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Abstract: This paper presents a d-minimal cut based algorithm to evaluate the performance index Rd+1 

of a distribution network, defined as the probability that a specified demand d+1 can be successfully 

distributed through stochastic arc capacities from the source to the destination. To improve the 

efficiency of solving d-minimal cuts, a novel technique is developed to determine the minimal 

capacities of arcs. Also, two new judging criteria are proposed to detect duplicate d-minimal cuts. Both 

theoretical and computational results indicate that our algorithm outperforms the existing methods. 

Furthermore, a real case study is provided to illustrate the application of the algorithm.
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1. Introduction
1.1. Background 

Logistics distribution networks provide the infrastructure for the storage and distribution of 

products. In the context of either general business logistics (Chopra, 2003; Sheu, 2006) or emergency 

logistics (Edrissi et al., 2015; Sheu, 2007, 2010), distribution activity is considered as the process of 

the transfer of products from supply points to demand points. Relative to other logistics functions, 

such as procurement, manufacturing, warehousing, inventory and information systems, distribution is 

a key function in the entire logistics system and the key link between manufacturers and customers in 

a supply chain (Yang, 2013). Furthermore, distribution is a major driver of profitability in a company 

due to its direct impact on both the logistics cost and the customer experience (Chopra, 2003). 
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Therefore, a distribution network with better performance plays a significant role in achieving a 

number of logistics and supply chain goals, ranging from low operational cost to high customer 

service level (Chopra, 2003; Ho and Emrouznejad, 2009; Peng et al., 2011; Tsao and Lu, 2012; 

Whicker et al., 2009; Yang, 2013).  

The performance evaluation of distribution networks is a popular issue in the field of logistics and 

supply chain management. Chopra (2003) pointed out that at the highest level, the performance of a 

distribution network can be evaluated along two dimensions: meeting customer needs, and cost of 

meeting customer needs. Also, many researchers have studied the performance evaluation of 

distribution networks according to the following questions:“Have customer demands been fulfilled?” 

“Is the total cost minimized?” and “Have products been timely delivered?” in which several important 

factors affecting the performance are considered, such as cost, service level, lead time, product 

availability, transportation capacity, or market demand (Ho and Emrouznejad, 2009; Nagurney et al., 

2014; Nagurney et al., 2015; Tsao and Lu, 2012; Whicker et al., 2009; Yu and Nagurney, 2013). Of 

note is that the distribution networks addressed in the aforementioned studies are deterministic. In 

practical applications, deterministic models fail to fully characterize the actual performance of a 

distribution network that is always subject to many types of uncertainty (Soltani-Sobh et al, 2015, 

2016a). Lin et al. (2013) and Yeh et al., (2014) argued that any distribution network can be regarded as 

a typical stochastic-flow network (also called multi-state network), and assessing the performance of 

distribution networks in uncertain states is of crucial importance to maintain a high level of operation 

in the whole logistics system (Lin, 2007, 2009; Niu et al. 2014; Jane, 2011). 

A distribution network can be represented as both sets of nodes and arcs, where each node stands 

for a supplier, a transfer center, or a market (e.g., a wholesaler, a retailer, or a customer), and each arc 

(or called route, link) connecting a pair of nodes stands for an air route, a land route, or an ocean route. 

Along each arc, there is a carrier to provide the transportation service. Owing to the effect of 

unexpected situation in reality, the available capacity of each carrier is stochastic (Lin et al., 2013; Yeh 

et al., 2014). For example, the vehicles owned by one carrier may be in a failure state, partial failure 

state, or maintenance state, such that the number of vehicles available is stochastic. In that sense, each 

arc has several random capacities that can be described with a probability distribution. And, the goods 

transported through such a distribution network are reckoned as a flow. For a distribution network with 

random arc capacities, the network capacity (the maximum flow from the source to the destination) is 

not a fixed value, so whether the network can successfully deliver sufficient amount of commodity to 

meet market demand is not a simple yes or no question. In such a case, reliability analysis can serve as 

a useful tool to measure the network performance.  

1.2 Network reliability 

Reliability is a fundamental attribute for the safe operation of any modern technological system, 

and is generally defined as the probability that a system performs its intended function within a given 
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time horizon and environment (Zio, 2009; Peng et al., 2011). This definition is particularly focused on 

the situation in which components of the system may fail or partially fail due to a variety of 

uncertainties during operation. Traditionally, network reliability study has been centered mainly on 

three aspects (Soltani-Sobh et al, 2016a, 2016b; Chen et al., 2002, 2013; Cedillo-Campos et al., 2014): 

i) connectivity reliability―the probability that the nodes of the network remain connected; ii) travel 

time reliability―the probability that a successful travel from the source to the destination can be made 

within a specified interval of time; and iii) capacity reliability―probability that a specified flow 

demand can be successfully transported from the source to the destination. In addition to the 

above-mentioned three types, research has also been dedicated to other reliability measures. For 

instance, the study by Soltani-Sobh et al. (2016a) is focused on behavioral reliability by considering 

the uncertainty in people's travel making decision, where behavioral reliability is concerned with the 

effect of the modified mean behavior of travelers on the mean network performance. Soltani-Sobh et 

al. (2016b) utilized performance reliability, defined as the probability that the performance measure as 

a function of random variables are in the safe region and acceptable level, to analyze a transportation 

network subject to unexpected events with multiple uncertainties. Among these reliability measures, 

capacity reliability which combines the source–destination connection, arc capacity constraint and 

flow demand is the most commonly employed indicator to assess the performance of many real-world 

systems, and is the focus of this paper.  

