene prior knowledge, and
communication mechanism

Multi-agent collaborative
searching in indoor scenes

[177]

Task allocation between a human worker and two
robots

Assembly operation decomposition, analytic
network process, genetic algorithm

Small-volume mould assembly [178]

Dynamic task allocation based on sequential task
representation

An AND-OR graph for multiple human–robots
cooperation flow

Inspection of product defects [179]
5.4. Hybrid multi-agent interaction and task assignment

Hybrid multi-agent interaction and task assignment aim to achieve
seamless communication between human operators and different kinds
of robots, determine their dynamic working roles and make global opti-
mal operation arrangements for their teamwork. As shown in Table 17,
Antakli et al. [180] developed an agent-based web-supported simu-
lation environment for hybrid teams in production scenarios, which
included resources of digital human models, robots, and a visualisation
interface. The configurable simulation could be used to evaluate the
feasibility of planned production schedules and task assignments to
team members. Then, Patnayak et al. [181] built a wearable super-
computing platform as a multi-agent CPS for distributed humans and
robots. The system could be utilised to create maps, segment tasks,
and generate paths for hybrid multi-agent collaboration with available
power and networking capabilities. The virtual simulation and physical
networking platforms provide a precondition for real multi-agent inter-
action and task assignment in manufacturing scenarios. For multi-agent
interaction in distributing tasks, Galin et al. [182] first classified their
interaction types based on working time, area, and shared workspace.
Then, a particle swarm algorithm was leveraged to generate a structure
to indicate which agents were allowed for information exchange and
interaction in separated tasks. To enable bidirectional and empathic
interaction, Costantini et al. [183] fused speeches, verbal exchanges,
face muscles, body postures, voice modulation, and skin responses
as communication manners in multi-agent HRC systems. With logic
multi-agent system configuration, human and robotic agents could
communicate with each other and pass real-time messages according
to hierarchical and asynchronous events in systems. To tackle human
attention occupation when collaborating with multiple robots, Yao
et al. [184] utilised an analytical timing model to schedule which robot
the human should collaborate with first. Robots could maximise their
performance and start the co-work with a human worker with the
scheduled collaboration requests. Mokhtarzadeh et al. [185] leveraged
a CP-based approach to solve the task allocation problem in hybrid
multi-agent HRC systems. The method could achieve acceptable results
for large-scale task assignments, which included up to 200 tasks in
different groups and no-wait scheduling tasks.

The hybrid multi-agent HRC is an efficient solution for config-
urable and flexible production of small-medium volume products char-
acterised by large variants in unstructured spaces, such as aircraft
manufacturing. With multi-agent participants, ultra-precise operations
can be completed by industrial robot arms, such as welding and ma-
chining processes, while heavy manipulation required a large workload
can be performed by mobile high-payload robots, such as material
handling. Meanwhile, dexterous production of exact components can
be assigned to human operators, whose workload can be reduced
with the assistance of light collaborative robots. To achieve the self-
organising, hybrid multi-agent teamwork in Proactive HRC, there still
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needs more research explorations, especially in the following aspects.
Firstly, bidirectional attention to collaboration requests from human
to robot and from robot to human should be developed to avoid
disordered resource occupation. KG methods can model various human
and robotic operations and link their relations in a task, such as
robot manipulations for product state monitoring, picking and placing,
human remote control, screw inserting and mounting, etc. With the
constructed knowledge base, a multi-agent interaction structure based
on collaboration requests between human and robotic agents can be
reasoned and determined to minimise idle time and makespan of HRC
tasks. The second one is plug-and-play networking and connection
between hybrid multiple agents in HRC systems. The IIoT techniques
based on cloud–edge computing should provide multi-agent communi-
cation and extensible network access for the configuration of different
human–robot teams. In this way, agent-based services can be quickly
created and provided to end-users, for optimal task planning when the
HRC system adds or removes some agent resources. Lastly, the general
rules of hybrid human–robot collaborative work processes should be
learned and used as prior knowledge for new types of teammates
with heterogeneous robots. For a new human–robot configuration, the
learned knowledge representation can guide human operators on what
to do and also train robots on how collaborative decisions are taken.

6. Compliance robot control and proactive robot motion

Proactive HRC is expected to have close collaboration between
robots and humans in close proximity. According to the classification
of interactions and definition of HRC [16], collaborative actions can
be categorised into direct and indirect contact between humans and
robots from the perspective of the robots. The former allows physical
interactions where compliance takes a critical role in the success and
performance of safe cooperative actions. The latter covers multiple
subjects and here the scope of the indirect contact cases is limited to
the investigation of path planning.

6.1. Robot compliant control

6.1.1. Compliance behaviours
Robotic applications to manufacturing and/or assembly tasks re-

quire mechanical interaction with the environment or objects to be
handled, especially in a dynamic yet constrained environment. The
success of such tasks relies on the compliant behaviours of manipu-
lators/robots. HRC envisioned for future factories will require close
physical collaboration between humans and robots in shared working
environments. Within the context, compliance takes the main role in
easing interaction between robots and humans, and it is often required
to facilitate safe and efficient human–robot cooperative actions. This
section starts with the revisit of compliance control in robotics, espe-
cially in HRC/HRI, and then provides detailed treatments on relevant

issues with a focus on the compliant control of robotic applications.
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Table 17
Typical research efforts on hybrid multi-agent interaction and task assignment.

Key element Method Example Ref.

3D configurable simulation of hybrid teams in
production scenarios

Resource oriented architecture, motion synthesis,
Unity3D simulation

Aircraft wing assembly [180]

A wearable super-computing platform for
distributed human–robot agents

On-board Ethernet network, multi-modal data
aggregation and sharing

UAV system [181]

Multi-agent interaction in distributing tasks Interaction type classification, particle swarm
algorithm

A multi-agent robotic system [182]

Multi-modal bidirectional communication including
speech, verbal and emotional exchange

Multimodal communication recognition,
multi-agent system organisation algorithm

Daily robotic interaction with
humans

[183]

Scheduling of human attention to collaborate with
multiple robots

Condition of immediate access model, analytical
timing model

Human attention occupation with
three robots

[184]

