The following publication Wang, N., Lyu, X. P., Deng, X. J., Guo, H., Deng, T., Li, Y., ... & Wang, S. Q. (2016). Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Science of the total environment, 573, 1554-1565 is available at https://doi.org/10.1016/j.scitotenv.2016.09.013.

Assessment of regional air quality resulting from emission control in

the Pearl River Delta in China

- N.Wang ^a, X.P.Lyu ^b, X.J.Deng ^a, H.Guo ^b, T.Deng ^a, Y.Li ^c, C.Q.Yin ^a, F.Li ^a, S.Q.Wang ^d
- 4 a Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of
- 5 Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou,
- 6 China

1

- 7 b Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
- 8 Kowloon, Hong Kong
- 9 ° Division of Environment, Hong Kong University of Science and Technology, Kowloon, Hong
- 10 Kong

12

11 d Zhuhai Meteorological Bureau, Zuhai, China

Abstract: The paper combined observation, reduction measures, and atmospheric 13 modeling to provide scientific support for assessing air quality in the Pearl River Delta 14 15 (PRD) in China. Statistical data revealed that energy consumption doubled from 2004 to 2014 and vehicle usage increased significantly from 2006 to 2014. Due to the 16 controlling efforts, primary emission of SO₂, NO_x (NO₂+NO) and PM_{2.5} decreased, 17 resulting in the reductions of ambient SO₂, NO₂ and PM₁₀ by 66%, 20% and 24%, 18 respectively. However, O₃ increased by 19%. Comprehensive air quality modellings 19 were made to evaluate the responses of air pollutants to changes in NO_x, VOCs and 20 NH₃ emissions. Three scenarios, a baseline scenario, a CAP scenario (control strength 21 followed as past tendency), and a REF scenario (strict control referred to latest 22 policy/plans) were conducted to investigate the sensitivities and mechanisms. NOx, 23 nitrate and PM_{2.5} reduced by 1.8%, 0.7% and 0.2% under NO_x CAP and reduced by 24 7.2%, 1.8% and 0.3% under NO_x REF scenario, respectively. The results indicated that 25 in certain area reducing NO_x emission elevated the atmospheric oxidizability, which 26 27 resulted in a compensation of PM_{2.5} due to the increase of nitrate or sulfate. NH₃ controlling scenarios showed that nitrate was sensitive to NH₃ emission in PRD, with 28 the decrease of nitrate by 0 - 10.6% and 0 - 48% under CAP and REF, respectively. 29

- 1 Controlling VOCs emission could benefit PM_{2.5} in southwestern PRD where
- 2 photochemical pollution frequently occurred. Furthermore, O₃ formation in PRD was
- 3 generally VOCs-limited while the regime turned to NO_x-limited in the afternoon,
- 4 therefore reducing VOCs emission benefits the reduction of overall O₃ and controlling
- 5 NO_x emission in the afternoon could reduce peak O_3 .
- 6 **Keyword**: Emission control, Air quality in PRD, WRF/CMAQ, Scenario analysis

8

7

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1. Introduction

The Pearl River Delta (PRD), situated in southern China, is one of the largest city clusters in China. Covering only 0.57% area, housing 4.2% of total population, this region however contributes to nearly 10% gross domestic product of China. (Guangdong Statistical Yearbook, 2013) Driven by its rapid economization, increasing industrialization and continuous urbanization, the PRD region has been suffering from severe air pollution in the past decades. Studies have shown that air quality in PRD is an integrated result of complicated atmospheric pollution, among which haze and photochemical pollution are the most typical ones. They are usually accompanied with exceeded particulate matter with aerodynamic diameters less than or equal to 2.5µm (PM_{2.5}), low visibility and high mixing ratio of Ozone (O₃). (Louie et al. 2005b; Chan and Yao, 2008; Tan et al. 2009; Wang and Hao, 2012; Zhong et al 2013a). Characterized by high levels of primary emissions (i.e. Nitrogen oxides (NO_x), volatile organic compounds (VOCs) etc.), as well as complicated secondary air pollutions (O₃, secondary organic aerosol (SOA), etc.), emission control strategy are urgently needed for better air quality. In fact, a series of strategies to improve air quality were implemented by both national and regional government. In national, during 2001-2005 (the 10th Five-Year Plan), the State Environmental Protection Administration (SEPA) set the target aiming to reduce 10% national sulfur dioxide (SO₂) emission between 2001 and 2005. Though the target

wasn't fulfilled (SO₂ emission increased 27.8% instead), the 11th Five-Year Plan (2006-1 2010) sequentially targeted to reduce SO₂ emission with more aggressive strategy and 2 regulation. The controlling measures included installing flue gas desulfurization (FGD) 3 and shutting down small, inefficient power units. Finally, the Plan resulted in 14.3% 4 decrease of national SO₂ emissions (Chinese Environmental Statistical Bulletin, 5 http://www.mep.gov.cn/zwgk/hjtj/). Before 2010, NO_x emission control in China was 6 merely about power plants and on-road vehicles. Till the 12th Five-Year Plan (2011-7 2015), a national campaign against NO_x emission was firstly executed together with the 8 emission control of SO₂. The 12th plan was characterized by the targets of 10% NO_x 9 reduction and 8% SO₂ reduction with 2010 as the base year. In an attempt to further 10 improve air quality, the State Council issued Air Pollution Control Action Plan in 2013, 11 with specific goals for three typical city clusters in China: 15%, 25% and 20% reduction 12 of PM_{2.5} in PRD, BTH (Beijing-Tianjin-Hebei) and YRD (Yangtze River Delta) from 13 2012 to 2017, respectively. In regional, the joint governments of Guangdong Province 14 and Hong Kong have been closed collaborated in response to national control target. In 15 16 particular, there has been noticeable improvement in regional air quality since the two governments jointly announced the "Joint Statement on Improving Air Quality in the 17 PRD Region for 2002-2010" and subsequently enforced a series of vigorous emission 18 reduction measures. In November 2012, both sides took the co-operation into a new 19 phase by endorsing "The PRD Air Pollutant Emission Reduction Plan up to 2020" 20 (APERP). The plan aims that the 2020 emission of SO₂, NO_x and VOCs within the 21 mainland PRD would be 20%~35%, 20%~40% and 15%~25% less than those in 2010. 22 Typically, it is the first time a specific controlling target was set on VOCs emissions in 23 24 inland PRD. 25 To provide scientific support for improving air quality in PRD, several studies on policy assessment have been carried out. For example, Xing et al. (2011) projected four 26 emission scenarios to assess air quality in three city clusters in China and appealed for 27 stricter NO_x emission control; By using a response surface modeling technique, Wang 28 et al. (2011) claimed controlling NH₃ emissions in parallel with current SO₂ and NO_x 29 controls would be an effective approach in improving regional air quality; Liu et al. 30