1.3 Capacity reliability evaluation 

Reliability evaluation has been shown to be an NP-hard problem (Ball, 1993; Colbourn, 1987), 

although it has been extensively studied. Common in the literature is the two-terminal capacity 

reliability (2TCR), a classical reliability index with a broad range of practical applications 

(Ramirez-Marquez and Coit, 2005b). Given a stochastic-flow network whose components take 

discrete, non-negative integer values following a certain probability distribution, two-terminal capacity 

reliability at demand level d +1 (2TCRd+1) is defined as the probability that d +1 units of flow demand 

can be successfully distributed from the source to the destination. Virtually, 2TCRd+1 can be looked 

upon as a combination of the source–destination delivery, arc capacity, and flow demand (Jane and 

Laih, 2011). 

From the perspective of reliability evaluation, a great deal of research (Alexopoulos,1995; Dollars 

and Jamoulle, 1972; Jane and Laih, 2008, 2010; Jane et al., 1993; Lin, 2002; Yeh, 2002, 2004; Yan and 

Qian, 2007; Yeh, 2008; Forghani-elahabad and Mahdavi-Amiri, 2014; Yeh et al., 2015) has been 

devoted to calculating 2TCRd+1. The algorithms in these studies can be broadly categorized as direct 

and indirect methods (Jane and Laih, 2008). The complete enumeration method solves 2TCRd+1 in a 

simple, and straightforward manner. It enumerates all possible combinations of arc states, so it is 

computationally expensive. The popular decomposition method for 2TCRd+1 is proposed by Doulliez 

and Jamoulle (1972). However, Alexopoulos (1995) pointed out that this direct decomposition method 
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may yield incorrect results. Recently, Jane and Laih  (2008, 2010) proposed two decomposition 

algorithms for the straightforward computation of 2TCRd+1. Based on a special capacity vector, Jane 

and Laih’s algorithms repeatedly apply a novel decomposition technique to divide the set of capacity 

vectors, such that all acceptable (unacceptable) capacity vectors which are capable (incapable) of 

transmitting the required flow demand from the source to the destination can be attained. As a result, 

2TCRd+1 can be easily obtained by computing the probabilities of all acceptable (unacceptable) 

capacity vectors. 

In recent years, a large number of indirect algorithms that solve 2TCRd+1 by way of a medium 

have also been developed. In particular, one general method for 2TCRd+1 is using minimal cuts (MCs) 

which are shown to be a powerful tool for reliability evaluation (Yeh, 2008). A cut is a set of arcs 

whose removal results in the disconnection of the source node and the destination node. An MC is a 

cut whose proper subset is no longer a cut (Lin, 2002; Yeh, 2008). Under the assumption that all MCs 

are known in advance, these methods are focused on developing efficient procedures for seeking 

d-minimal cuts (d-MCs) (Jane et al., 1993; Lin, 2002; Yeh, 2002, 2004; Yan and Qian, 2007; Yeh, 

2008; Forghani-elahabad and Mahdavi-Amiri, 2014; Yeh et al., 2015). A d-MC, X, is a maximal 

capacity vector exactly meeting the demand level d, which means M(X) = d, and M(Y) > d for any Y > 

X (Lin, 2002). Given that all d-MCs have been found, there are several known methods available to 

compute 2TCRd+1, such as the Inclusion-Exclusion (IE) method (Lin, 2002; Yeh, 2004; 

Forghani-elahabad and Mahdavi-Amiri, 2014), or the Sum of Disjoint Products (SDP) method (Kuo 

and Zuo, 2003; Yeh, 2015; Zuo et al., 2007; Bai et al., 2015). Therefore, the efficient solution of 

d-MCs is critical to the evaluation of 2TCRd+1. In general, the existing algorithms for solving all 

d-MCs consist of three major steps (Yeh, et al. 2015).   

    Step 1. Solve all d-MC candidates from MCs. 

    Step 2. Verify d-MC candidates to attain real d-MCs. 

    Step 3. Remove duplicate d-MCs. 

    Since each d-MC is also a d-MC candidate, the existing methods need to search for all d-MC 

candidates prior to determining d-MCs (Step 1). But, given that a d-MC candidate is not necessarily a 

d-MC, a verification procedure is required (Step 2). The set of d-MCs derived from Step 2 may 

contain duplicate d-MCs which simply add to the difficulty of reliability evaluation but do not 

influence the reliability value, and thus a step for removing duplicate d-MCs is necessary (Step 3). 

    A body of research has contributed to the solution of the d-MC problem. Jane et al (1993) first 

introduced the concept of d-MC candidates, and proposed a mathematical model to solve all d-MC 

candidates using the implicit enumeration method. They also proved that all d-MCs can be obtained 

from d-MC candidates. Lin (2002) showed that the comparison method can be used to determine 

d-MCs from d-MC candidates and eliminate duplicate d-MCs simultaneously. With some 

improvements in calculating the max-flow value, Yeh (2002) proposed a new method to verify 
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whether a d-MC candidate is a d-MC. Yeh (2004) further improved his method (Yeh, 2002) to consider 

how to eliminate duplicate d-MCs using the restriction method. Based on some new results, Yan and 

Qian (2007) discussed how to add some constraints to reduce the number of d-MC candidates during 

enumeration. Yeh (2008) proposed an algorithm to decrease the number of d-MC candidates, and 

found that unsaturated components are the key components for detecting duplicate d-MCs. 