Allocation of different groups and sequences of
multi-agent task

A CP-based approach, a sequence of boards
problem

Assembly of printed circuit boards [185]
Fig. 5. Illustrations of the compliance behaviours between humans and robots.
Source: Adapted from [186].
In robotics, the term ‘‘compliance’’ refers to the flexibility of a
robotic manipulator, and compliance relates to impedance control to
some extent, which refers to the robot motion absorbing or resisting
the interaction force. The term compliant control can be originally
inspired by natural mechanical compliance of the human body [186].
Back to the initial proposal of the compliant control, the theory and
experiment of compliant robot control were performed by Waibel
and Kazeooni in the 1950s [187], where a compliant controller was
defined and developed to modulate the contact force for compliant
motion. In the last decade, research efforts on compliance behaviours
of manipulators have been numerous. Various approaches to facili-
tate the performance of the robot compliance control and compliant
motion have been reported in the literature. The compliant control
approach mainly focuses on the relationship of the robot position, the
commanded quantity, the interaction force, and a specified function of
the command signals. Aude presented the etymology of compliance and
gave a vivid interpretation of compliance as shown in Fig. 5 [186]. As
shown in the left-side subfigure, the robot complies with the requests
of the human to start running, while the robot resists the human’s
request and forces the human to execute the compliant behaviours as
shown in the right-side figure. The compliance is directly interpreted
from the haptic signal, and the compliant behaviour during interactions
is regulated through dominance and role distribution and results in
the change of motion in the cooperative actions. Compliant motion is
produced by two primary methods, and they are passive mechanical
compliance built into the manipulators and active compliance realised
in the control servo system. Various interaction scenarios define a vary-
ing degree of proximity for humans and robots, and the relationship of
humans and robots can be categorised as ‘coexistence’, ‘cooperation’, and
‘collaboration’ [16]. ‘Coexistence’ represents working independently on
different tasks in adjacent workspaces without safety fencing, but not
in a shared workspace. ‘Cooperation’ defines the same workspace where
humans and robots work alternately on different tasks within a process,
but no direct interaction. ‘Collaboration’ means that humans and robots
18
Table 18
Classification of force control approaches.

Name Explicit specification Implicit
specification

Difference

Direct force
control

Hybrid force/motion
control; Parallel
force/motion
control

– Maintaining a desired force
by the closure of a force
control loop.

Indirect force
control

Impedance control;
admittance control

Impedance
control

Force control via
position/motion control,
without explicit closure of
a force feedback loop

simultaneously work on the same tasks in a shared workspace with
direct contact if necessary.

6.1.2. Robot force control for compliance
Within the context of HRC, the compliance behaviours of the robots

are regulated by force and position control. Robot force control is of
paramount importance when the robot is interacting with the envi-
ronment or humans [188], accordingly, the classification of the force
control schemes can be summarised as follows, and it provides funda-
mental support to compliance behaviours of the robotic control system
listed in Table 18.

∙ Direct force control schemes are developed which achieve force
regulation when the end effector is in contact with a compliant
environment, thanks to the adoption of an integral action on the
force error generated by an outer force loop [189]. In the case of
direct force control, the abstraction that aims is able to directly
‘‘control’’ the contact force.

∙ Indirect force control schemes achieve force control via motion
control, without explicit closure of a force feedback loop. Indirect
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force control regulates the dynamic relationship between the po-
sition and the interaction force of the robot with its environment
without direct measurement of the interaction forces.

In direct force control, an explicit model of the interaction task
s necessary, in which the desired motion, contact force and moment
eed to be specified in a constrained way with respect to the constraint
mposed by the environment. Hybrid force/motion control, as a typical
pproach widely adopted in direct force control, is to regulate the
otion along with the unconstrained task directions and force/moment

long the constrained direction [190]. Parallel force/position control
s adopted by superimposing force and motion control actions if an
ccurate description of the environment is not available. In this case,
he force control dominates motion control, resulting in accurate force
egulation and tolerated position errors.

Indirect force control does not need measurement of contact forces
nd moment. Two main approaches which are composed of admittance
ontrol and impedance control are adopted to achieve the indirect
ontrol of the interaction force. Within the context, the position de-
iation between the end-effector motion and the desired motion due
o the interaction with the environment is related to the contact force
hrough parameter adjustment of mechanical impedance/admittance.
echanical impedance can be defined as the resistance to motion of a

tructure forced by the applied contact force. On the contrary, mechan-
cal admittance formulates a function of the velocity and input contact
orce and is to transform the contact force into the reference velocity,
n which the reference position and acceleration can be calculated by
he zero-hold method. Impedance control and admittance control can
e used to implement the same control goal but their stability and
erformance during the control process are mutually complementary.
he former better performs dynamic interaction with a stiff environ-
ent but suffers from poor accuracy in free space because of friction

nd unmodelled effects, and the latter is better suitable for interaction
ith a soft environment in a high-accuracy means, but with the issue
f instability during the interactions. When only consideration of the
tatic relationship of the end-effector position and orientation deviation
nd contact force/moment is defined, stiffness control and compliant
ontrol are special cases of impedance and admittance control. Hybrid
osition/force control provides the potential and fundamental control
ethodology for the compliance behaviours of manipulators, and the

ask space that hybrid position/force control works is composed of
osition-controlled and force-controlled subspaces. However, both posi-
ion and force cannot be accurately controlled along any given direction
n the hybrid position/force control because it ignores dynamic cou-
ling between the manipulator and the environment. For this purpose,
mpedance control bridges the relationship between the end-effector’s
osition and force. In the subject of the compliant motion, compliant
ontrol is the subset of the impedance control and it is defined as ’any
obot motion during which the end-effector trajectory is modified, or
ven generated, based on online sensor information’.

.1.3. From passive compliance to active compliance
In any HRC system, human safety is of paramount importance.

ompliant control is highly relevant to human safety in physical HRI.
arious approaches to facilitate the stability and performance of com-
liant control have been developed and applied to industrial practices.
ere, we briefly give a summary of the methods used to implement
ompliance behaviours. It summarises a brief investigation of the de-
elopment and progress of compliant control and its variants. Passive
ompliance control and active compliance control are two main meth-
ds to achieve compliance behaviours of a robot manipulator and
ffer the fundamental basis of variants of compliance control such as
daptive compliance control, variable compliance control, RL-based
ompliant control, and cognitive compliant control.

