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ABSTRACT 

Acoustic horns can enhance the overall efficiency of loudspeakers to emanate highly 

directional acoustic waves. In this work, a theoretical model is developed to predict 

difference frequency acoustic fields generated by a parametric array loudspeaker with a 

flared horn. Based on this model, analytical solutions are obtained for exponentially horned 

parametric array loudspeakers. A numerical analysis on the performance of horned 

parametric array loudspeakers subject to various horn parameters (i.e., horn length and 

flare constant) is implemented. To compare with non-horned parametric acoustic array 

devices, it is able to generate highly directional acoustic wave beams for a wide range of 

difference frequencies, in which the generated sound pressure levels at low frequencies can 
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be significantly enhanced. In addition, the equivalent radius of a non-horned emitter that 

matches the directivity achieved by a horned one is also quantitatively investigated. The 

present research will provide useful guidelines for the design and optimization of horned 

parametric array equipment.  

 

Keywords: Parametric acoustic array, Highly directional acoustic waves, Horn length, 

Flare constant 
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1. Introduction 

Directional acoustic sources can be found in a variety of engineering fields and 

applications. Several methods have been proposed to pursue highly directional acoustic 

beams. The pioneering work can be traced back to the parametric acoustic array (PAA) 

that was made of two collimated acoustic beams in air [1]. The collimated acoustic beams 

in a high-frequency range are called as the primary frequency beam. Both high-frequency 

sum components and low-frequency difference components can be generated by the 

nonlinear interaction of primary acoustic beams. The high-frequency components are 

quickly absorbed by air, and thus only the low-frequency components can continually 

propagate outward.  

In general, there are two approaches to generate highly directional acoustic beams. 

Westervelt [1] firstly theoretically predicted a highly directional acoustic beam that can be 

created by the low-frequency components. Secondly, a two-dimensional phononic crystal 

resonant cavity, having a point acoustic source located inside, can be served another highly 

directional acoustic device [2-5]. To compare with PAA devices, the latter one is mainly 

used to generate highly directive ultrasonic waves rather than audible sound waves, thus it 

is not applicable for daily life situations. 

Since the discovery of PAA devices, many research studies have dedicated to this topic 

in terms of theoretical analysis and experimental studies [6-14]. In particular, the 

convolution model proposed by Shi and Kajikawa [6] is an effective method to compute 

the far-field directivity of PAA devices with negligible computational cost. Due to the 

prominent characteristics of PAA devices (e.g., high directivity effect), many potential 

applications are able to be truly realized. For instance, a parametric array loudspeaker (PAL) 
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is a typical application of PAA devices [14]. With the advancement of pre-processing 

techniques [7], the effect of nonlinear distortion can be greatly reduced, thereby improving 

the quality of PAA devices. Inspired by the discovery of PAL, other important applications, 

i.e., active noise control and omni-directional sound pressure field generation, have been 

proposed from the high directivity of PAA devices [15, 16]. Although we have witnessed 

the innovative development of PAA devices to improve audio quality and speech 

experience, a daunting technical challenge on the low conversion efficiency, especially 

within a low-frequency range, still remains unsolved.  

Unlike conventional loudspeakers, PAA devices are able to generate highly directional 

difference acoustic fields within a low-frequency range [17]. To improve the conversion 

efficiency of PAA devices, Sayin and Guasch [18] assembled an ultra-megaphone with a 

parametric loudspeaker and a horn. On one hand, the ultra-megaphone can overcome the 

cut-off problem that exists in conventional exponential horn loudspeakers. On the other 

hand, the horn can increase the radiation efficiency to improve the conversion efficiency 

of PAA devices. Previous experimental studies have reported that a horn can make a 

significant impact on the audible sound level and directivity of parametric loudspeakers 

[18]. Nevertheless, the intrinsic mechanism of a horn acting on parametric loudspeakers is 

still absent, this strongly motivates us to establish a universal model to achieve a better 

understanding of the working principle.  