(2013) studied the relationship between emission control and concentrations of air 1 pollutants in Guangzhou based on the controlling method during Guangzhou Asian 2 Games and suggested that O₃ pollution should be attached with more attention. Though 3 much efforts were conducted, we must bear in mind that the current air quality in PRD is still of big concern and improving air quality is needed in a sustainable way. With the 5 influence of past control measures, certain emission sources are altered and yearly 6 trends of some pollutants are also changed (Zhong et al. 2013a). Therefore, 8 understanding past-to-present air quality and assessing the potential impact of the recent 9 control policy become critically important. By reviewing environmental published data, the campaign against SO₂ emission control in PRD has already set a good example 10 around the country, the annual concentration of SO₂ in 2014 is 15.7 μg/m³, compared 11 to 48.4 μg/m³ in 2006, SO₂ concentration has met China's Grade I standard (20μg/m³, 12 MEP, 2012). On the other hand, there are more potential space in reducing NO_x, VOCs 13 and NH₃ emissions due to the lack/inadequacy of concerning control policy. Besides, 14 studies suggested that these primary emissions play important roles in the formation of 15 16 secondary pollutants. (Louie et al., 2005a; Edgerton et al. 2008; Chan and Yao. 2008; Wang et al. 2011; Ling et al. 2012; Li et al. 2013; Wang et al. 2013) Hence, in this study 17 we choose to assess air quality (PM_{2.5} and O₃) responses to emission controls of NO_x, 18 VOCs and NH₃ based on the recent regional policy (APERP). 19 The remainder of this paper is organized as follows. First, yearly variations of air 20 pollutants from observations and emission inventories were investigated in order to 21 22 understand the changes of air quality in PRD. Next, three emission scenarios for NOx, 23 VOCs and NH₃ were proposed, the potential impacts of emission controls on air quality 24 were further assessed via numerical simulations. Major air quality issues, including 25 nitrate, sulfate, ammonium, SOA, PM_{2.5} and O₃ were discussed in details under different scenarios. The purpose of this study is to evaluate air quality profited by recent 26 policy legislations and plans, and also provide concerning implications of chemistry 27 mechanisms affecting the effectiveness of control strategies in the PRD region. 28

2. Method and material

2.1 Statistical Data

29

- 1 Monitoring air quality data (SO₂, NO₂, O₃, and PM₁₀) were collected from the PRD
- 2 Regional Air Quality Monitoring Network (Zhong et al., 2013b). The network is
- 3 consisted of 16 sites with 13 sites in the mainland PRD and 3 sites in Hong Kong, which
- 4 could well reflect the spatial patterns of air quality in this region. Since the network
- 5 provides monthly statistical results of regional air pollutants and seasonal air quality
- 6 report to the public (http://www.epd.gov.hk/epd/eindex.html, accessed on 24 Dec 2015),
- 7 the annual trend of air pollutants (from 2006 to 2014) were investigated. Besides,
- 8 environment related statistical data, such as energy consuming, coal burning and
- 9 vehicle usage, were also analyzed in order to help understand the change of past-to-
- present air quality in PRD. (Guangdong Statistical Yearbook, 2004-2014).
- Observed hourly air pollutants including PM_{2.5}, O₃ and NO_x were employed to evaluate
- model performance. These data were collected from surface monitoring stations
- founded by either CMA (China Meteorological Administration) or HKEPD (Hong
- Kong Environmental Protection Department) within PRD (Fig. 2.). In general, these
- sites were regularly maintained following the rules of USEPA and previous studies have
- already shown good performance with convinced quality control in terms of both
- scientific research and operational service. (HKEPD report, 2012; Zou et al., 2015;
- 18 Wang et al., 2015)
- 19 In addition, we introduced satellite remote sensing data to further validate the model
- 20 performance. The derived method includes two MODIS aerosol optical depth (AOD)
- 21 products, Terra and Aqua. The 1 km AOD data in the PRD region was retrieved at 0.55
- 22 µm based on a MODIS dark target algorithm and a self-developed look-up table. By
- using a self-developed physical model of AOD-PM_{2.5}, the satellite-derived PM_{2.5} could
- be estimated. (Details refer to Li et al. 2015.) Based on satellite-derived surface PM_{2.5},
- 25 the magnitude and spatial distribution could be further evaluated.

2.2 Emission inventories

- 27 In this study, four types of emission inventories from 2006 to 2012 were applied. They
- were a developed 2006-based PRD regional emission inventory (Zheng et al., 2009), a
- 29 2008-based Multi-resolution Emission Inventory for China (MEIC), a 2010-based
- MEIC and a 2012-based MEIC (He et al., 2012), respectively. Specifically, the 2006-

based PRD emission inventory has a high grid resolution of $3 \text{ km} \times 3 \text{ km}$ and considers

2 sources of power plant, industry, mobile, VOCs products and others in the PRD region

3 with convinced high quality. Developed by Tsing Hua University, MEIC refers to a

series of Chinese national emission inventories with a resolution of 0.25° x 0.25° (~ 25

5 km), which includes the emissions of agriculture (AGR), transport (TRA), industry

(IND), power plant (PP) and residence (RES). Though some uncertainties existed

between the PRD EI and MEIC, we employed both to study the emission trend in PRD

since the trends were reasonably comparable with other data. (Details refer to the

Supplement) In addition, biogenic emissions calculated by the Model of Emissions of

Gases and Aerosols from Nature (MEGAN v2.04) were used for driving chemical

transport model. As a biogenic emission model, MEGAN could provide biogenic

emission for both global and regional modeling with the highest resolution around 1

13 km (Guenther et al., 2006).