Passive compliance control is an approach to control the force–
isplacement interaction between a manipulator and a stiff environ-
19

ent [191]. Passive compliance is the intrinsic flexibility in a robot
manipulator inherited by its mechanical structure or by compliant ac-
tuators such as belt and pulley mechanism or an artificial muscle [192].
It can improve actuator characteristics such as back drivability, motor
link decoupling, peak torque, power requirements and energy storage
capabilities, but also increases the system complexity and control effort,
e.g., to suppress undesired oscillations, and decreases the position
or force control bandwidth [193]. The study of passive compliance
control to manipulators is widely investigated in the literature. Rice
and Schimmels studied passive compliance control using redundant
serial manipulators with real-time adjustable joint stiffness to achieve
effective interaction for performing constrained manipulation tasks.
Through extending the redundant inverse kinematics problem to in-
clude compliance, the challenge of finding suitable joint commands for
producing the desired time-varying end-effector position and compli-
ance in the passive compliance control was addressed [194]. Followed
by previous work, they investigated globally optimal passive compli-
ance control for tasks having multiple-homotopy classes and found a
globally optimal joint manipulation path (sequence of joint positions
and compliances) that yields a desired task manipulation path (se-
quence of end-effector positions and compliances) when there is one
degree of redundancy [191]. Kim et al. [195] developed a passive com-
pliance controller for aerial manipulators to ensure stable interaction
with passive environments, and it can guarantee the passivity of the
manipulator through a proper choice of end-effector coordinates. Schi-
avi et al. [196] discuss the integration of active and passive approaches
to robotic safety in an overall scheme for real-time manipulator control.
The active control approach detects the presence and position of hu-
mans in the vicinity of the robot arm, and generates motion references
by the use of a supervisory visual system, while the use of variable
joint impedance combination with velocity control guarantees safety
in worst-case conditions in the passive control. Calanca et al. [197]
considered that compliant control can be defined as the control tech-
nology to produce compliant motion. Some of the studies on passive
compliant motion in the assembly have been explored. For this purpose,
Park et al. [198] used kinematical information without force feedback
to design robot motions and implemented compliant robotic behaviours
by combining conventional controllers, and Su et al. [199] investigated
robotic precision assembly by using the combination of passive and
active compliant control, where the passive compliant motion in the
constraint region is adopted to eliminate the uncertainty of the manip-
ulator’s orientation. In addition, Pettinger and Pryor [200] studied the
implementation of complex contact tasks using combined active and
passive compliant control approaches, and Liu et al. [201] developed a
robust insertion control method for precision peg-in-hole assembly by
visually supervising the deformation of the passive compliance based
on microscopic vision and force information.

Compared with passive compliance, active compliance has advan-
tages in terms of increasing the force transmission ability and improv-
ing safety with monitored force output [202]. In active compliance
systems, compliant motion is often realised by the combination of a
speed control system and a sensor-based control system. The former
in the robotic system is composed of motors or motors with geared
transmission systems, and the latter uses sensors for the detection of the
joint torque or speed. Active compliance has been increasingly used in
many robotic industrial processes due to its advantages in flexibility.
This is why use active compliance. For example, robotic applications
such as grinding, polishing, and deburring require active compliance
since the differences from one part to another. A good example of such
applications of compliant joints is the Selective Compliance Articulated
Robot Arm, with the acronym of SCARA, and SCARA robots provide
flexibility for vertical assembly. Inspired by benefits of the active
compliance, industrial robot companies investigate the incorporation
of active compliance in the robotic system or software design. ABB’s
SoftMove provides the robot with compliance in one direction, which
can enhance high accuracy and reliability. A compliant robot is one

that can perform tasks with respect to an external force by modifying
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its motions in a way of minimising forces. The induced motion is
implemented through lateral, axial or rotational compliance. In addi-
tion, a compliance control function is developed in DENSO robots for
the protection of workpieces and hands from the excessive load by
regulating the pressing force. It enhances the efficiency of the work that
has direct contact with other objects such as the accurate insertion of
a part into another part. In parallel, robotic force compliance devices
can be used to automate processes and make an industrial robot have
the capacity of ‘‘human’’ touch, and the active compliant devices can
accurately apply the desired force to the parts by the use of closed-loop
feedback control along with position and force sensors. Active compli-
ant control enables to quickly and freely adjust properties and dynamic
behaviour of interactions of mechanisms within certain limits, and an
introductory review of active compliant control was investigated by
Schumacher et al. [193]. Liu et al. [203] proposed a sensorless haptic
approach for compliant control of the robot manipulators through the
demonstration in HRC assembly tasks. Queißer et al. [204] extended
a hybrid approach combining classical and learning elements into an
active compliant control mode, and it implements a kind of gravitation
compensation to allow for kinesthetic teaching of the robot based on
the implicit knowledge of gravitational and mechanical forces. Lefebvre
et al. [205] presented a literature survey of the state-of-the-art active
compliant motion. In addition, to investigating the applications of the
compliant control in robotic grasping manipulation, Sadun et al. [206]
presented an overview of active compliance control for a robotic hand,
where active compliance is classified into force control and impedance
control. Humanoid robots are often designed to have physical interac-
tions in human environments. For this purpose, Dean-Leon et al. [207]
investigated the whole-body active compliance control for humanoid
robots with robot skin, and the experimental results show that multi-
modal tactile information can be fused hierarchically with multiple
control strategies, producing active compliance in a position-controlled
stiff humanoid robot. Through the use of active compliance via an
admittance control scheme, a locomotion controller for lower limb ex-
oskeletons is developed to enable the combined robot and user system
to exhibit compliant walking characteristics when interacting with the
environment [208]. Compliance control for heavy-duty manipulators
is a typical challenge because of high loads and modelling problems.
To address such a challenge, Li et al. [209] studied active compliance
control of fine manipulation for heavy-duty manipulators where a ge-
netic neural network-based position/force same loop control algorithm
is developed for the compliant control of hydraulic heavy duty ma-
nipulators, and Onogi et al. [210] proposed a new compliance control
to achieve stable coordinated motion of robotic ultrasound probes in
any operational velocities through the use of using a velocity-depended
viscosity coefficient corresponding to applied force magnitude. In par-
allel, Zhu et al. [211] studied active compliance control of a hydraulic
quadruped robot aiming for a reduction of the impact of the feet, and
the active compliance strategy is composed of an inner-loop position
servo control and an outer-loop impedance control. To have stable
locomotion of legged robots, a nonlinear active compliance control
is developed and applied to the steel wire transmission-based legged
robots, with the achievement of better interaction capability [212].
The study on continuum robots with compliance in the minimally
invasive surgery facilitates safe operations with the robots and the
surrounding tissues, and Jake et al. [202] proposed a RNN-based active
compliant motion control approach for continuum robots, which is
based on a complex derivation of their mechanics models. For Rotary-
Spherical–Spherical parallel manipulators, a sensor-less full-body active
compliance approach is developed for the detection of an external
disturbance applied at any movable part of the parallel manipulator
and then achieving active compliant behaviours to such disturbance,
without using any force/torque sensors [213].
20
6.1.4. Adaptive and learning-based compliance control
To overcome uncertainties in the dynamic parameters of the robot