Forghani-elahabad and Mahdavi-Amiri (2014) proposed an efficient comparison method to eliminate 

duplicate d-MCs. By associating a number with each d-MC, the method compares the associated 

numbers to detect duplicate d-MCs instead of comparing all d-MCs. More recently, Yeh et al. (2015) 

presented some new results, and put forward a method to detect duplicate d-MCs.  

1.4 Contributions of this paper 

    The main objective of this paper is to propose a d-MC based algorithm for evaluating the 

capacity reliability of a stochastic distribution network. Specifically, this paper provides three major 

contributions to the existing literature: (i) a novel technique is developed to efficiently determine the 

minimal capacities, called lower capacity bounds herein, of arcs in d-MCs, so as to advance the 

efficiency of solving d-MCs; (ii) two judging criteria are proposed to correctly and effectively detect 

duplicate d-MCs; (iii) A new efficient algorithm is provided to solve all d-MCs. Each contribution is 

further explained in the following subsections: 

1.4.1 A novel technique for determining lower capacity bounds of arcs in d-MCs 

    It has been shown that the cost of solving d-MCs is directly dependent on the number of d-MC 

candidates (Yan and Qian, 2007; Yeh, 2008) which is always enormous. Hence, reducing the number 

of d-MC candidates is undoubtedly the most cost-effective manner to advance the efficiency of 

solving d-MCs. The works of Yan and Qian (2007), and Yeh (2008) indicate that the concept of lower 

capacity bound can be utilized to decrease the number of d-MC candidates. With this in mind, we 

develop a novel technique to efficiently find lower capacity bounds of arcs which can, on the one hand, 

be used to determine some special d-MCs without the tedious verification, and can, on the other hand, 

serve as constraints to shorten the capacity range of arcs in solving d-MCs, and thus to reduce the 

number of d-MC candidates. 

1.4.2 Two judging criteria to correctly and effectively detect duplicate d-MCs 

    A major difficulty for solving d-MCs is how to effectively and efficiently eliminate duplicate 

d-MCs. The restriction method fails to effectively remove all duplicate d-MCs (Yeh, 2008). The 

popular comparison method for deleting duplicate d-MCs is simple yet inefficient (Yeh et al., 2015). 

Furthermore, the comparison method (Lin, 2002; Yan and Qian, 2007; Forghani-elahabad and 

Mahdavi-Amiri, 2014) always ignores a fundamental issue why two distinct MCs can generate 

identical d-MCs. Note that a few papers, including Yeh (2008) and Yeh et al. (2015), have made an 

attempt to seek the reason for the generation of duplicate d-MCs, but the methods in these papers, i.e., 

the methods of Yeh (2008) and Yeh et al. (2015), fail to correctly detect duplicate d-MCs in some 
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special cases. Therefore, there is a growing demand for developing new approaches to detect duplicate 

d-MCs. In this paper, we propose two judging criteria to correctly and effectively detect duplicate 

d-MCs. The two criteria not only provide efficient approaches to remove duplicate d-MCs, but also 

find out the underlying reason why a d-MC derived from one MC can be generated from another MC 

once again. 

1.4.3 A new efficient algorithm for solving d-MCs 

    Grounded on the obtained results, a new efficient algorithm is suggested to solve all d-MCs. Both 

complexity analysis and numerical examples are provided to show the efficiency of the proposed 

algorithm. As demonstrated through theoretical and computational results, the proposed algorithm 

outperforms the existing algorithms in solving all d-MCs. What is more, a practical case study of the 

LCD monitor delivery is presented to illustrate the application of the proposed algorithm. 

The rest of this paper is organized as follows: Section 2 introduces the network model, the Sum of 

Disjoint Product method for evaluating Rd+1. In Section 3, a new technique is developed to determine 

lower capacity bounds of arcs based on which an improved mathematical model with respect to 

d-MCs is built; also, two judging criteria are presented to correctly and effectively detect duplicate 

d-MCs after analyzing the drawbacks of the existing methods. Grounded on these newfound results, 

an algorithm for solving d-MCs without duplicates is suggested, together with a discussion on its time 

complexity. In Section 4, a simple example is adopted to illustrate how the suggested algorithm works, 

and computational experiments are performed to investigate the performance of the suggested 

algorithm, together with comparisons with the existing methods. As evidence of the utility of the 

proposed algorithm, a practical case study regarding LCD monitors delivery is provided in Section 5.    

The final Section presents some concluding remarks, and discusses the future research. 

2. Preliminaries 
2.1 The stochastic-flow network model 

    A stochastic-flow network G(V, E, W) consists of a set of nodes V = {1, 2,…, n} with n denoting 

the number of nodes, a set of arcs E = {e1, e2,…, em} with m denoting the number of arcs, and a largest 

capacity vector W = (W1, W2,…, Wm) with Wi = W(ei) denoting the max-capacity of ei for 1 ≤ i ≤ m. 

The source node and the destination node in G(V, E, W) are represented by 1 and n, respectively. The 

capacity of ei is denoted by X(ei) which takes random integer values from 0 to Wi. A network capacity 

vector X = (X(e1), X(e2),…, X(em)) indicates the current capacity of all arcs. The max-flow of the 

network under X (or the network capacity under X) is denoted by M(X), and M(X) is always called the 

structure function of a stochastic-flow network (Satitsatian and Kapur, 2006; Niu and Xu, 2012; Niu et 

al, 2014). The max-flow of the network under the largest capacity vector W is denoted by D, i.e., D = 

M(W), then the following relation is observed: M(X) ≤ D for any capacity vector X. For example, the 

network in Fig. 1 shows V = {1, 2, 3, 4} with n = 4,whereby 1 is the source node and 4 is the 

destination node, E = {e1, e2, e3, e4, e5, e6} with m = 6, and the largest capacity vector W = (4, 3, 4, 1, 3, 
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3). Considering the largest capacity vector W = (4, 3, 4, 1, 3, 3), the max-flow of the network under W 

is M(W) = 10, thereby M(X) ≤ 10 for any capacity vector X. The notations used throughout this paper 

are presented in the Appendix.  