4

6

7

8

9

10

18

20

23

29

In order to stretch our understanding on the variation of air quality in PRD, trends of

anthropogenic (SO₂, NO_x, PM_{2.5} and VOCs) emissions based on the above inventories

were investigated together with agricultural NH₃ emission data. (Obtained from Zheng

et al., 2012; Shen et al., 2014)

2.3 Scenarios and emission projection

19 Based on recent evolution of emission control in PRD, this paper presents one baseline

and two possible future emission scenarios for NO_x, NH₃, and VOCs. Simulations were

21 conducted in four months (January, April, July and November), representing the winter,

22 spring, summer and autumn, respectively. Also, the meteorological conditions were

assumed unchanged among these scenarios meaning that same meteorological

24 conditions in year 2010 were used for all scenarios.

25 The baseline was conducted by using the 2010-based MEIC, which was deemed to

represent the air quality in 2010 and also used to compare with future scenarios. The

comparison method is defined as:

Area Mean Change of
$$X = \frac{1}{n} \sum_{i=1}^{n} \frac{B_i - C_i}{B_i}$$

,where X refers to air pollutants such as PM_{2.5} or O₃, n is the total grid number within

- the simulated PRD region, i is the ground computational grid, B_i is the predicted
- baseline value of X in the i grid and C_i is the predicted value of X in the i grid under the
- 3 controlling scenarios.
- 4 A CAP future scenario was proposed, referring to a theoretical scenario, the control
- 5 strength in the future was assumed to follow the past control tendency. The goal is to
- 6 evaluate air quality in 2020 if governments just maintain past control strength with no
- 7 further actions. To achieve this, activity data based on past emission inventories were
- 8 used. A general extrapolation function is given below:
- 9 $EI_{cap} = f_x(EI_{past}, activity, time)$
- 10 , where EI refers to emission inventory, activity refers to PP, TRA, IND, AGR and RES,
- 11 respectively.
- 12 The other future scenario was REF, a reference control scenario based on APERP. The
- 13 REF assumed the NO_x and VOCs control would be stringently implemented based on
- the government plan and the 2020 emission inventory was projected by assigning the
- referred emission amount into four activities (TRA, PP, IND and RES). However, there
- was no direct controlling strategy implemented for NH₃ emission. In this study, we
- 17 chose to assess the NH₃ controlling effect of AGR since AGR was its dominant source
- in PRD (Zheng et al., 2012). According to the study on the potential control of AGR
- emission by Shen et al., (2014) and Klimont et al., (2004), the controlling potentiality
- of AGR NH₃ ranges from ~15% to ~80% through a series of cleaning/effective
- 21 technology. Besides, Wang et al., (2013) studied the responses of inorganic aerosols by
- adopting 30% NH₃ emission reduction in national scale, we therefore employed the
- same reduction for AGR NH₃ control (30% reduction) in REF to study the impacts in
- 24 regional scale.
- 25 Fig. 1 summarizes the emissions of NO_x, VOCs and NH₃ for each scenario. The CAP
- showed that total emission of NO_x, NH₃ and VOCs would reduce by 18%, 5% and
- increased by 28%, respectively, while the REF showed that NO_x, VOCs and NH₃ were
- reduced by 30%, 20% and 30%, respectively. In particular, VOCs emissions increased
- in most activities under CAP, implying the increasing trend of VOCs emission and the
- 30 ignorance of VOCs control in the past. Besides, NO_x emission contributed by

- transportation also increased under CAP (35% higher than baseline). This was due to
- 2 the significant increase of vehicle usage. (Fig. 1 and Table 1).

2.4 Model set up and evaluation

- 4 In this study, US Environmental Protection Agency (EPA) Multi-scale Air Quality
- 5 (CMAQ, version 4.7.1, http://cmascenter.org/cmaq/) modeling system driven by
- 6 Weather Research and Forecasting (WRF, version 3.3.1, http://www.wrf-
- 7 <u>model.org/index.php</u>) was applied for assessing air quality in PRD region. As open
- 8 sources, the CMAQ modelling system is a third-generation air quality model and is
- 9 designed for applications ranging from investigating complex mechanism of
- atmospheric chemistry and physics to regulatory and policy analysis.
- 11 A two-nested domain was applied for model setting in this study (Fig. 2), with
- horizontal grid spacing of 36 km and 12 km, respectively. Vertically, there were 39
- sigma levels for all domains, with the top level fixed at 100 hPa. The outmost domain
- 14 covered nearly entire region of China, Southern China Sea, Korea, Japan and parts of
- Western Pacific Ocean, which aimed to provide enough boundary condition for the
- nested domain. The inner domain covered whole area of Guangdong Province with the
- 17 PRD region highly focused. The detailed WRF-CMAQ configuration was provided in
- Table S1. Given the resolution of $0.25^{\circ} \times 0.25^{\circ}$ (~ 25 km) for original emissions, the
- emission data are linearly interpolated into the inner domain (12 km) considering the
- 20 earth curvature effect. Similar method can be found in other studies. (Jiang et al., 2010;
- 21 Xing et al., 2011; Liu et al., 2013)
- 22 Statistical metrics were used so as to compare the relationship between observation and
- simulation, which included the averaged values (Obs_{mean} and Sim_{mean}), mean bias
- 24 (MB, Obs_{mean} Sim_{mean}), absolute bias (ME), root mean square error (RMSE, RMSE =
- $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Sim(i)-Obs(i))^{2}}$) and the index of agreement (IOA, IOA = 1 -
- 26 $\frac{\sum_{i=1}^{n}(sim(i)-Obs(i))^{2}}{\sum_{i=1}^{n}(|Sim(i)-\overline{Obs}|+|Obs(i)-\overline{Obs}|)^{2}}$). Usually, an IOA value ranges from 0 to 1, and a higher
- value of IOA indicates the better agreement between the simulation and observation.
- Additionally, in order to further quantify the performance of chemical simulations,
- 29 normalized mean bias (NMB, NMB = $\sum_{i=1}^{n} [(Sim(i) Obs(i))/Obs(i)]$) and

normalized mean error (NME, NME = $\sum_{i=1}^{n} [|Sim(i) - Obs(i)|/Obs(i)]$) were also

2 introduced.