manipulator, adaptive control approaches for compliance behaviours
have been developed. Colbaugh et al. [214] presented an adaptive com-
pliant control approach for dexterous manipulators, in which an adap-
tive impedance control approach was developed for torque-controlled
manipulators, and an adaptive admittance control approach was devel-
oped for position-controlled manipulators. Zhou et al. [215] developed
a RNN-based adaptive compliance control of manipulator. Also, Ser-
aji [216] presented new position-based force and compliance control
schemes for robot manipulators using nonlinear and adaptive con-
trollers, and it offered a stable and uniform performance in contact
with surfaces having unknown or varying stiffnesses. Adaptive com-
pliant control schemes have been developed to achieve safety during
physical interactions between humans and robots. Khan et al. [217]
designed a safe adaptive compliance model reference controller for
a 4-DoF humanoid robotic arm in Cartesian space, and the robot
controller follows the compliant passive behaviour of a mass–spring–
damper system model with an externally applied force. Then, the
developed adaptive compliance control approach was extended to have
better multi-variable control performances [218]. Eich et al. [219]
presented an adaptive compliance control architecture for hybrid multi-
legged robots, which can deal with various stairs and allow robots to
move with high velocity on flat ground without adjusting control pa-
rameters. To control the exoskeleton, Akgun et al. [220] implemented
an adaptive compliance control strategy for all active and passive
rehabilitation tasks. The performance of compliance control heavily
relies on environment dynamics and the choice of the target impedance.
Therefore, the target impedance was adaptively adjusted to maintain
the performance of various environments, and Matinfar and Hashtrudi-
Zaad [221] designed a ’static-optimised’ compliance controller with the
minimal values of a combined generalised position and force trajectory
error metric, in which the control parameters of an adaptive compli-
ance control scheme are adjusted based upon environment stiffness
and damping. Also, Samy et al. [222] utilised an adaptive compli-
ance predictive control scheme to allow a humanoid robot to actively
control its compliance. Through augmenting optimisation variables
of Hierarchical Quadratic Programming formulation, maintaining an
impedance-like behaviour under external disturbances, while switching
to an admittance-like behaviour when collaborating with a human
can be achieved by incorporating Cartesian reference and an adaptive
compliance controller [223]. In addition, adaptive compliance control
schemes have also been applied to perform compliance behaviours of
hydraulic and aerial manipulators [223,224]. Motoi et al. [225] used a
force-based variable compliance controller for flexible motion control
systems to achieve ‘‘approach task’’ and ‘‘pushing task’’. The former task
is the motion for a robot to approach an environment without direct
contact, and the latter task is the motion for the robot to contact and
push the environment for achieving several tasks.

In recent years, the success of learning algorithms such as RL and
DL in parameter learning and optimisation has made them effective at
tuning control parameters of compliance behaviours of manipulators.
Ren et al. [226] designed and developed a learning-based variable
compliance controller to govern the insertion processes during robotic
assembly, and the controller can switch the operation strategy be-
tween passive compliance and active regulation in continuous spaces.
A deep RL approach was proposed to implement compliance control
of robotic peg-in-hole assembly with hole-position uncertainty [227].
Khan et al. [228] proposed an optimal compliance control scheme
based on bio-inspired RL to facilitate the safety of robotic walk assist
devices, and this dynamic-model-free scheme uses joint position and
velocity feedback as well as sensed joint torque (applied by the user
during the walk) for compliance control. Peng et al. [229] utilised the
RL method to achieve compliant physical HRI by allowing the robot to

have an optimal compliant motion to adapt to interaction forces.
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Table 19
Feature of different terminologies for robot motion control.

Name Representations Explicit distinction

Path planning Generating a geometric path
from an initial to a final point
in the joint or Cartesian space
of the robot [232]

Without time
information

Trajectory
planning

Generating a geometric path
from an initial to a final point
with time information [232]

With time information

Motion planning Frequently refer to motions of
a robot in a 2D or 3D world
that contains obstacles [233]

Process of defining the
set of actions the robot
needs to execute to
follow the path planned

Compliance is considered an essential element to facilitate safe and
fficient human–robot cooperative actions. In humans, compliance is
onsidered from mechanical, cognitive, and social perspectives [186],
nd the author gave a brief review of mechanical, cognitive, and social
imensions of that compliance takes in HHT and HRT interactions. In
ddition, the author refers to the design of algorithms for determining
ompliance parameters as cognitive compliance approaches. From the
erspective of neurorobotics, Chame and Tani [230] investigated the
istinctions between motor and cognitive compliance, and then use
redictive coding and active inference-inspired variational model to
escribe the cognitive compliance with the capability that can be driven
y sensory information. Leidner [231] combined-based cognitive rea-
oning methods and compliant robot control to achieve human-like
erformances in the manipulation tasks, and the robots allow for cog-
itive abilities to interact as sophisticated with the world as humans do
hrough representing, planning, executing, and interpreting compliant
anipulation tasks.

.2. Proactive robot motion

In robotic applications, a generic task is implemented by a robot by
erforming a specific motion to the end-effector. When the robot does
ot have a physical interaction with the environment or the object to
e handled, it is a free motion. The robot motion control is controlled
hrough the execution of a generated trajectory either in the joint space
r in Cartesian space.

.2.1. Terminology for robot motion
Numerous research efforts on robot motion control have been re-

orted in the literature. Different terminologies with respect to robot
otion are optionally used in studies. Nevertheless, confusions exist in

he definitions and relationships of the terminologies: path planning,
rajectory planning, and motion planning. For the purpose of clarifica-
ion, the summary of the three terminologies is listed in Table 19.

The motivational problem of robot motion planning is how to
ransform high-level task specifications (provided by humans) into a
ow-level description suitable for controlling the actuators [233]. The
lanning needs to address the implicit representation of the state space
hat is defined as the configuration space in the literature on motion
lanning [234]. In this case, the motion planning can be considered
path search in a high-dimensional configuration space that contains

mplicitly represented obstacles, and a motion plan is viewed as a
ontinuous path in the configuration space [234]. Therefore, the core
f motion planning is the transformation of a continuous model into
discrete model [235]. Motion planning in robotics is a process of

ividing the desired movement task into discrete motions with the
atisfaction of constraints. For example, consider a mobile robot moving
t an assembly line to a specific target point, the robot performs this
ask while avoiding obstacles. The description of these tasks is defined
s the input to the motion planning algorithm, and the motion with
he velocity, and turning commands are produced to let the robot ex-
cute. For robot motion control, research efforts on path planning and
21
trajectory planning have been widely studied. As shown in Table 19,
path planning is to generate a geometric path from an initial to a final
point in the joint or Cartesian space of the robot with no mention
of any specified time law, and it is merely geometric matter [232].
Trajectory planning characterises a time law as a geometric path [236].
In a special case of point-to-point trajectories, there are no obvious
distinctions, and the two problems can be solved at the same time. The
complexity of robot path planning can vary from application cases. For
example, a generic task requires the generation of the path according
to the geometry of the task.