As with most of the existing literature (Jane et al., 1993; Yeh, 2002; Yan and Qian, 2007; Yeh, 

2008; Yeh et al., 2015), the current study assumes that the network model satisfies the following 

assumptions：1) Each node is perfectly reliable; 2) The capacity of each arc ei (1 ≤ i ≤ m) is a 

non-negative integer-valued random variable which takes values from 0 to Wi according to a given 

probability distribution; 3) The capacities of different arcs are stochastically independent; 4) All flows 

in the network obey the conservation law, i.e., total flows into and from a node (not source and 

destination nodes) are all equal.  

Since an unreliable node can be replaced by two reliable nodes and one unreliable arc (refer to 

Aggarwa et al. (1975), and Jane and Laih (2010) for the replacement), only the network with reliable 

nodes is discussed here. In addition, note that there exists only one d-MC (i.e., the largest capacity 

vector W) if d = D, thus we merely consider d < D. 

2.2 Evaluating Rd+1 in terms of d-MCs 

    The performance index Rd+1 is defined as the probability that d +1 units of flow demand can be 

successfully distributed from the source to the destination. That is, Rd+1 = Pr{X | M(X) ≥ d +1} = 1 – 

Pr{X | M(X) ≤ d}. As stated prviously, the SDP method is available to evaluate Rd+1 if all d-MCs are 

determined. Assume X1, X2,…, Xq are all d-MCs, and let A1 = {X | X ≤ X1}, A2 = {X | X ≤ X2},…, Aq = 

{X | X ≤ Xq}, i.e. Ai = {X | X ≤ Xi} (1 ≤ i ≤ q) is a set of the state vectors that are smaller than or 

equal to Xi, then Rd+1 can be evaluated via the SDP method as follows: 

        Rd+1 = 1 – Pr{X | M(X) ≤ d}  

            = 1 – Pr(A1∪A2∪…∪Aq) 

            = 1 – Pr(A1∪ (A2 – A1)∪…∪ (Aq – 1
1

q
j jA−
=∪ )) 

            = 1 – 
1

Pr( )
q

i
i

B
=
∑                                           (1) 

where B1 = A1, Bi = Ai – 1
1

i
j jA−
=∪ , i = 2, 3,…, q, Pr(Bi) = Pr( )

iX B
X

∈∑ , and Pr(X) = 1 Pr( ( ))m
k kX e=∏ . 

    Recently, some works have been reported to improve the traditional SDP method, but they are 

beyond the focus of this paper, and readers can refer to Zuo et al. (2007), Bai et al. (2015), and Yeh 

(2015) for details. 

3. The suggested algorithm 
    A capacity vector X = (X(e1), X(e2),…, X(em)) is a d-MC if and only if M(X) = d, and 

M(X+0(ei)) > d for each ei∈U(X) where 0(ei) = (0, 0, …, 0, 1, 0, …, 0), i.e. capacity is 1 for ei and zero 

for others, and U(X) = {ei | X(ei) < W(ei)} is the set of unsaturated arcs in X. That is, two conditions 
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must be satisfied for a d-MC X: (1) the network capacity under X is d; (2) network capacity is sensitive 

to the capacity increase of any unsaturated arc, i.e. the increase in capacity of one unsaturated arc 

results in a larger network capacity (above d). To facilitate understanding the concept of d-MC, we use 

two examples to illustrate it. Given the demand level d = 8, we consider a capacity vector X = (2, 2, 4, 

1, 3, 3) of the network in Fig 1. The network under X is shown in Fig. 2 (1), and the network capacity 

under X is M(X) = 8 (refer to Fig. 2 (1)-maxflow). Thus, X satisfies the first condition. It is clear that e1 

and e2 are unsaturated arcs denoted by dotted lines in Fig. 2 (1). The network under X+0(e1) is shown 

in Fig. 2 (2), and the network capacity under X+0(e1) is M(X+0(e1)) = 9 (refer to Fig. 2 (2)-maxflow). 

Similarly, the network capacity under X+0(e2) is M(X+0(e2)) = 9 (refer to Fig. 2 (3)-maxflow). Thus, 

X satisfies the second condition. Because X = (2, 2, 4, 1, 3, 3) satisfies both conditions, it is an 8-MC. 

We consider another capacity vector X = (3, 3, 2, 1, 3, 3), and Fig. 3 illustrates the network capacity 

under different cases. It can be seen from Fig. 3 (2)-maxflow that the network capacity under X+0(e1) 

is M(X+0(e1)) = 8 = d, thereby X = (3, 3, 2, 1, 3, 3) does not satisfies the second condition, i.e. X = (3, 

3, 2, 1, 3, 3) is not an 8-MC. Since a d-MC is also a d-MC candidate, the existing methods need to 

search for all d-MC candidates prior to determining d-MCs. When it is assumed that all MCs are 

known in advance, the existing algorithms employ the following model proposed by Jane et al. (1993) 

to search for d-MC candidates. 