In this paper, a theoretical model is proposed for horned PAA devices. On the basis of 

this model, analytical solutions can be obtained for exponentially horned parametric array 

loudspeakers. The performance of horned parametric array loudspeakers is investigated by 

a numerical analysis. This is different from non-horned parametric acoustic array devices, 
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it is able to generate highly directional acoustic wave beams for a wide range of difference 

frequencies. From the obtained results, the secondary acoustic pressure can be considerably 

increased at low frequencies. To improve the directivity of a horned PAL over a non-

horned PAL, the radius ratio of both horned and non-horned emitters is also studied. The 

present work will facilitate a design approach for the optimization of horned parametric 

acoustic array loudspeakers in real engineering applications. 

 

2. Mathematical Formulation and Solutions 

A schematic diagram for the geometry of a horned parametric acoustic array 

loudspeaker is presented in Fig. 1(a). The primary source of this horned parametric acoustic 

array loudspeaker is composed of an array of piezoelectric transducers as illustrated. We 

take a volume element of length dx and area S(x) at x within the horn as shown in Figs. 1(b) 

and 1(c). Besides, a typical circuit to drive the parametric array is also presented in Fig. 

1(d). Two original signals are generated by a signal generator and then they are fed into 

amplifiers after being synchronized. The final amplified signals are directly applied on the 

parametric array. The purpose of the signal synchronization is to guarantee that all the 

output ultrasound signals have no phase difference to avoid the interference of the primary 

waves. The components shown in the dotted frame of Fig. 1(d) indicate the special 

processing arrangement for the directional emission of wideband signals. The detailed 

information for the signal processing can be referred to Ref. [11]. In this work, we only 

consider the geometrical configuration of a horn, because the major focus is to investigate 

the influence of this horn on the performance of parametric acoustic array loudspeakers.  
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Let u be a particle velocity parallel to the horn axis x. The mass variation in the volume 

element per unit time is ( )uS x dx
x

ρ∂
−   ∂

 with ρ  being the density of a medium in 

which acoustic waves propagate. As the volume element is small, its mass is approximately 

equal to ( )S x dxρ  and the corresponding mass variation rate is [ ]( )S x dx
t
ρ∂

∂
. 

According to the law of conservation of mass, the continuity equation is given by 

 ( ) ( ) 0
S uS

t x
ρ ρ∂ ∂

+ =
∂ ∂

  (1) 

Suppose that the propagating acoustic wave is a plane wave, then the area of the 

wavefront can be regarded as the cross-sectional area S(x) of the horn. By ignoring the 

viscosity of the surrounding medium, the equation of motion is then expressed as [19] 

 1u u Pu
t x xρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
  (2) 

where P is the acoustic pressure in the surrounding medium. Multiplying Eq. (1) by u  

and then adding to Eq. (2) yield 

 ( ) ( ) ( )2
2 lnuu d SP u

t x x dx
ρρ

ρ
∂∂ ∂

+ = − −
∂ ∂ ∂

  (3) 

Adding the term ( )2
0C xρ∂ ∂  to both sides of Eq. (3), we have 

   ( ) ( )2 2
0

lnxu d STC u
t x x dx
ρ ρ ρ

∂ ∂∂
+ = − −

∂ ∂ ∂
  (4) 

where 2 2
0xT P u Cρ ρ= + −  with 0C  being the isentropic wave velocity in the 

surrounding medium. Taking the derivatives of Eqs. (1) and (4) with respect to t and x, 

respectively, then subtracting these two equations, the wave equation for the acoustic 

pressure P is obtained as 
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( ) ( ) ( )2 2 2 22 2

0 2
2 2 2 2 2 2

0 0

1 1 ln lnC P u uP P d S d Su
x C t C t x x dx dx t

ρ ρ ρ
ρ

∂ − ∂ ∂∂ ∂ ∂  − = − − + ∂ ∂ ∂ ∂ ∂ ∂ 
  (5) 

The inhomogeneous terms on the right-hand side of Eq. (5) are very complicated, thus 

some simplifications should be made. Take the second-order approximation of 

( )2
0P Cρ −  to result in [20] 