6.2.2. Path planning and algorithm classification
In the case of robots performing the task in a dynamic yet con-

strained environment, more constraints such as obstacles avoidance
are considered. For this purpose, the studies of planning algorithms
have been widely explored for path planning and trajectory planning
for robot motion. Different interpretations of classifications of planning
algorithms are discussed and used in literature, and different classifica-
tion criteria for path planning and trajectory planning algorithms are
summarised in Table 20.

Here, the main algorithms of path planning are briefly presented
as follows. The roadmap techniques perform a graph-based search
from a set of one-dimensional paths that are transformed from high-
dimensional configuration space [240]. It means that this approach
converts the connectivity of the free space into a one-dimensional
curve-based system in the C-free space or its closure. The cell decom-
position approaches firstly divides the free space of the robot into a
set of convex, non-overlapping regions, and each region is defined as
a cell [232]. The path between any two configurations in a cell can
be generated and represents the adjacency relations of a connectivity
graph. Within the graph, the nodes and an edge between two nodes
represent the cells extracted from the free space and a path with
adjacent cells. The use of graph-searching techniques can solve path
planning problems.

The artificial potential field algorithms view the robot in the con-
figuration space as a moving point subject to a potential field, and the
sum of attractive and repulsive potential fields that are produced by
the target configuration and the obstacles in the C-space is considered
an artificial force [241]. In this case, the robot is controlled to reach
the goal point and avoid obstacles in an unknown environment by
attractive force to reach the goal point and repulsive force, respectively.
In addition, many variants of the artificial potential algorithm have
been developed to widen its applications to different problems. Some of
the examples are summarised as follows: improved artificial potential
field methods, modified artificial potential field methods, balance-
artificial potential field methods, evolutionary artificial potential field
methods, and adaptive artificial potential field.

The probabilistic roadmap planner employs a probabilistic algo-
rithm to solve the problem of determining a path between an initial
configuration of the robot and a target configuration while avoiding
collisions, and a probabilistic roadmap is a network graph of possible
paths in a given map based on free and occupied spaces [242]. It is
composed of a roadmap construction and planner phases. The former
builds a graph by connecting a set of random configurations in the
C-free by means of a path, and the latter is to find the shortest path
using algorithms like Dijkstra’s algorithm or the A* search algorithm.
The complexity of the probabilistic roadmap planners does not reply
to the dimension of the configuration space and the environment’s
complexity, which makes them efficient in the path planning of the
robots with high-dimensional configuration space.

In addition, AI knowledge facilitates the development and improve-
ments of path planning methods in robotic applications, and a com-
prehensive review of learning-based path planning algorithms is in-
vestigated and summarised, and they are categorised into learning-
based algorithms; DL-based algorithms; RL-based algorithms; variants

of RL-based algorithms; combined algorithms of RL and other learning
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Table 20
Classification of algorithms for path planning and trajectory planning.

Category Algorithm Classification criteria Ref.

Path planning Roadmap techniques; cell decomposition
algorithms; artificial potential methods;
probabilistic roadmap planners; learning-based
methods driven by AI

Model-based; model-free; classical
methods; learning-based methods (DL,
RL, and ML); methods with stationary
obstacles; methods with dynamic
obstacles; with predictable
environment/with unpredictable
environments.

[232,237,
238]

Trajectory planning Minimum execution time methods; energy-efficient
methods; optimal jerk methods; learning methods
driven by AI (such as DL and RL)

[232,239]
Table 21
Typical research efforts on learning-based path planning algorithms.

Task Method Specification Ref.

DL-based algorithms DL, ray tracing algorithm, waiting
rule, and RTT;

The use of DL algorithms to identify the type of
obstacles and distinguish between static obstacles
and dynamic obstacles; the improved ray tracing
and the waiting rule for static and the dynamic
obstacle avoidance, respectively, the RTT for the
path planning

[243]

RL-based algorithm Deep q learning and CNN
algorithm

CNN analyses the exact situation using image
information on its environment and the use of
deep q learning to path planning for the robots
based on the status

[244]

Deep RL-based
algorithm

Deep Q-network Deep Q-network approximates the mobile robot
state–action value function, and the original RGB
image captured from the environment without any
hand-crafted features and features matching as the
input; robot reaches the goal point while avoiding
obstacles ultimately by executing the current
optimal mobile robot action

[245]
methods (such as probabilistic roadmap and neural networks); and
learning-based end-to-end algorithms. Some of the typical research ef-
forts on learning-based path planning algorithms are listed in Table 21.
In addition, the applications of RL-based path planning algorithms have
been numerous. Variants of RL-based path planning algorithms are
widely designed and developed including deep RL, inverse RL, iterative
RL, and hierarchical RL-based algorithms, and the detailed introduction
and discussions of the variants of RL algorithms can be found in [238].

6.2.3. Trajectory planning and algorithm classification
Compared with a robot path, a trajectory is a geometric path with

a specified time law. In principle, the inputs of trajectory planning
algorithms are the path description such as initial and final points,
geometrical constraints on the path, constraints on the mechanical
dynamics, and constraints due to the actuation system, and the output
is a trajectory, given a time sequence of values specified by position,
velocity, and acceleration. The planning modality of the trajectory
varies with the cases of point-to-point motion and motion with a pre-
defined path, and also the trajectory can be either in the joint space
or in the Cartesian space. To plan a desired trajectory, the geometric
path and motion law need to be specified. The former is obtained
by assigning initial and final values for the configuration variables,
with the desired motion laws that specify functions up to a given
order of derivations (such as velocity and acceleration). For the joint
trajectory, the planning algorithm formulates a function interpolating
the given vectors of joint variables at each point, with respect of the
imposed constraints. The nonlinear effects of direct kinematics make
the end-effector motion resulting from the joint space trajectory motion
unpredictable, and the trajectory planning in the operative space is
generating a sequence of position and orientation values of the end-
effector of the robot that is transformed from the joint values through a
kinematics inversion. Therefore, trajectory planning is often performed
in the joint space where the control actions on the robot are employed.

In robotic applications, the tasks often have specific requirements
for the execution objectives such as good productivity. Therefore,
the optimisation criteria for the trajectory planning algorithms can
be mainly categorised into four types that are composed of minimal
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execution time, minimal energy (or actuator effort), optimal jerk, and
a combination of some of them, and the classification criteria of the
trajectory planning algorithms are summarised in Table 22 [232]. The
hybrid criteria of trajectory planning are defined as the combination
of the two or three criteria such as the optimal time-jerk trajectory
or the optimal time-energy-jerk trajectory. These trajectory planning
algorithms generate the optimal trajectory given a planned path with
the satisfaction of constraints and requirements.