3

4

3. Results and discussion

3.1 Analysis of statistical results

Fig. 3 shows the temporal variations of the energy consumption and the concentrations 5 of air pollutants in PRD. From 2004 to 2014, the total energy consumption in this region 6 increased 1.97 times, among which electricity ranked the top, followed by oil product 7 8 and coal. Besides, the possession of vehicles (Table 1) increased 3.1 times (2006-2014), 9 occupying nearly 80% of whole Guangdong province. These ascending activities might potentially rise the emissions of primary air pollutants, therefore further insight was 10 11 given on the emission variations. It was found that the emissions of SO₂, NO_x and PM_{2.5} all relatively reduced in these 12 years (Table 2) owing to the effectiveness of emission controls in inland PRD and Hong 13 Kong. In fact, the joint governments of Guangdong and Hong Kong have been 14 15 dedicated in emission reduction during the past decade. Basically, the control measures included using more efficient desulfurization and denitrification techniques, phasing 16 out high emitting vehicles, shutting down small/inefficient industries, popularizing 17 clean energy and production, controlling the emission of non-road mobile sources and 18 19 etc. Accordingly, the monitored trend of pollutants generally agreed with emission data 20 for those major air pollutants, for example, SO2, NO2 and PM10, reduced by 66%, 20% and 24%, respectively. (Fig. 3) In particular, a noticeable reduction was SO₂, the annual 21 concentration in 2014 was 15.7 µg/m³, much less than China's Grade I standard 22 (20μg/m³), showing a successful example of SO₂ control around China. On the other 23 24 hand, despite these measures, VOCs emissions increased and NH₃ emissions slightly changed (Table 2) owing to the limited/inadequate VOCs or NH₃ emission control in 25 PRD. Since VOCs and NO_x were the precursors of tropospheric O₃, the poor regulation 26 of VOCs emission and/or unbalanced NO_x reduction possibly resulted in the increasing 27 of O₃ concentration (Fig. 3, rising rate=1.1µg/m³/year) in PRD, which implied that 28 photochemical pollution was becoming a problematic concern. 29

Because that the emission trends played key roles in future CAP scenarios, we further 1 compared the trends with ECLIPSE global emission trends and other published paper 2 (See details in Supplement). The comparisons showed that relatively consistent 3 variations were discovered for SO₂, NO₂, PM and VOCs emissions (Fig. S1, Fig. S2 4 and Fig. S3), indicating that the combining use of MEIC with PRD EI was reasonably 5

6 acceptable. Indeed, similar responses of annual SO₂ NO₂ PM₁₀ and O₃ concentrations 7

confirmed again the emission trends in this study were convincing. (Table 2 and Fig. 3)

8 9

10

3.2 Evaluation of model performance

- Simulated surface meteorological parameters were verified with observed hourly data 11
- in the PRD region. Generally, the results revealed that the model could well reproduce 12
- weather conditions in 2010 (Table 3). The results of MB, ME, NMB, NME, RMSE and 13
- IOA are basically in the typical range of meteorological modeling studies (Huang and 14
- Fung, 2005; Jiang et al., 2010; Wang et al., 2015). 15
- 16 Simulated NO_x, O₃ and PM_{2.5} were also verified with surface monitoring data. (Fig. 4
- and Table 4) The mean bias of O₃ ranged from 7.1ppb to 10.6 ppb and the averaged 17
- IOA was 0.8, showing a good simulation of O₃. The prediction of NO_x was generally 18
- underestimated (MB=7.71ppb), which could be attributed to two main aspects. One was 19
- NO_x could be easily affected by local emissions, i.e., mobile emission, and such sources 20
- were usually the weakness for the consideration of emission inventories, especially in 21
- 22 urban area. The other aspect was owing to the limited model resolution, the second
- domain only had a grid resolution of 12 km, thus it could not reflect the highly-precised 23
- 24 underlying ground information. (i.e., street urban canopy, which could trap and sustain
- high spatial gradients in primary pollutants such as NO, Jiang et al., 2010; Li et al., 25
- 2013) For PM_{2.5}, the simulated average was 32.5 μ g/m³ and the observed average was 26
- 47.7μg/m³. Though the model missed several high polluted events, (i.e., Jan 20 and Jan 27
- 26) the trend and magnitude were comparable with observed data (IOA=0.6). 28
- In order to further validate the model performance, the modelled PM_{2.5} were compared 29
- to those derived from satellite products (Fig. 5). Noticeably, the modelled PM_{2.5} agreed 30

- well with remote sensing data in both spatial distribution and seasonal variation.
- Though the modelled $PM_{2.5}$ was ~10 ug/m³ lower than the satellite-derived ones in
- 3 certain area, the distribution pattern agreed well especially for the reproduce of those
- 4 high concentration areas. The spatial distribution showed that relatively high PM_{2.5}
- 5 were observed and simulated in the highly developed urban cores, i.e. Guangzhou,
- 6 Foshan, Dongguan and Shenzhen. Besides, the seasonality showed that PM_{2.5} were
- 7 relatively higher during dry season (Nov. and Jan.) compared to wet season (Apr. and
- 8 Jul.), which might be attributed to the seasonality emission as well as meteorological
- 9 factors (i.e., boundary layer, wet deposition, radiation and etc.).
- Based on the above evaluations, the magnitudes and trends of O₃, NO_x and PM_{2.5} were
- reasonably well reproduced. The overall performance was comparable with previous
- studies (Jiang et al., 2008; Li et al., 2013) and thus was accepted for further analysis.

13 3.3 Controlling Impact on PM_{2.5}

- Since the model performed well in reproducing spatial and temporal PM_{2.5}, this section
- aimed to study responses of the secondary pollutant, PM_{2.5} (including nitrate, sulfate,
- ammonium and SOA), to emission controls of NO_x, VOCs and NH₃, respectively. The
- spatial distributions of baseline nitrate (0 -10 μ g/m³), ammonium (0.3 6.3 μ g/m³),
- sulfate $(1.8 16.4 \,\mu\text{g/m}^3)$ and SOA $(0.3 2.4 \,\mu\text{g/m}^3)$ were provided in Fig. S5, taking up
- 19 34.6%, 14.6%, 15.5% and 2.4% of PM_{2.5}, respectively.