Lemma 1: If a capacity vector X = (X(e1), X(e2),…, X(em)) is a d-MC, then there exists at least 

one MC C such that the following conditions are satisfied: 

( )
i

i
e C

X e d
∈

=∑                               (2) 

0 ≤ X(ei) ≤ Min{Wi, d} for all ei∈C               (3)  

X(ei) = Wi for all ei∉C                         (4) 

 

    Each feasible solution to conditions (2)-(4) is a d-MC candidate (Jane et al., 1993). By Lemma 1, 

a d-MC candidate is generated from at least one MC. A d-MC candidate is not necessarily a d-MC, 

thus there is also a need to verify it. The well-known method for verifying d-MC candidates is based 

on Lemma 2 (refer to the Appendix). In addition, different MCs may generate identical d-MCs, i.e. 

duplicate d-MCs, so a step to detect and remove duplicate d-MCs is indispensable. In the following 

subsections, we will detail the vital theoretical results based on which a new efficient algorithm is 

suggested to solve all d-MCs. 

3.1 A novel technique for finding lower capacity bounds of arcs 

    As mentioned previously, a cost-effective scheme of increasing the efficiency of solving d-MCs 

is to reduce the number of d-MC candidates. Lemma 1 shows that the number of d-MC candidates is 

primarily determined by condition (3) which specifies the capacity range of ei in solving d-MC 

candidates. Hence, if the capacity range in condition (3) can be narrowed, the number of d-MC 
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candidates will be potentially decreased. To arrive at this aim, some works determine the minimal 

capacity of ei, instead of 0, in condition (3) by introducing the concept of lower capacity bound. Lower 

capacity bound L(ei) of ei (1 ≤ i ≤ m) is defined as the minimal capacity of ei, such that the max-flow 

from the source node to the destination node is equal to d (Yeh, 2008). As a result, L(ei) can be 

regarded as a tighter restriction for the capacity bound of ei in seeking d-MC candidates.  

    Yan and Qian (2007) first proposed a method to find L(ei) (1 ≤ i ≤ m). The time complexity of the 

method by Yan and Qian is O(mplog2p), where p is the number of MCs. Since the number of MCs can 

be as large as 2n-2 (Shier, 1991), the method of Yan and Qian with the time complexity of O(mplog2p) 

= O(mn2n-2) is inefficient. Yeh (2008) proposed a method to seek L(ei) (1 ≤ i ≤ m) on the basis of the 

classical binary-search method and max-flow method. The method of Yeh finds L(ei) (1 ≤ i ≤ m) by 

implementing the max-flow algorithm multiple times. Yeh (2008) demonstrated that his algorithm is 

more efficient than the one by Yan and Qian (2007). But, there is a minor defect in Yeh's method, such 

that it may work improperly (Forghani-elahabad and Mahdavi-Amiri, 2013).  

    According to the definition of lower capacity bound, L(ei) (1 ≤ i ≤ m) actually represents the 

minimal capacity level the arc ei should provide to exactly satisfy the flow demand d. For example, Fig. 

4 shows L(e3) = 2 when d = 8, and if X(e3) < L(e3) = 2, M(X) < 8 for any capacity vector X. As can be 

seen below, a novel technique is developed to find L(ei) (1 ≤ i ≤ m) by defining a special capacity 

vector. The proposed technique is based merely on the max-flow algorithm, and the max-flow 

algorithm is implemented only once to find L(ei). Thus, the proposed technique is more desirable in 

the determination of L(ei) (1 ≤ i ≤ m).  

Theorem 1: Given the demand level d (0 ≤ d < D), let W(0i) denote a special capacity vector in 

which capacity level is 0 for ei (1 ≤ i ≤ m) and the largest for other arcs, i.e. W(0i) = (W1, W2, …, Wi-1, 0, 

Wi+1, …, Wm), then 

does not exist if ( (0 ))
( ) 0 if ( (0 ))

( (0 )) if ( (0 ))

i

i i

i i

M W d
L e M W d

d M W M W d

>
= =
 − <

                 (5) 

Proof: Obviously, L(ei) ≥ 0 holds. If M(W(0i)) > d, it means that even when the capacity of ei is 0, 

the max-flow from the source node to the destination node is above d. Thus, there does not exist any 

L(ei) satisfying the definition of lower capacity bound, i.e. L(ei) does not exist. 

First, note that given a capacity vector X = (X(e1), X(e2)  ,…, X(em)), if M(X) = d, L(ei) ≤ X(ei) 

follows from the definition of L(ei). If M(W(0i)) = d, let X = W(0i) = (W1, W2, …, Wi-1, 0, Wi+1, …, Wm), 

then M(X) = d. As a result, L(ei) ≤ X(ei) = 0 holds. But since L(ei) ≥ 0 holds, L(ei) = 0 can be obtained. 

If M(W(0i)) < d, since M(W) = D > d, at least d – M(W(0i)) units of flow must travel through arc ei 

such that d units of flow can be transmitted from the source node to the destination node. Hence, L(ei) 

= d – M(W(0i)). � 

    For ease of understanding Theorem 1, an example of finding L(e3) of e3 in Fig. 1 is presented in 
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Fig. 5. By Theorem 1, it is only necessary to compute M(U(0i)) for finding L(ei) (1 ≤ i ≤ m), thereby 

the time complexity of finding lower capacity bounds of all arcs is O(mn2log3n), where O(n2log3n) is 

the time complexity of calculating the max-flow (Ahuja et al. 1997). Given that O(mn2log3n) << 

O(mn2n-2), the proposed technique derived from Theorem 1 is more efficient than the method by Yan 

and Qian (2007). 