 ( ) ( )
0 0

2
2

0 0 02 2 2
0 0

1 1
2

P P PP
C C ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ= =

   ∂ ∂
− = − + − + −   ∂ ∂     

  (6) 

where P0 is a static pressure. Consider ( )
0

2
0P C

ρ ρ
ρ

=
∂ ∂ = , 2

0 0 0P Cρ=  and 

( ) 2
0 0 0P P Cρ ρ− = −  , Eq. (6) is further simplified as  

 
0

2 2
0

02 2 6 2
0 0 0

1
2

PP p P
C C C ρ ρ

ρ ρ
ρ

=

 ∂
− = − −  ∂ 

  (7) 

where 0p P P= −  is the variation of the acoustic pressure. Expanding the third 

inhomogeneous term, we have 

 
( ) ( )2 2

2 2
2

lnln ln u d Sd S d Su u
x dx dx x dx

ρ
ρ ρ

∂∂   = + ∂ ∂ 
  (8) 

Given that the cross-sectional area of the horn changes slowly and 2uρ  is a second-

order small quantity, thus the second term on the right-hand side of Eq. (8) can be 

neglected with no significant error. If an exponential horn is considered, then the second 

term on the right-hand side is equal to zero. For the other two inhomogeneous terms, we 

apply a linear approximation on them and combine Eqs. (7) and (8) together, then Eq. 

(5) is simplified as 
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0

2 2 2 2 2 2 2 2

0 02 2 2 6 2 2 2
0 0

ln 1 1 1 ln
2

p d S p p P p u d S u
x dx x C t C t x dx xρ ρ

ρ ρ
ρ

=

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − = − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  (9) 

If the second-order quantities 2u and 2p  in Eq. (9) are neglected, then the 

pressure p  can be recovered to a linear acoustic pressure field 1p . Therefore, the linear 

acoustic pressure 1p  satisfies the following homogeneous equation   

 
2 2

1 1 1
2 2 2

0

ln 1 0p p pd S
x dx x C t

∂ ∂ ∂
+ − =

∂ ∂ ∂
  (10) 

According to Westervelt’s parametric array theory [1], the sum or difference acoustic 

pressure levels can be resulted from the interaction of the first-order acoustic pressure fields. 

Hence, 1p  is viewed as a source of the sum or difference acoustic pressure fields. Because 

of the high attenuation of the sum acoustic pressure field, only the difference acoustic field 

sp  is investigated here. The difference acoustic pressure field satisfies the following 

equation 

 
0

2 2 22 2 2 2
2 1

0 02 2 6 2 2 2
0 0

1 1 1 ln
2

s
s

p pP u d S up
C t C t x dx xρ ρ

ρ ρ
ρ

=

 ∂ ∂∂ ∂ ∂
∇ − = − − − ∂ ∂ ∂ ∂ ∂ 

  (11) 

where 2∇  is the Laplace operator. Making use of the first-order approximation of the 

particle velocity u , then 1p  and u  can comply with a linear relation 1 ap uZ= , where 

aZ  is a specific wave impedance of the horn. Consider 

( )2 2 2 2 2 2 2 2
1 1 0 1 p p C t p−∇ = + ∂ ∂  along with the fact that 2 2

1p  does not have 

contribution to sp  [1], where 2  is the d’Alembert operator, Eq. (11) can be re-written 

as 
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2 2

2 0 1
02 2 2

0

1 lns
s

a

p pq d Sp
C t t Z dx x

ρρ∂ ∂∂
∇ − = − −

∂ ∂ ∂
  (12) 

where 
( )

2 2 2
0 0 1

2 22
0 0

1 1
a

C pq
Z tC

ρβ
ρ

  ∂
= + −  ∂ 

 with
0

2
0
2 2

0

1 1
2

P
C ρ ρ

ρβ
ρ

=

 ∂
= + ∂ 

 being a 

nonlinear coefficient. Equations (10) and (12) are the governing equations of the 

difference frequency waves. When S is a constant, the governing equations are the same as 

the results presented by Westervelt [1]. 

If the horn length is infinitely long, no reflected waves exist in the solution of Eq. (10). 

For simplicity, the exponential horn that is characterized by a cross-sectional area 

( ) ( )0expS x S xδ=  is investigated here, in which 0S  is the cross-sectional area at the 

throat of the horn and δ  is the flare constant. Assume that the circular frequency of the 

primary wave is ω, Eq. (10) can be solved as ( ) ( ) ( )1 , exp 2 expp x t A x j t xδ ω κ= − −    

with ( ) ( )2 2
0 2Cκ ω δ= −  [19]. For a finite-length horn, it is easily verified that the 

amplitude of the reflected wave is greatly small as compared with that of the incident wave. 