20 3.3.1 Controlling impact of NO_x scenario

- The NO_x CAP scenario showed that NO_x concentration (ranging from -15.1% to 9.6%)
- 22 could either increase or reduce at different areas (Fig. 6a). Generally, the area mean
- NO_x concentration reduced by 1.8%, while Zhaoqing experienced an overall NO_x
- increase, which was due to the increase of mobile source. The NO_x REF showed an
- average of 7.2% reduction of NO_x in the PRD (Fig. 6d), among which Guangzhou,
- 26 Dongguan, Foshan and Jiangmen were the main cities subject to NO_x reduction. The
- expected NO_x variation led to the changes of nitrate and PM_{2.5}. Accordingly, nitrate and
- 28 PM_{2.5} each reduced by 0.7% and 0.2% when the control strength remained unchanged
- 29 (CAP), while the reduction percentages were 1.8% and 0.3%, respectively, when the
- 30 REF reduction scenario was enforced.

Interestingly, nitrate and PM_{2.5} increased at Guangzhou, Huizhou and Shenzhen, even 1 though the precursors were reduced. (red areas in Fig. 6b and Fig. 6c) It should be noted 2 that both the formation pathways of HNO₃ in the daytime and night were through the 3 oxidation of NO₂ by atmospheric oxidants (daytime: NO₂+OH+M->HNO₃+M; night: 4 $NO_2+O_3->NO_3+O_2$, $NO_3+NO_2+M -> N_2O_5+M$, $N_2O_5+H_2O(s)->HNO_3$) Section 3.4 5 revealed that the corresponding area was VOCs-limited in O₃ formation, therefore the 6 rate of O₃ formation increased as the consequence of NO_x reduction, leading to higher 7 8 oxidants (i.e. OH radical, O₃ etc.). As a result, the HNO₃ formations in both daytime 9 and night pathways were enhanced, resulting in more formation of HNO₃ and NO₃. The findings were similar to the work of Zhao et al. (2013) On the other hand, the REF 10 NO_x scenario showed that PM_{2.5} in Guangzhou, Huizhou and Shenzhen increased while 11 the corresponding nitrate was reduced (Fig. 6f). This was related to the compensation 12 of sulfate aerosol. Since H₂SO₄ and HNO₃ were neutralized mainly by NH₃, and NH₃ 13 preferentially reacts with H₂SO₄ due to the stability of (NH₄)₂SO₄. The oxidation of 14 SO₂ occurred in both heterogeneous and homogeneous, and OH radical is the key 15 16 reactive species in the formation of sulfate. Due to the increase of atmospheric oxidizability caused by reducing NO_x (Fig. 9, O₃ increased), the oxidation of SO₂ would 17 be enhanced. Indeed, the increase of sulfate in the corresponding area offset the overall 18 PM_{2.5} (sulfate increased 1%, see Fig. S6). Therefore, an effective way in reducing PM_{2.5} 19 was to reduce NO_x emission together with SO₂ emission. 20

3.3.2 Controlling impact of NH₃ scenario

21

22 Fig. 7. shows the responses of ammonium, nitrate and PM_{2.5} when controlling NH₃ 23 emission. Due to the fact that NH₃ emission in the past showed small fluctuations in 24 PRD, the NH₃ CAP scenario also showed minor responses. In general, ammonium, 25 nitrate and PM_{2.5} would reduce by 0.5%, 1.6% and 0.5%, respectively. If agricultural NH₃ emission reduced by 30% (NH₃ REF scenario), ammonium, nitrate and PM_{2.5} 26 changed noticeably with the maximum reduction of 13%, 48% and 7.2%, respectively. 27 28 The reduction areas were mainly located in those agriculture intensive cities such as Jiangmen, Zhaoqing and Foshan. In addition, sulfate slightly changed (not shown), with 29 area mean reduction by 0.16% and 0.20% under CAP and REF, respectively. 30

It should be noted that the reduction of NH₃ emission resulted in the significant 1 reduction of nitrate (Fig. 7e) while sulfate changed little Indeed, the inorganic aerosol 2 chemistry much differs under NH₃-poor and NH₃-rich conditions. We used an 3 experience-based method by comparing [TA] (total molar concentration of ammonia) 4 and [TS] (total molar concentration of sulfate). (John and Spyros, 2006) If [TA] < 5 2[TS], it is NH₃-poor condition; otherwise, it is NH₃-rich. In this study, [TA]-2[TS] < 6 0, meaning there was limited free ammonia thus the region was generally the NH₃-poor 7 8 conditions. The result was consistent with the result of Wang et al., (2011). Usually, 9 NH₃-poor condition means the atmospheric available ammonia is insufficient to balance the remaining of other anions and cations, resulting that even a small 10 perturbation in the ammonia emissions might have a significant effect on inorganic 11 aerosols. On the other hand, sulfate slightly changed under NH₃-poor condition, which 12 was mainly due to the fact that the formation of PM_{2.5} bound sulfate was relatively free 13 of acid-base balance. Namely, it might be not strongly dependent upon the amount of 14 NH₃, because the heterogeneous and in-cloud processes enabled sulfate existed in the 15 16 form of sulphuric acid in PM_{2.5} Due to the fact that controlling NH₃ emission could not only reduce ammonium, but 17 also significantly reduced nitrate, implementing NH₃ controlling strategy is highly 18

suggested in PRD.
3.3.3 Controlling impact of VOCs scenario

Fig. 8 shows the change in SOA and PM_{2.5} concentrations under the anthropogenic 21 VOCs controlling scenario. Generally, SOA responses with the same trend as the 22 precursors' change. Under the VOCs CAP scenario, the PRD VOCs emissions 23 24 increased by 28.7% from 2010, and the corresponding SOA and PM_{2.5} would increase by 10.7% and 0.4%, respectively. If strict VOCs controls were applied, the VOCs 25 emissions reduced by 20% while the average reduction of SOA and PM_{2.5} were 13% 26 and 1%, respectively. Both scenario showed that the noticeable increase and reduction 27 28 area were consistently located at Foshan, Zhongshan, Guangzhou and Jiangmen, with the highest increase of 34% and 1.7% for SOA and PM_{2.5} under CAP scenario and 29 highest decrease of 27.4% and 5.3% for those under REF scenario, respectively. Usually, 30