    In Theorem 1, if M(W(0i)) ≤ d, the value of L(ei) can be determined; but if M(W(0i)) > d, no value 

of L(ei) satisfies the definition of lower capacity bound. In such cases, the lower capacity bound is 

non-existent. That is, L(ei) does not always exist. The nonexistence of L(ei) implies that even if the 

minimal capacity of ei is 0, the max-flow from the source node to the destination node is larger than d. 

The following theorem, compared with Theorem 1, is much more simple in determining the 

nonexistence of L(ei) (1 ≤ i ≤ m). 

Theorem 2: If D – Wi > d, L(ei) does not exist (1 ≤ i ≤ m). 

Proof: By the definition of D, M(W(0i)) and Wi, we have D – M(W(0i)) ≤ Wi. If D – Wi > d, it is 

easy to obtain M(W(0i)) ≥ D – Wi > d, i.e. M(W(0i)) > d. Thus, L(ei) does not exist (1 ≤ i ≤ m) by 

Theorem 1. � 

 

    It should be noted that if D – Wi ≤ d, the existence of L(ei) (1 ≤ i ≤ m) is unspecified. In such a 

case, Theorem 1 is still required to determine whether L(ei) (1 ≤ i ≤ m) exists or not. Thus, it is more 

reasonable to combine Theorem 1 and Theorem 2 to find L(ei) (1 ≤ i ≤ m). The role of the lower 

capacity bound depends on the fact that the minimal capacity of ei for all ei∈C in a d-MC derived 

from C should not be below its lower capacity bound (refer to Corollary 2 in the Appendix). 

Consequently, the minimal capacity 0 in condition (3) can be replaced by L(ei) when L(ei) exists. If 

L(ei) does not exist, the minimal capacity 0 of ei in condition (3) remains the same. Thus, we can 

obtain an improved model with respect to d-MCs.  

Theorem 3: If a capacity vector X = (X(e1), X(e2)  ,…, X(em)) is a d-MC, then there exists at least 

one MC C such that the following conditions are satisfied: 

              ( )
i

i
e C

X e d
∈

=∑                                               (6) 

              L(ei) ≤ X(ei) ≤ Min{Wi, d} when L(ei) exists for all ei∈C              (7) 

              0 ≤ X(ei) ≤ Min{Wi, d} when L(ei) does not exist for all ei∈C          (8) 

              X(ei) = Wi for all ei∉C                                         (9) 

Proof: Directly from Lemma 1 and Corollary 2. �  

 

The goal of introducing lower capacity bounds, other than to cut down the number of d-MC 

candidates, is also to find some special d-MCs without any tedious verification. Corollary 3 in the 

Appendix presents these special d-MCs with the distinct feature that there is only one unsaturated 
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component in every d-MC. Since the d-MCs with only one unsaturated component can be determined 

by Corollary 3, they should be removed from Theorem 3. Thus, the following theorem is at hand. 

Theorem 4: If a capacity vector X = (X(e1), X(e2)  ,…, X(em)) is a d-MC with |U(X)| > 1, then 

there exists at least one MC C such that the following conditions are satisfied: 

             ( )
i

i
e C

X e d
∈

=∑                                             (10) 

              L(ei) +1 ≤ X(ei) ≤ Min{Wi, d} when L(ei) exists for all ei∈C         (11) 

              0 ≤ X(ei) ≤ Min{Wi, d} when L(ei) does not exist for all ei∈C        (12) 

              X(ei) = Wi for all ei∉C                                       (13) 

Proof: Directly follows from Theorem 3 and Corollary 3. � 

 

As soon as lower capacity bounds of arcs are found, the d-MCs with only one unsaturated 

component can be directly derived from Corollary 3. Accordingly, the d-MCs with more than one 

unsaturated component can be solved by Theorem 4. After the determination of d-MCs, the next step 

is to detect whether they are duplicates. 

 

3.2 Two judging criteria for detecting duplicate d-MCs 

    The d-MCs are duplicate in the sense that they are obtained multiple times from different MCs. 

The well-known comparison method is inefficient because it detects a duplicate d-MC by comparing it 

with all of the other d-MCs (Yeh, 2008; Yeh et al., 2015). Yeh (2008) found that unsaturated 

components in d-MCs are the key components for detecting duplicates, and proposed a method to 

detect duplicate d-MCs. Nevertheless, Yeh's method may work improperly in some special cases (refer 

to the example in the Appendix). Hence, there is a demand for developing new efficient approaches to 

identify duplicate d-MCs. 

    To develop an efficient method for identifying duplicate d-MCs, the key is to discover the reason 

for the generation of duplicate d-MCs, which is precisely neglected by the comparison method. 

Particularly, we believe that there should exist a specific relationship between the MCs, such that they 

can generate identical d-MCs. With this in mind, we attempt to explore the underlying reason for 

duplicates, and present two new judging criteria to identify duplicate d-MCs.  

    Before providing the judging criteria, we utilize a simple example to show the relationship 

between two MCs when they generate the same d-MCs. The network in Fig. 1 has 4 MCs, and the 

related information is shown in Fig. 6 (1). Given the demand level d = 8, Fig. 6 (2) describes an 8-MC 

X = (4, 1, 3, 1, 3, 3) generated from C1, and e2, e3 are unsaturated arcs whose capacities are underlined. 

If X = (4, 1, 3, 1, 3, 3) is also an 8-MC generated from another MC Cj (j ≠ 1), then Cj must contain e2 

and e3 (Otherwise, e2 or e3 are saturated arcs in all of the 8-MCs generated from Cj according to Eq. 