Hence, 3Lka >  can be ignored, where La  is the radius of the cross-section at the mouth 

of the horn [19]. For a high-frequency primary wave, the solution to Eq. (10) for a finite-

length horn is approximately equal to that of an infinite-length one. As the primary wave 

is always selected in a high-frequency range in this study, we do not differentiate the 

solution to Eq. (10) for both finite- and infinite-length horns. Let the amplitude of the 

primary acoustic wave be ap , the solution to Eq. (10) is [19] 

 ( ) ( )2
1 ,

x j t x
ap x t p e e

δ
ω κ− −=    (13) 
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Note that the acoustic wave attenuation is neglected in Eq. (13), so it is only suitable 

for the acoustic wave in a low-frequency range. As the primary frequency studied here is 

located in a high-frequency range, the wave attenuation cannot be ignored. Assume that 

two collimated primary waves, having the circular frequencies ( 1ω  and 2ω ) and the same 

pressure amplitude ap , propagate along the horn. The circular frequencies satisfy 

1 2 1 2ω ω ω ω− << ≈ . Let the attenuation coefficient for both waves be 0α , the first-order 

acoustic field is corrected to 

 ( ) ( ) ( )1 1 2 202
1 ,

x j t x j t xx
ap x t p e e e e

δ
ω κ ω κα− − −−  = +    (14) 

where ( ) ( ) ( )2 2
0 2 , 1, 2i i C iκ ω δ= − = . It is found that the waves with 2 iω  and 

1 2ω ω±  appear in ( )2
1 ,p x t . Consider the waves at high frequencies can attenuate 

sharply, only the difference frequency wave is retained, i.e., 

( ) ( )022 2
1 , d dj t xxx

ap x t p e e e ω καδ −−−=   where 1 2dω ω ω= −  and 1 2dκ κ κ= − . The primary 

wave frequency satisfies 0 2i Cω δ>>  , then ( )0 1, 2i i iC k iκ ω≈ = = . Substitute the 

expression of 2
1p  into Eq. (12), the difference frequency acoustic pressure at the 

observation point P generated by the virtual array on S(x) in Fig. 1(c) can be obtained by 

using the Green function method [21] as follows 

 ( )0

2
2

( )4

d
dd

jk
jk xj ta

s
S x

Qp edp e e dx dSδ αω

π

−
− + + 

= −  
 

∫∫
h

h
  (15) 

where h  is the vector from the area element to the observation point in Fig. 1(c), and 

( ) ( ) ( ) ( )2 2 4 2
0 0 0 0 0 01 2a d a dQ C Z C Z jkβ ρ ω ρ ρ δ δ α = − + + + +   is the source factor 
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within a high-frequency range. When 0 0aZ Cρ≈  [19], then Q  can be simplified as 

( ) ( )2 2
0 0 02d dQ k jk Cβ δ δ α ρ = + + +  . It is difficult to obtain explicit solutions to Eq. 

(15) in the near-field. For the sake of simplification and practicability, the difference 

frequency acoustic pressure in the far-field is given by [19] 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

2
2

2
20

4

4

d d d

d d d

j t k jk xa
s

j t k jk xa

Qp S x
dp e e D dx

Qp S e e D dx

ω δ α

ω α

θ
π

θ
π

− − + +

− − +

= −

= −

r

r

r

r

  (16) 

where r  is the vector from the center of the cross section at x to the observation point P,

θ  is the angle from the axis x to the vector r  (see Fig. 1(c)), 

( ) ( ) ( )12J sin sind x d xD k a k aθ θ θ=  is the directivity factor of the circular piston, 

( )0Exp 2xa a xδ=  is the radius of the cross section at x, and ( )1J ⋅  is the first-order 