- 1 severe photochemical pollution occurred in late summer and autumn in PRD, when the
- 2 prevailing winds were from the north, and was often aggravated by stagnant
- weather.(Wang et al., 2015) These areas were downwind areas compared to the less
- 4 polluted area, (i.e., northern Guangzhou) thus subjecting to the gathering and
- 5 accumulation of air pollutants. Such responses indicated that though SOA was not the
- 6 major components of PM_{2.5} (compared to nitrate or sulfate), the control of
- 7 anthropogenic VOCs at Foshan, Zhongshan, Guangzhou and Jiangmen with severe
- 8 photochemical pollution, might be effective on the control of PM_{2.5} concentrations.

9 3.4 Controlling impact on O₃

- 10 The implement of VOCs and NO_x controlling strategy would inevitably affect
- tropospheric O₃. Due to the fact that photochemical pollution in PRD is increasingly
- significant, as indicated by the upward trend of O₃ in Fig. 3, it is urgent to fully
- understand the O₃ formation mechanisms and to further control O₃ pollution. Based on
- the proposed scenarios of controlling NOx and VOCs, we investigated the effects of
- NOx and VOCs controls on O_3 production, respectively.
- Given that O₃ usually peaks in the early afternoon, we selected the 14:00 O₃ as the study
- objects. Similar with the patterns of SOA, the baseline (Fig. 9a) revealed that high O₃
- polluted area located in the southwestern PRD, with the highest mixing ratio over
- 19 70ppby, indicating that these areas suffered from severer photochemical pollution.
- 20 Besides, a relatively high O₃ polluted area was simulated in the Pearl River Estuary
- 21 (PRE). One possible reason was the unique "horn mouth" topography, which could
- 22 geographically trap and sustain pollutants. In addition, NO_x emission might be weaker
- over PRE, and the weaker NO titration caused higher O₃ as compared to the urban areas.
- Fig. 9b and Fig. 9c depicted O₃ changes under two VOCs scenarios. The responses of
- 25 14:00 O₃ increased by 3.3% under CAP scenario while reduced by 8% under REF
- scenario, suggesting that O₃ formation was VOCs-limited in PRD region. Such results
- implied that reducing VOCs emissions would be beneficial to O₃ control in PRD. On
- the other hand, the NO_x scenarios presented different patterns. It was interesting to see
- 29 that O₃ concentration would reduce in most areas of PRD when NOx emission was
- 30 constrained. The results showed that the mixing ratio of O_3 could be furthest reduced

- by 5.8% under NO_x CAP scenario and 6.5% under NO_x REF scenario, respectively,
- which means that the peak O₃ formation was also limited by NO_x in PRD. However, in
- 3 the adjacent area of Guangzhou, Dongguan and Shenzhen (the white and red area in
- Fig. 9d and Fig. 9e), O₃ increased in the context of NO_x control. Furthermore, we divide
- 5 PRD into two representing areas. Area A was the O₃ reduced area, including Foshan,
- 6 Jiangmen, Zhuhai, and Zhongshan, while the cities with O₃ increment (Guangzhou,
- 7 Dongguan and Shenzhen) were defined as Area B.
- 8 Fig. 10 showed the average diurnal variation of O₃ in the two divided areas under NO_x
- 9 scenario. The overall result revealed that both Area A and Area B were dominated by
- 10 VOCs-limited regime. For Area A, it could be seen that O₃ concentration increased
- when NO_x emission was controlled, the peak value increased 0.6ppb and 1.6ppb for
- 12 CAP and REF, respectively. However, the controlling regime of Area B was not as
- monotonous as Area A, the dominating regime was VOCs limited in the morning, then
- switched to NO_x limited in the afternoon (13:00 17:00) and finally turned to VOCs
- limited in the rest hours. Such a pattern revealed that though controlling NO_x might
- raise the overall O₃ concentration, peak O₃ could be reduced if controlling NO_x
- emission in the afternoon.
- In order to further convince the result, we introduced the production rate ratio of H_2O_2
- to HNO₃ (P_{H2O2}/P_{HNO3}) to identify O₃ formation regime. (Sillman, 1995) Previous study
- in Hong Kong has showed that P_{H2O2}/P_{HNO3} is a good ratio to characterize NOx-VOCs-
- O₃ regime in PRD. (Lam et al., 2004; Li et al., 2013) In this study, we adopted the ratio,
- P_{H2O2}/P_{HNO3} , of 0.4 as the value to separate NO_x- and VOCs-sensitivity of O₃ chemistry
- in this study. Fig. 11 compared the afternoon regime with the whole day regime. The
- result revealed that the PRD was generally under VOCs-limited, while most area of
- 25 PRD were NO_x-limited in the afternoon. Those areas were VOCs-limited in the
- afternoon were mainly located at the Guangzhou, Dongguan, Shenzhen and downwind
- seashore areas, which was consistent with the diagnosis of Fig. 9. Such results implied
- again that controlling VOCs emissions could reduce the overall O₃ concentrations and
- 29 controlling the afternoon NO_x emissions could help to reduce peak O₃.