(4)). That is, U(X) = {e2, e3}⊆Cj holds. The relationship {e2, e3}⊆Cj means C3 is the MC that also 
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generates the 8-MC X = (4, 1, 3, 1, 3, 3). Fig. 6 (3) describes the 8-MC X = (4, 1, 3, 1, 3, 3) generated 

from C3. In addition, Fig. 6 (4) demonstrates the following relationship between C1 and C3: Cap(C1) = 

Cap(C3) = 11, i.e., the capacities of C1 and C3 are equal. In the following, we formally present two 

theorems that pinpoint the sufficient and necessary conditions for yielding duplicate d-MCs, and are 

vitally important to the suggested algorithm. 

    Theorem 5: Let Ci and Cj be two distinct MCs and X be a d-MC generated from Ci, X is also a 

d-MC generated from Cj, i.e. X is a duplicate d-MC, if and only if Cap(Ci) = Cap(Cj), i.e. 

( )
ie C
W e

∈∑ = ( )
je C
W e

∈∑ , and U(X)⊆Cj. 

  Proof：1) If X is also a d-MC generated from MC Cj, by Corollary 4, it is easy to have 

( ) ( ) ( )
ie E e E e C

X e d W e W e
∈ ∈ ∈

= + −∑ ∑ ∑                 

          ( ) ( )
je E e C

d W e W e
∈ ∈

= + −∑ ∑ .                

    Then, one can obtain 

                             ( ) ( )
i je C e C
W e W e

∈ ∈
=∑ ∑ .                   (14) 

    Meanwhile, it is clear to have U(X)⊆Cj by Corollary 5. 

    2) Suppose ( ) ( )
i je C e C
W e W e

∈ ∈
=∑ ∑ and U(X)⊆Cj.  

    Since X is a d-MC generated from MC Ci, by Lemma 1, one have 

                 d = ( )
ie C
X e

∈∑ =∑ ∈ )(
)(

XUe
eX +

( ( ))
( )

ie C U X
W e

∈ −∑ .              (15) 

    Now compute ( )
je C
X e

∈∑ , and 

                ( )
je C
X e

∈∑ =
( ( ))

( )
je C U X

X e
∈ ∩∑ +

( ( ))
( )

je C U X
W e

∈ −∑ .               (16) 

    Because U(X)⊆Cj, then 

                ( )
je C
X e

∈∑ =∑ ∈ )(
)(

XUe
eX + ( )

je C
W e

∈∑ –∑ ∈ )(
)(

XUe
eW .          (17) 

    Also, because ( ) ( )
i je C e C
W e W e

∈ ∈
=∑ ∑ , then  

                ( )
je C
X e

∈∑ =∑ ∈ )(
)(

XUe
eX + ( )

ie C
W e

∈∑ –∑ ∈ )(
)(

XUe
eW .           (18) 

    Meanwhile, because U(X)⊆Ci, then 

                ( )
je C
X e

∈∑ =∑ ∈ )(
)(

XUe
eX +

( ( ))
( )

ie C U X
W e

∈ −∑                      (19) 

     Based on Eq. (15), one can obtain  

                  ( )
je C
X e

∈∑ =∑ ∈ ice
eX )( = d.                                  (20) 

    In addition, U(X)⊆Cj means X(e) = W(e) for all e∉Cj. Thus, by Lemma 1, X is a d-MC candidate 

generated from Cj. As a result, X is also a d-MC derived from MC Cj because X is a d-MC. � 
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    Theorem 5 reveals that for a d-MC X derived from Ci, both the capacity of Ci and the unsaturated 

components in X are the key points for detecting whether X is a duplicate d-MC. If the capacity of Ci is 

equal to that of Cj and all of the unsaturated components in X belong to Cj, X can be generated from Cj 

once again, i.e. X is a duplicate d-MC. Notably, the condition Cap(Ci) = Cap(Cj) is indispensable in 

detecting duplicate d-MCs. If Cap(Ci) ≠ Cap(Cj), it is impossible for Ci and Cj to generate identical 

d-MCs. Thus, there is no need to check whether the d-MCs generated from Ci (Cj) are duplicate 

d-MCs derived from Cj (Ci) when Cap(Ci) ≠ Cap(Cj). Besides, given a d-MC X, since unsaturated 

components and saturated components in X are complementary (i.e. every component in X is either 

unsaturated component or saturated component), we can try to detect duplicate d-MCs in terms of 

saturated components. For example, it can be seen from Fig. 6 that (C1 – C3) = {e1} and X(e1) = W(e1), 

i.e. all of the arcs belonging to (C1 – C3) are saturated when X is also an 8-MC generated from C3. 

Consequently, we present the other theorem. 

    Theorem 6: Let Ci and Cj be two distinct MCs and X be a d-MC generated from Ci, X is also a 

d-MC generated from Cj, i.e. X is a duplicate d-MC, if and only if Cap(Ci) = Cap(Cj), i.e. 

( )
ie C
W e

∈∑ = ( )
je C
W e

∈∑ , and X(e) = W(e) for all e∈(Ci – Cj). 

    Proof: Here, it is only necessary to prove U(X)⊆Cj is equivalent to X(e) = W(e) for all e∈(Ci – 

Cj). 

    1) Since X is a d-MC generated from Ci, U(X)⊆Ci follows from Corollary 5. Thus, if U(X)⊆Cj, 

we can obtain U(X)⊆ (Ci∩Cj), which implies X(e) = W(e) for all e∈(Ci – Cj). 