Bessel function. In the far-field, the approximations 0 cosR x ν≈ −r  and 

( ) ( )0 0sin sin cosR R xθ ν ν≈ −  are satisfied, where 0R  is the distance from the center of 

the horn throat to the observation point, 0x
ν θ

=
= . Based on this, Eq. (16) is 

approximately equal to 

 ( )
( ) ( )0

0

cos 22
10

0

2J sin
4 cos sin

d d
d d

j k k j x
j t k R d xa

s
d x

k aQp S edp e dx
R x k a

ν α
ω θ

π ν θ

− − −
−≈ −

−
  (17) 

The length of the virtual array 2L  satisfies the condition ( )2 01 2L α>> , it is 

commonly larger than the horn length (see Fig. 1(a)). As a result, the total difference 

frequency acoustic field in the far-field contains two parts. One is originated from the 
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virtual array in the horn and the other one is generated outside of the horn. These two 

effects are given by  

 ( ) ( )
( ) ( )0

10

cos 22
10

1 0 0
0

2J sin
, ,

4 cos sin

d d
d d

j k k j xLj t k R d xa
s

d x

k aQp S ep R t e dx
R x k a

ν α
ω θ

θ
π ν θ

− − −
−= −

−∫   (18) 

and 

 ( ) ( ) ( )
( )0

20

1

cos 22
0

2 0
0

, ,
4 cos

d d
d d

j k k j xLj t k Ra
s L L

Q p S ep R t e D dx
R x

ν α
ωθ θ

π ν

− − −
−′

= −
−∫   (19) 

respectively. In Eq. (19), we have 
1

L x L
θ θ

=
=  and ( ) ( )2 2

0 0dQ k Cβ ρ′ = . The total 

difference frequency acoustic field can be calculated by the summation of ( )1 0 , ,sp R tθ  

and ( )2 0 , ,sp R tθ  as 

 ( ) ( ) ( )0 1 0 2 0, , , , , ,s s sp R t p R t p R tθ θ θ= +   (20) 

Within the integration domain (L1, L2), the approximation relation 0 0cosR x Rν− ≈  is 

well satisfied. Then, the difference frequency acoustic field ( )2 0 , ,sp R tθ  can be 

approximately obtained as  

 ( ) ( )
( ) ( )

( )
0 2 0 1

0

cos 2 cos 22
0

2 0 2
0

0

, ,
8

sin
2

d d d d
d d

j k k j L j k k j L
j t k Ra

s L

d

Q p S e ep R t e D
R

jk

ν α ν α
ωθ θ

π ν α

− − − − − −
−′ −

≈
  + 
 

  (21) 

As the integration of Eq.(18) cannot be solved explicitly, a numerical integration method 

is employed to obtain the difference frequency acoustic field contributed by the virtual 

array in the horn. In the subsequent analysis, the numerical integration is directly 

implemented using the built-in function “NIntegrate” in Mathematica. 
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3. Results and Discussion 

It is obvious that the difference frequency acoustic fields are significantly affected by 

the horn flare constant δ  as shown in Eqs. (18) and (19). In order to study the 

characteristics of the difference frequency acoustic fields generated by a horned PAL, a 

horn with 1 0.5 mL =  and  a0 = 0.1 m attached to a PAL is taken as an example. The 

density and the isentropic wave velocity in air are taken as 3
0 1.29  kg mρ −=  and 

1
0 340 m sC −= , respectively. The primary wave frequency is selected around 40 kHz and 

the corresponding attenuation coefficient is 1
0 0.2 mα −= . From Fig. 2 to Fig. 4, the same 

parameters are chosen for analysis. The directivity effect of the horned PAL with various 

flare constants 1δ = , 5δ =  and 7δ =  is presented in Figs. 2(b) - 2(d), respectively. 

Besides, the directivity for a non-horned case is also shown in Fig. 2 (a) for comparison. 

The pressure levels in all these figures are normalized to the maximum on-axis pressure. 

Increasing the flare constant gives rise to a remarkable improvement on the sound 

directivity and makes the acquired sound beam narrower. By comparing Figs. 2(a) and 2(d), 

it is found that the sound beam emitted from the non-horned PAL is concentrated within a 

divergence angle of o15± . While for the horned PAL with 7δ = , the sound beam almost 

entirely focuses on the center axis. This is coincident with the available experimental 

results [18]. In short, a horned PAL is able to emit a much narrower sound beam as 

compared with a non-horned PAL in both theoretical and experimental studies [11].  