6.2.4. Motion re-planning in a dynamic environment
Within the context of HRC, the dynamic environment poses a diffi-

culty for the motion planner of robots due to the unpredictability of
the interaction with humans or objects to be handled. For example,
the execution of a robotic assembly task can be interrupted by one or
many of these unknown and unpredictable moving obstacles such as
humans and mobile devices, and four types of safety policies are often
employed to ensure safe interactions within the monitored areas [249],
and they are (1) firing an audio warning and reducing the speed of
the robot to prepare for a full stop when the obstacles moving into
the monitored areas; (2) a retrievable stop interruption to the robotic
system if the human or the obstacle steps into a defined hazard zone;
(3) the robot arm will move away automatically to keep a safe distance
from the obstacles (humans) for collision avoidance when the obstacle
moves towards the robot; and (4) dynamic modification of current
robot trajectories to prevent any collision with the obstacles. The last
safety policy involves dynamic planning of robot trajectory or path
for collision avoidance. Studies on dynamic trajectory/path planning
for collision avoidance have been reported in the literature. Kamil
et al. [250] gave a comprehensive review of motion planning algo-
rithms for mobile robots with moving obstacles from the perspectives of
the smooth path, safety, path length, run time, accuracy, stability, less
computation cost, control, efficiency, and future prediction (uncertain-
ties). Wei and Ren [251] proposed an autonomous obstacle avoidance
dynamic path-planning method for a robotic manipulator based on an
improved RRT algorithm, in which a path optimisation strategy based
on the maximum curvature constraint is presented to generate a smooth

and curved continuous executable path for a robotic manipulator. In
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Table 22
Classification criteria of the trajectory planning algorithms.

Name Optimality criteria Methods Ref.

Trajectory planning

Minimal execution time Maximum admissible value for the pseudo-velocity of
the end-effector derived from the constraints; dynamic
programming for the minimum time trajectory;
model-based approach to maximise the speed of the
robot; the phase plane method with variant constraints

The detailed introduction to these
methods can be found in [232]

Minimal energy consumption Energy considered as constraints on the motion of the
end-effector, and the objective is often formulated as
the integral of squared torques

The detail algorithms are
summarised in [246]

Optimal jerk which is defined as the
time derivative of the acceleration

The optimal jerk is to smooth the profile of the
actuator torque and obtain smooth trajectories

The detailed algorithms are
summarised in [247]

Hybrid criteria It combines some of the optimisation criteria as
optimised objectives, such as minimum time–energy,
time–jerk, and energy–jerk optimisation objective

The detail algorithms are
summarised in [248]
the presence of obstacles, no matter of static or dynamic, the robot has
to decide how to proceed when one of these obstacles is obstructing
its path. For this purpose, Connell et al. [252] proposed a dynamic
path replanning approach using RRT* algorithms in a dynamic envi-
ronment with random, unpredictable moving obstacles. In addition,
Berg et al. [253] presented an efficient approach for anytime path
planning and replanning in partially-known, dynamic environments,
which considers all prior information about both the static and dynamic
elements of the environment, and efficiently updates the solution when
changes to either are observed. Yoshida et al. [254] developed a
reactive method for online robot motion replanning in dynamically
changing environments by combining path replanning and deforma-
tion, and this approach allows the planner to deal with more dynamic
environments including continuously moving obstacles, by smoothly
deforming the path during execution. Within the context of not adding
additional control burden, Li et al. [255] proposed a hierarchical
replanning framework that assists 7-DoF redundant manipulators to
avoid dynamic obstacles during HRI through rapid modulation of the
ongoing trajectory. This framework is composed of three steps. Step 1
is to initialise the path in the joint space by the use of an improved RTT
planner; Step 2 is using a hybrid scheme combining local path rewiring
and redundancy-based node self-motion to replan the part of the pre-
planned path affected by dynamic obstacles, and step 3 is a real-time
adjustment of the trajectory and generating smooth motion primitives
for actuators by employing an adaptive online trajectory generator. Yu
and Zhang [256] pointed out the drawbacks of optimal path planning of
the robot manipulator in low computational speed and tedious training
induced by the changes in assembly lines, and accordingly proposed a
novel path planning approach of a slice-based heuristic fast marching
tree, which is based on joint space to achieve real-time path planning
speed without modelling or training the workspace in advance. There
is no need for learning obstacle models in advance in that the proposed
approach can examine collisions online.

7. Challenges and future perspectives

Proactive HRC is a foreseeable paradigm towards mutual-trust-
worthy, preferable, and high-configurable collaboration production.
From the aforementioned literature, technical, practical, and ethical is-
sues and theories need further exploration for the real-world implemen-
tation of Proactive HRC. This section outlines a couple of challenges
that deserve attention to realise the mutual-cognitive, predictable, and
self-organising perspectives of Proactive HRC. Future directions are also
highlighted to give a great vision for the Proactive HRC evolution.

7.1. Online recognition of both short-term and long-range human intention

Human intention recognition in manufacturing activities is a crit-
ical cognitive capability for Proactive HRC. A human operator has
both long-term and short-term operation goals when performing tasks
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with robots. Past research efforts focus on recognising human physical
and psychological behaviours within a fixed time series. Nevertheless,
these approaches fail to learn dynamic human operation intentions in
uncertain time lengths. In this context, social and technical problems
stay unresolved to advance the sequential online recognition of human
intentions. For example, which kinds of human intentions across an
entire task process deserve consideration? That is a real-world question
without a socially trustworthy consensus. It is noted that there is no
significant alteration between human current operations and next-stage
actions. For the technical methodologies, the online human intention
recognition algorithms need to tackle the problem of how to decom-
pose continuous human actions into different sub-stage intentions and
determine when to recognise the human next operation goal. The
last problem is continuous classification and even prediction of these
consecutive sub-stage human intentions in various time lengths.

To deploy successful human intention recognition in Proactive HRC,
two potential research directions are also highlighted here. Firstly,
more explicit and implicit human intention patterns can be distilled by
fusion of multimodal data, such as actions in visual patterns, commands
in voice records, workload changes in EMG signals, and mental states in
brainwaves. With ample information in multiply modalities, attention
and fusion mechanism can be introduced into the recognition model
to determine the turning span time between different human operation
goals and continuously predict human intentions in various time spans
among a task. The second one is to link human intention data and
prior knowledge of HRC tasks by a KG. The connection between human
behaviours and manufacturing knowledge provides a guideline and
alteration cue for sequential human intention recognition across time.