4. Summary and Conclusion

- 1 The PRD region in China has been suffered from air quality issues in the past decade.
- 2 In an attempt to provide scientific support for improving air quality, this study
- 3 investigates the concerning past-to-present air quality data and assesses air quality
- 4 resulting from emission control through numerical simulation.
- 5 Statistical data revealed that the region's total energy consumption almost doubled from
- 6 2004 to 2014, the demand of electricity, oil and coal take up the major parts of energy
- 7 consumption in PRD. A significant increase of vehicle usage had been seen which
- 8 increases 3.1 times in 2014 from the 2006 level. The ascending vehicle usage results in
- 9 a predicted increase of 35% NO_x emission and 13.3% VOCs emission in 2020. By
- investigating the past-to-present emission inventories, agricultural NH₃ emission in
- 11 PRD showed rather stable, the primary emission of SO₂, NO_x and PM_{2.5} depicted
- decreasing trends, while VOCs emission showed an increasing trend which was due to
- the lack of available controlling policy. Thanks to the controlling efforts, the surface
- monitoring air quality data agreed with the emission data. Ambient concentrations of
- SO₂, NO₂ and PM₁₀ decreased by 66%, 20% and 24%, respectively. On the contrary,
- O₃ showed an increasing trend, about 19% higher from 2014 to 2006 (rising rate =
- 17 1.1ug/m³/year), which showed a strong signal that photochemical pollution in PRD was
- becoming more stringent.
- 19 A three-dimensional chemical transport model, CMAQ, was employed to evaluate the
- 20 responses of nitrate, ammonium, SOA, PM_{2.5} and O₃ to changes in NO_x, VOCs and
- 21 NH₃ emissions. Three scenarios, baseline, CAP (control strength followed as past
- tendency), and REF (strict control referred to recent policy and plans), were conducted
- to investigate the responses and mechanisms. The baseline results were validated with
- observed data by using point-to point and area-to-area comparison. Statistical metrics
- showed that the modelling results were reasonably reproduced with the IOA of O₃, NO_x
- and PM_{2.5} were 0.8, 0.6 and 0.6, respectively. The comparison of simulated PM_{2.5} with
- 27 satellite-derived ones also agreed well in magnitude and spatial distribution,
- demonstrating a good performance in numerical simulation.
- 29 If the control of NO_x emission follows the tendency of past strength (CAP), NO_x
- 30 concentration could reduce by 1.8%, resulting a little change in nitrate and PM_{2.5}

(reduced by 0.7% and 0.2%). It should be noted that secondary pollutants as nitrate and PM_{2.5} do not response linearly as the change of NO_x emission. Instead, a relative increasing area (Guangzhou, Huizhou and Shenzhen) of nitrate and PM_{2.5} was found even NO_x emission were reduced, which was attributed to enhancing oxidation of NO₂ caused by the increase of atmospheric oxidants. In the strict REF scenario, the concentration of NO_x, nitrate and PM_{2.5} would reduce by 7.2%, 1.8% and 0.3%, respectively. The results indicate that PM_{2.5} could be compensated by the increase of sulfate even the reduction of NO_x emission. Therefore, it is highly suggested reducing NOx emission together with SO₂ emission. Under the NH₃ CAP scenario, ammonium, nitrate and $PM_{2.5}$ would reduce by 0.5%, 1.6% and 0.5%, respectively. While the corresponding ammonium, nitrate and PM_{2.5} reduced noticeably under NH₃ REF scenario. The reduce sensitivity showed that reducing NH₃ emission could not only reduce ammonium but also significantly reduce nitrate. Since nitrate aerosol was sensitive to NH₃ emissions in PRD, it should be effective in controlling PM_{2.5} by reducing NH₃ emission. The VOCs controlling scenario shows that SOA responses with the same trend as VOCs emissions change. Though the contribution of SOA to PM_{2.5} in PRD is minor, the controlling of VOCs emission might take effect in southwestern areas where photochemical pollution usually occurs. The study on the controlling effect of NO_x and VOCs on O₃ in PRD shows that the PRD is generally VOCs-sensitive, while the diurnal pattern shows that the regime turns to be NO_x-sensitive in the afternoon, such phenomenon was further analyzed by analyzing the ratio of P_{H2O2}/P_{HNO3}. The results indicate that reducing VOCs emission would benefit in reducing the overall O₃ and reducing NO_x emission in the afternoon would result in reducing peak O₃.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24252627282930313233

1	
2	Supplementary Information
3	
4	Assessment of regional air quality resulting from
5	emission control in the Pearl River Delta in China
6	
7	N. Wang ^{a*} , X.J. Deng ^{a**} , X.P. Lyu ^b , T. Deng ^a , Y. Li ^c , C.Q. Yin ^a , S.Q. Wang ^d
8	
9	^a Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory
10	of Regional Numerical Weather Prediction, CMA, Guangzhou, China
11	^b Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
12	University, Hong Kong
13	^c Division of Environment, Hong Kong University of Science and Technology,
14	Kowloon, Hong Kong
15	^d Zhuhai Meteorological Bureau, Zuhai, China
16	
17	
18	Number of pages: 8
19	Number of tables: 1
20	Number of figures: 6
21	

1	Table S1 WRF-CMAC	Q domain setting and configuration
2	Item	Domain 1 Domain 2
	Grid spacing	36km 12km
3	Microphysics	WRF single-moment 5-class
4		microphysics
	Short-wave radiation	Goddard
5	Long-wave radiation	RRTM
6	Surface layer	MM5 similarity surface layer
	Land-surface model	Noah
7	Boundary layer	ACM2
8	Cumulus	Grell-Devenyi ensemble scheme
	parameterization	
9	Chemistry option	CB05
10	Biogenic emission	MEGAN v2.04
11	Aerosol option	AERO5

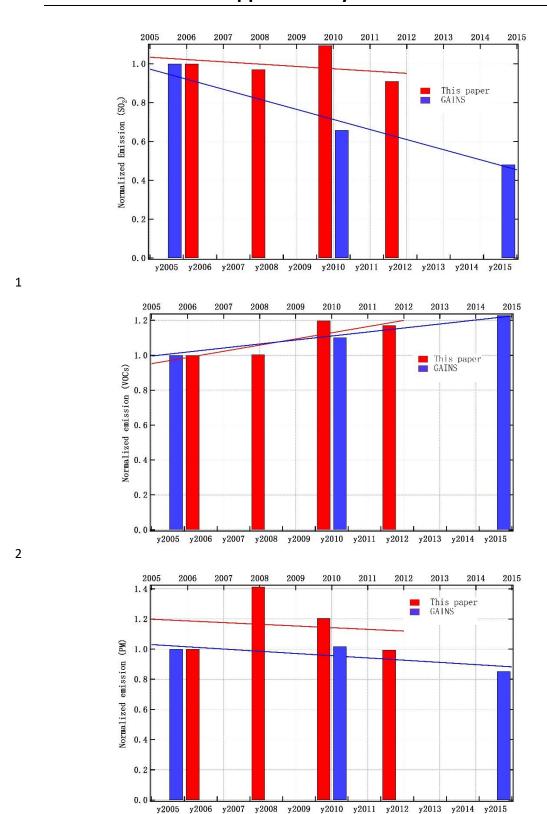


Fig. S1. Comparison of emission trend in this study with GAINS (ECLIPSE) emissions. (All data are normalized to the first year)