In Figs. 2(c) and 2(d), some side lobes are also observed. Using Eq. (21), it is found 

that the directivity of the difference acoustic field is a coherent result of the two terms, i.e., 

2

01 sin
2djk ν α

   +  
   

 and ( )LD θ . Consider the attenuation coefficient 0α  and the 
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difference wave number kd, the directivity of the first directive term is independent of the 

radius of the horn cross section ax. However, the directivity of the second directive term 

( )LD θ is dependent on 
1Lx xa = . For a given L1, 

1Lx xa = increases as the flare constant δ  

increases. It is well known that the side lobes appear in ( )LD θ  for the emitters with a 

large radius. Therefore, the side lobes appear when the flare constant δ  exceeds certain 

values for the horned PAL as shown in Figs. 2(c) and 2(d). However, for a small flare 

constant δ , no side lobes appear in Fig. 2(b). It should be pointed out that the amplitudes 

of the side lobes are greatly smaller than the principal maximum on the center axis, and 

they do not have influence on the difference frequency acoustic fields.  

The output difference frequency acoustic pressure levels under various flare constants 

are depicted in Fig. 3. It is clearly shown that the acoustic pressure can be remarkably 

enhanced by increasing the flare constant in the low-frequency difference frequency range 

(typically less than 1000 Hz). However, the acoustic pressure levels generated by the 

horned PAL and the non-horned PAL tend to have no difference in the high-frequency 

range. Therefore, the influence of a horn on the emitted acoustic pressure is mainly within 

the low-frequency range. This can also be numerically verified by analyzing the source 

factor Q . In the low-frequency range (typically hundreds of Hz), dk  and δ  are on the 

same order, it implies that the value of the first term may be even smaller than that of the 

second term in the source factor Q . For the non-horned PAL ( 0δ = ), the value of the 

second term in Q  vanishes, thus only the first term can make contribution to the acoustic 

pressure. Increasing the flare constant δ , the value of the second term in Q  also 

increases, this makes more influence on the acoustic pressure. When the difference 
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frequency increases, i.e., dk δ>> , the value of the first term in Q is greatly larger than 

that of the second term, and thus the horn effect on the difference acoustic pressure is 

weakened.  

To further investigate the directivity effect of the horned PAL, the acoustic pressure 

responses at various difference frequencies are shown in Fig. 4 and the corresponding 

responses for the non-horned case are also presented. Obviously, the sound pressure levels 

can be greatly enhanced within the low-frequency range, this is similar to the results 

obtained in Fig. 3. From Fig. 4 (a), the sound pressure level is enhanced by 25 dB on the 

center axis for the difference frequency at 100 Hz from =0δ  to =7δ . Similarly, a 15 dB 

enhancement is observed for the difference frequency at 200 Hz. However, the 

improvement of the directivity for low frequencies is not obvious even for =7δ . By 

increasing the difference frequency, the directivity can be improved under the same flare 

constant δ  and a similar improvement on the directivity can be achieved at the same 

difference frequency by increasing the flare constant. For the difference frequency wave at 

5000 Hz, the acoustic beam in the horned case ( =7δ ) mainly concentrates within 5±  , 

which is greatly sharper than the non-horned case ( =0δ ) within 13±   as shown in Fig. 

4(d). On the basis of these results, we found that a directive acoustic beam emitted from a 

PAL with specific difference frequencies is achieved, the beam directivity can be improved 

by using a horned PAL. It is also expected that an acoustic horn can be optimized by using 

the specific approach proposed to improve the efficiency [22]. 

On the improvement of horned emitters, the ratio of the equivalent radius ( ea ) of a 

non-horned emitter to the radius (a0) of a horned emitter for various horn lengths 1L  and 

flare constants δ  is investigated in Fig. 5. Under a specific difference frequency, the ratio 
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0ea a  increases with the horn length to indicate that a larger non-horned emitter should 

be used to reach the same directivity. For a larger flare constant, the ratio is even greater. 