7.2. Handy human wellbeing estimation

Human wellbeing estimation nowadays attracts particular attention
for improvement of co-work satisfaction in Proactive HRC. A human
operator may suffer physical fatigue and mental stress in manufac-
turing activities with robots in close proximity. Previous explorations
leveraged EMG and EEG devices to measure human muscle workload
and monitor human psychological activities, respectively. Nevertheless,
human agility and flexibility are damaged when a worker wears bulky
equipment and onerous sensor systems. The situation in turn interferes
with human wellbeing. The ethical challenge in human wellbeing
estimation is whether it is reliable and acceptable when modelling
human emotional fluctuation with human physical and mental states.
The technical aspect is to estimate human wellbeing among HRC tasks
in a handy manner, without disturbing human agile operations.

To enable handy human wellbeing estimation, two ways show large
application potentiality. Firstly, a DT-based human physical fatigue
modelling method can be achieved by fusing human body mechanics
and real-time visual perceptual results of human poses, motions, and
point clouds. A digital replica of a human worker provides load-
carrying simulation for human manipulation in HRC systems. Further-
more, ergonomic analysis methodologies can be integrated into human
DT. Human mental stress can be analysed and reasoned by observation
of a worker’s continuous feedback to surrounding environments, such

as the number of gazing at nearby robots.
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7.3. Human–robot–environment parsing and cognition

Human–robot–environment parsing and cognition infer their dy-
namic relations and make explainable resource allocation decisions to
support their co-work processes. Past studies have provided feasible
solutions for HRC scene parsing with monomodal consideration, such
as human action recognition, robot motion monitoring, object pose
estimation, and navigation map generation. However, the practical
challenges stay strong in how to define contextual and interpretative
relationships between human operations, robot manipulations, and sur-
rounding environments. It is critical to determine which kind of fusion
between these elements is more important for the generation of suitable
HRC task arrangements. For example, the simultaneous occurrence of
human handover and quick robot reaching actions may lead to contact
hazards, which is a priority concern for safe cognition in HRC systems.

To solve the problems of human–robot–environment parsing and
cognition, the current visual reasoning and KG methods deserve more
exploration. Especially, visual reasoning modules across the object,
semantic, and knowledge spaces can align with the knowledge expres-
sion of HRC tasks in perceptual results, their relations, and implicit
cognition, respectively. The visual reasoning process fusing these spaces
explains the mechanism of knowledge fusion and cognition generation
based on human–robot–environment parsing results. Besides, the KG
provides a natural interpretation of their contextual relations by linking
human–robot–environment elements into different structural schemas.
The KG approach bridges the gap of explainable knowledge learning
for the decision-making mechanism in HRC.

7.4. Mutual-cognitive and empathetic teamwork

Mutual-cognitive and empathetic teamwork in Proactive HRC max-
imises the intuitive, friendly, and preferable experience for humans
and robots. Previous works made reasonable decisions for planning
robot motions and human operations by learning a task structure and
production goals. Nevertheless, few studies involve specific elements
and evaluation criterias for the empathetic HRC working process. It
is necessary to train agents in an HRC system on what to do for
teammates’ emotional needs and explain how the decisions are taken.

For the future development of Proactive HRC, the first step can
consider creating standards to evaluate the performance of mutual-
cognitive and empathetic teamwork by introducing ergonomics criteria,
psychological factor assessment, and productivity measurements. Then,
when human operators are equipped with information display devices
for domain knowledge support and enhanced skills, the time and space
consistency of the visualisation devices should be ensured to improve
human participation and immersion degree. Lastly, robot learning mod-
ules can advance robots owning human-like cognition and pay more
attention to robot path re-planning for adaptation of human-changing
manipulation needs.

7.5. Fusion of current scene understanding and prior knowledge

By fusion of current scene understanding and prior knowledge of
HRC tasks, decisions for human and robotic operations in the next
stage can be inferred and generated. Previous studies explored knowl-
edge learning of current scenarios and overall task structure in HRC
settings. However, there are technical challenges on how to integrate
the knowledge of what is happening in recent scenes and holistic prior
arrangement of an HRC task. For example, the problem includes how
current scene understanding influences subsequent human and robot
operations in the prior knowledge base.

To guarantee smooth and predictable HRC task fulfilment, the
fusion of current scene understanding and manufacturing prior knowl-
edge can consider KG methods. Firstly, a holistic HRC KG can be
constructed by denoting production elements of ’Human, Robot, Mate-
rial, Method, Environment’ as nodes with different attributes. Then, the
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elements appearing in the current scene are activated in the HRC KG,
followed by searching and determining suitable graph configurations
for next-stage human and robot operations. On the other hand, the
production elements from onsite scenarios can be constructed as an SG
firstly, then align to the holistic HRC KG to adjust the graph retrieval
strategies for linking suitable next-stage task planning.

7.6. Task re-planning and knowledge transfer for unexpected or unseen
situations

The task re-planning mechanism suspends incorrect robot opera-
tions and recovers to normal procedural sequences when facing un-
expected situations caused by human motion uncertainty. Besides, the
mechanism can transfer knowledge of previous co-work strategies to
update appropriate task planning for new but similar HRC task variants.
To date, numerous efforts on HRC task planning majorly focus on
scheduling exact and specific operations for predefined tasks. Never-
theless, the conventional task planning algorithm may be invalid when
facing human uncertainty and product variants which are unavoidable
situations in a realistic world. For instance, what re-planning decisions
can be made to restore correct HRC task fulfilment if a human oper-
ation fails to obey task precedence constraints or there are additional
manufacturing process requirements for new products?

In this context, three potential directions are highlighted to offer
feasible solutions of task re-planning and skill transfer in Proactive
HRC. Firstly, a DT-based HRC system can model, simulate, and predict
each agent’s attention, behaviours and workload in the near future,
thus discovering human potential error operations or robot runaway
motions in advance. Even with unexpected task proceeding situations,
RL models can be utilised to find global optimal task re-planning for
subsequent operations by integrating simulation processes in the DT
environment. Lastly, a TL-based KG can be built to transfer HRC skills
to general operations rules which are applicable to new but similar HRC
tasks.

7.7. Configurable and cognitive ergonomics-based HRC cell design

Configurable and cognitive ergonomics-based HRC cell design is
a prerequisite for a comfortable and user-friendly experience among
hybrid human–robot teamwork. The past studies on the direction
mainly focus on working cell design for human operators with fixed
robot arms. This kind of HRC cell only considers basic ergonomic
requirements and task goals to arrange robots, humans, and manip-
ulated objects, far away from reaching self-configuration and cognitive
ergonomics-based design. In this context, social and technical chal-
lenges remain untackled. For example, when resource overlapping
and occupation problems exist in shared workspaces, the HRC cell
design theory should consider usage precedence management while
satisfying the personal esteem needs of different human operators in
social aspects. From technical parts, task structure knowledge, dynamic
environment changing, and each agent’s qualified capabilities should
be considered and learned for configurable HRC cell generation.