ECLIPSE V5 global emission is a global emission provided by International Institute for Applied Systems Analysis, which can be accessed at http://www.iiasa.ac.at. The

concerning PRD emission in this study is retrieved by the GAINS model (Greenhouse Gas – Air Pollution Interactions and Synergies, http://gains.iiasa.ac.at/models/). One of the functional features of GAINS is to calculate the ECLIPSE emissions in a specific area. Since the ECLIPSE emission has a time resolution of 5 years, we compare the 2005-, 2010- and 2015-emissions with the 2006-, 2008-, 2010- and 2012-emissions in this study. The results show that the declining trend of PM and SO2 and the increasing trend of VOCs matched well between the comparisons, the rake ratio of SO2, PM and VOCs is -0.02, -0.01 and 0.03 for this study and -0.05, -0.01 and 0.02 for ECLIPSE, respectively, indicating the combining use of MEIC and PRD emission is reasonably acceptable.

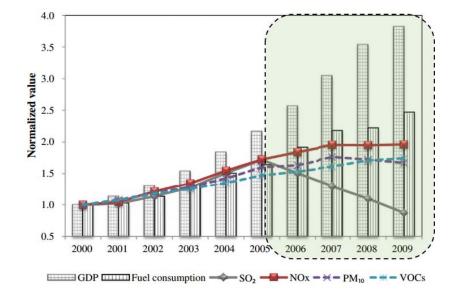


Fig. S2. Trends in pollutant emissions, GDP and fuel consumption. (All data are normalized to the year 2000) From Lu et al., (2013)

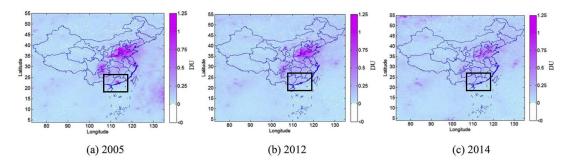
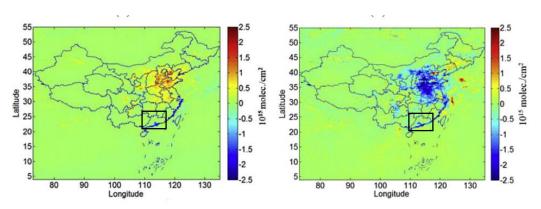



Fig. S3. Spatial distribution of SO2 VCDs in 2005 (a), 2012 (b) and 2014 (c). (The black blank

highlights the PRD region) From Xia et al., (2016)

4 5

6

7

11

12

13

14

15

16

18

20

1 2

3

Fig. S4. The inter-annual variation of NO₂ VCDs between 2005 and 2012 (left, 2012 - 2005) and that between 2012 and 2014 (right, 2014 - 2012). (The black blank highlights the PRD region) From Xia et al., (2016)

We also compare the trend in this study with previous published work and it could be 8 9 10

concluded that our trend in this study is consistent with previous work. Lu et al., (2013) studied emission trends and variations in source contributions of SO₂, NO_x, PM₁₀ and VOCs in the PRD region from 2000 to 2009 by using a dynamic methodology. Parts of the results revealed that SO₂ and PM₁₀ emissions dropped from 2005 to 2009 owing to the effectiveness of control measures adopted by governments (11th 5-Year Plan), however, VOCs emissions presented continuous increase during the study period (Fig. S2). Xia et al., (2016) used bottom-up methods to evaluate the national emissions of SO₂, NO_x, CO and CO₂ and claimed that the emission trend generally matched with

17

satellite vertical column densities (VCDs). By comparing the national spatial emissions

with VCDs, it could be also found that similar variations in PRD region for SO2 and NO_x emissions. (Fig. S3 and Fig. S4).

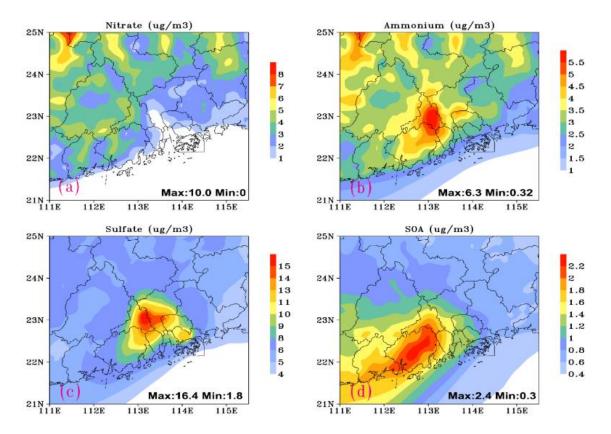
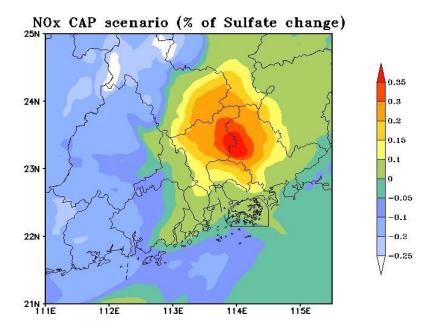



Fig. S5. Simulated annual mean distribution of nitrate (a), ammonium (b), sulfate(c) and SOA (d) under

baseline scenario

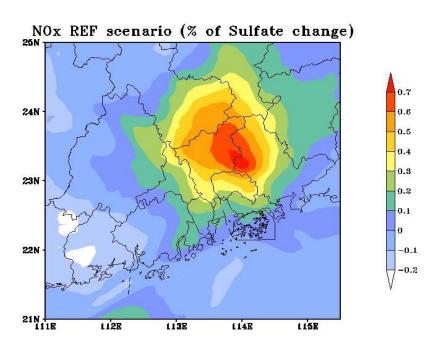


Fig. S6. Simulated annual mean distribution of sulfate under NO_x CAP scenario (top) and NO_x REF scenario (down).