If a horn has a length of 0.7 m and a flare constant is 5, the ratio is approximately equal to 

5. It implies that the area of the non-horned emitter is 25 times with respect to that of the 

horned emitter. For a specific horn length, a greater flare constant will enlarge the radius 

ratio. Besides, the influence of the flare constant on the ratio becomes significant within 

the low-frequency range, see Fig. 5(b). The directivity effects of the horned PAL and the 

non-horned PAL under the same radius are also presented in the inserted graphs of Fig. 5. 

According to the present results, the function of acoustic horns to improve the directivity 

can be evidently demonstrated. 

 

4. Conclusions 

An analytical model for the difference frequency acoustic pressure generated by a 

horned PAL is proposed. For a specific case, i.e., an exponential horn, analytical solutions 

are obtained to investigate the performance of horned loudspeakers. From the obtained 

results, a horn can make a significant impact on the difference frequency acoustic pressure 

and the directivity effect generated by a PAL. The directivity can be further improved by 

increasing the flare constant at a specific frequency, and also the generated secondary 

sound pressure can be considerably enhanced by a horn in the low-frequency range. 

Besides, the radius of a non-horned emitter is found to be several times as large as that of 

a horned-emitter to reach a similar directivity. To compare with traditional types of PAL, 

an appropriate selection of the governing parameters can improve the performance of a 

horned PAL to produce highly directional acoustic waves. The present study offers an 
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analytical approach in engineering design of highly directional loudspeakers. In future 

works, a wide frequency bandwidth of directional acoustic waves in various potential 

applications will be explored.  
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Figure captions 

Fig. 1 (a) (a) Schematic diagram of a horned parametric acoustic loudspeaker with a typical 

array of piezoelectric transducers; (b) and (c) configuration and coordinate system; and (d) 

a driven circuit of the parametric array. 

Fig. 2 Comparison of directivity effect: (a) a non-horned PAL and a horned PAL with 

various flare constants (b) 1δ = , (c) 5δ = , and (d) 7δ = . 

Fig. 3 Variation of sound pressure levels for different flare constants. The amplitude of the 

primary frequency wave is 10 Paap = . The inserted figure shows the acoustic pressure 

response in the low frequency range. 

Fig. 4 Comparison of the sound beam directivity generated by a horned PAL and a non-

horned PAL at various difference frequencies (a) 100 Hz, (b) 200 Hz, (c) 1000 Hz and (d) 

5000 Hz. The amplitude of the primary frequency wave is 10 Paap = . 

Fig. 5 Ratio of the equivalent radius of a non-horned emitter to the radius of a horned 

emitter for (a) various horn lengths at 5000 Hz; and (b) various flare constants with a horn 

length of 0.5 m. The radius of the horned emitter is a0 = 0.1 m for both (a) and (b). The 

inserted graphs show the directivity of the horned emitter and the non-horned emitter with 

a0 = 0.1 m. 
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Fig. 1 (a) (a) Schematic diagram of a horned parametric acoustic loudspeaker with a typical 

array of piezoelectric transducers; (b) and (c) configuration and coordinate system; and (d) 

a driven circuit of the parametric array. 
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Fig. 2 Comparison of directivity effect: (a) a non-horned PAL and a horned PAL with 

various flare constants (b) 1δ = , (c) 5δ = , and (d) 7δ = . 
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Fig. 3 Variation of sound pressure levels for different flare constants. The amplitude of the 

primary frequency wave is 10 Paap = . The inserted figure shows the acoustic pressure 

response in the low frequency range. 
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Fig. 4 Comparison of the sound beam directivity generated by a horned PAL and a non-

horned PAL at various difference frequencies (a) 100 Hz, (b) 200 Hz, (c) 1000 Hz and (d) 

5000 Hz. The amplitude of the primary frequency wave is 10 Paap = . 
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Fig. 5 Ratio of the equivalent radius of a non-horned emitter to the radius of a horned 

emitter for (a) various horn lengths at 5000 Hz; and (b) various flare constants with a horn 

length of 0.5 m. The radius of the horned emitter is a0 = 0.1 m for both (a) and (b). The 

inserted graphs show the directivity of the horned emitter and the non-horned emitter with 

a0 = 0.1 m. 
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