To achieve widespread applications of HRC cell design, two future
directions are highlighted here. Firstly, cognitive ergonomics metrics
should be developed to assess both human physical states (e.g., fatigue
and overload) and human psychological experience (e.g., esteem and
emotional satisfaction) based on one’s role-playing behaviours in HRC
tasks. Based on the ergonomics need, task resources, and operation
roles between humans and robots, KG methods can be leveraged to
configure HRC cells by mapping these considerations to graph nodes
with various attributes and learning design requirements from these
nodes. RL-based generative design approaches can be utilised to di-
rectly generate a layout of HRC cells by learning from huge historical
design experiences with cognitive ergonomics constraints.
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7.8. Plug-and-play network connection for extendable human and robotic
agents

The involvement of additional human and robotic agents in HRC
systems may improve overall productivity for complex tasks. The past
works normally focus on computing consumption and latency issues
caused by increased agents in HRC. Few studies are conscious of the
development of a plug-and-play network connection for extendable
human and robotic agents. Technical and practical issues need to be
solved for the achievement of Proactive HRC with hybrid multi-agents.
For instance, it is difficult to seamlessly add a new human–robot group
and let them conduct tasks with existing members for maximum usage
of their capabilities.

An efficient solution is to build extendable and multi-agent Proac-
tive HRC from cellular human–robot groups, followed by the plug-
and-play network connection in hardware, information and knowledge
aspects. For the hardware connection, various cellular groups of human
and robotic agents can join a uniform IIoT environment through a
standard communication interface. For the information connection, the
data flow transmission among the IIoT can use infrastructures such
as 5G and Wi-Fi 6 to reduce communication latency. Then, differ-
ent KGs are constructed for each human–robot group, which contain
preferable capabilities and qualified operations of each agent in the
cellular group. For the knowledge connection, federated learning can
be utilised to aggregate, converge, and align knowledge across these
distributed human–robot groups. Despite the additional connection of
a new cellular group of human and robot agents, they can perform task
operations qualified for their capabilities.

7.9. Evaluation index for proactive HRC performance

Despite the blossom of HRC applications in manufacturing, there is
no generally accepted evaluation index for the system performance. It
is unfair to directly introduce indicators from automatic systems, since
HRC systems contain manual human work that may cost a lot of time.
Thus, both quantitative evaluation and qualitative analysis need further
development to assess HRC performance for flexible automation. Open
discussions are given to construct widely acceptable standards based on
our understanding of HRC studies.

For evaluating robot performance, previous quantitative experi-
ments remain effective, such as robot execution time [257], trajectory
length [258], and movement precision [259]. Nevertheless, for the
human-centric needs and the whole HRC system evaluation, there
are different considerations. Within a mutual-cognitive perspective in
Proactive HRC, cognitive ergonomics metrics can be defined and lever-
aged to measure human physical load [260] and mental effort [261].
The entire system can be assessed by safety mechanisms (e.g., human–
robot distance [257]) and task execution fluency [153] when facing
dynamic scene changes and uncertain human motions. For the pre-
dictable capability in Proactive HRC, comparative experiments can be
conducted to test the accuracy of human trajectory prediction [160]
and how much time can be ahead in the human action prediction [162].
The performance of a predictable HRC process can be verified by
task plan complexity [262] and waiting time [141]. For the self-
organising intelligence in Proactive HRC, human subject ratings [146]
for the teamwork with other human operators and robots from ques-
tionnaire scores can be used for quantitative assessment. Meanwhile,
the successful task planning probability [115] and the knowledge trans-
ferability [15] for new co-work configurations can be introduced to
analyse the self-organising system performance. Except for these met-
rics, we admit many other assessment approaches exist, such as robot
end-effector position errors and orientation errors [132], which may be
suitable to test HRC system performance and deserve exploration.
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8. Conclusions

In the age towards human-centric smart manufacturing, both indus-
try and academia are striving for an actual human–robot collaborative
production, where the foreseeable Proactive HRC paradigm plays a
vital role. This study elaborately extends our position paper [162] that
HRC systems should and can embrace mutual-cognitive, predictable,
and self-organising intelligence for flexible, natural, and efficient pro-
duction. We systematically illustrated the rising evolution trend to
Proactive HRC with increasing needs and motivations, then declared
our findings on the concept, referenced architectures of this foreseeable
manufacturing paradigm, and discussed its challenges and enabling
technologies.

For the most irreplaceable contribution, we established the Proac-
tive HRC architecture with a definition and elaborate depiction from
four aspects, (1) mutual-cognition and empathy, (2) predictable spatio-
temporal collaboration, (3) self-organising multi-agent teamwork, and
(4) compliance robot control and proactive robot motion. The former
three modules are ever-evolved intelligent capabilities in Proactive
HRC, whereas the last one is the enabled control technologies for real-
istic implementation. Based on this theoretical foundation, participants
are devoted to exploring theories and techniques for mutual-cognitive
capabilities in Proactive HRC, such as visual reasoning [115] and
KG [113] methods. Meanwhile, there are a few studies starting to show
interest in the predictable intelligence in Proactive HRC, like works on
motion trajectory prediction [160]. Then, it is foreseeable that more
researchers will find and locate a new hotspot in the self-organising
capabilities for multi-agent teamwork in Proactive HRC. Lastly, along
with the appearance of more algorithms of compliance robot control
and proactive path planning, the grand challenges in making Proactive
HRC applications in modern factories deserve many years of effort.

There are also limitations in the paper when interpreting the
thoughts represented. Most of our discussions of the research con-
notations of Proactive HRC come from literature analysis, research
experience, and enterprise investigation. Despite the authors’ great
efforts which make our hypothesis with convincing materials and
evidence results, it is inevitable some thoughts may be bold in future
development. Therefore, we encourage readers to elicit meaningful
content of our paper carefully and comprehend that with independent
judgment.

However, we deeply believe that the rising Proactive HRC trend will
be widely deployed in modern enterprises to achieve large-scale, flex-
ible, and automatic production for personalised and ultra-complicated
products. Especially with the explosive growth of technologies ap-
pearing in cognitive computing, knowledge learning, and automation
theories, the transformation to the Proactive HRC paradigm is ac-
celerating and changing production structure in industries. We hope
our early thoughts on Proactive HRC could spark more insightful
discussions, proofs, and rebuttals on this topic.
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