    2) That X(e) = W(e) for all e∈(Ci – Cj) means U(X)⊆ (Ci∩Cj). Also, it is trivial to have 

(Ci∩Cj)⊆Cj. Hence, U(X)⊆Cj holds. � 

 

    It is noteworthy that the method of Yeh et al. (2015) detects duplicate d-MCs using only the 

condition "X(e) = W(e) for all e∈(Ci – Cj)", so the other condition Cap(Ci) = Cap(Cj) is also neglected 

by Yeh et al. (2015). As a result, both methods by Yeh (2008) and Yeh et al. (2015) fail to correctly 

detect duplicate d-MCs. Now Theorems 5 and 6 have provided two judging criteria for detecting 

duplicate d-MCs, and both theorems reveal that just because there exists a special relationship between 

two MCs, they can generate identical d-MCs. Therefore, the two theorems not only provide two 

approaches to correctly detect duplicate d-MCs, but also explicitly answer the question of why a d-MC 

can be generated from distinct MCs. In this sense, Theorems 5 and 6 provide new insights into the 

reason for the generation of duplicate d-MCs, which is always ignored by the comparison-based 

methods (Lin, 2002; Yan and Qian, 2007; Forghani-elahabad and Mahdavi-Amiri, 2014) which detect 

a duplicate d-MC by merely comparing it with all of the other d-MCs. 
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3.3 A new algorithm for solving all d-MCs without duplicates 

Grounded on the above discussions, an algorithm for solving all d-MCs without duplicates is 

provided as follows. 

input: All MCs C1, C2,…,Cp in a stochastic-flow network G(V, E, W) and demand level d. 

output: All d-MCs without duplicates. 

Step 0. Calculate Cap(Ci) for all i = 1, 2,…, p, and let D = min {Cap(Ci) | i = 1, 2,…, p}. 

Step 1. If D – Wi > d, L(ei) does not exist, otherwise, find L(ei) by Theorem 1, where 1 ≤ i ≤ m. Ω = 

{X | X = (W1, W2, …, Wi-1, L(ei), Wi+1, …, Wm) if L(ei) exists for 1 ≤ i ≤ m }.  

Step 2. All MCs are grouped by their capacities, such that the MCs with identical capacity are put into 

one group. Suppose that all MCs are identified as λ groups: Φ1, Φ2, …, Φλ, and the number of 

MCs in the group Φk (1 ≤ k ≤ λ) is pk (then, p1 + p2 +…+ pλ = p).  

Step 3. k = 1. 

Step 4. Solve all d-MCs from the MCs in Φk according to the following steps: 

  Step 4.1. Solve all d-MCs from the first MC
1kC  using Eqs. (10)–(13) and Lemma 2, and let 

Ω =Ω ∪ {d-MCs from
1kC }. If pk = 1, go to Step 5.  

  Step 4.2. i = 2. 

  Step 4.3. find all d-MC candidates, say
ik jX where j = 1, 2,…, J1, from the ith MC

ikC using Eqs. 

(10)–(13). If no d-MC candidate exists, go to Step 4.7.  

  Step 4.4. If Cap(
ikC ) = D,

ik jX is a d-MC where j = 1, 2,…, J1, and go to Step 4.6. 

  Step 4.5. Use Lemma 2 to check whether
ik jX is a d-MC where j = 1, 2,…, J1. If none of them is a 

d-MC, go to Step 4.7; otherwise, suppose
ik jX is a d-MC where j = 1, 2,…, J2. 

  Step 4.6. For every d-MC
ik jX where j = 1, 2,…, J2 (J1), if there exists one r, 1 ≤ r ≤ i – 1, such that 

U(
ik jX )⊆

rkC  (or ( )
ik jX e  = W(e) for all e∈ (

ikC –
rkC )), 

ik jX is a duplicate d-MC; 

otherwise,Ω =Ω ∪ {
ik jX }. 

  Step 4.7. If i < pk, let i = i + 1, and return to Step 4.3. 

Step 5. If k < λ, let k = k + 1, and return to Step 4; otherwise,Ω is the set of all d-MCs and stop. 

     

    Note that Steps 0, 1, and 2 can be regarded as the pre-processing steps, in which the capacity of 

each MC is calculated (Step 0), lower capacity bounds of arcs and the d-MCs with only one 

unsaturated component are determined (Step 1), and all MCs are distinguished by their capacities 

(Step 2). The aim of grouping MCs in Step 2 is to reduce the cost of detecting duplicate d-MCs in the 

subsequent steps, because there is only need to verify whether the MCs from the same group generate 

duplicate d-MCs. Step 4 is the key step for solving all d-MCs with more than one unsaturated 
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component. Of note is that for the first MC in each group Φk (1 ≤ k ≤ λ), there is no need to detect 

duplicate d-MCs (Step 4.1). Step 4.3 is to solve all d-MC candidates from the ith MC
ikC . Steps 4.4 

and 4.5 are used to check whether the obtained d-MC candidates are d-MCs. The aim of Step 4.6 is to 

detect and remove duplicate d-MCs. Step 4.7 is to control the iteration for solving MCs in the group 

Φk, and Step 6 is to control the iteration for solving the group Φk. 

    The time complexity of the suggested algorithm is discussed as follows: Step 0 needs O(mp) time 

to calculate Cap(Ci) and D, where i = 1, 2,…, p. Step 1 requires O(mn2log3n) time to find all lower 

capacity bounds, where O(n2log3n) is the time complexity for computing the max-flow (Ahuja et al. 

1997), and O(m) time to find the d-MCs with only one unsaturated component, so Step 1 requires 

O(mn2log3n) time. Step 2 takes O(plogp) time to sort and group all MCs. Steps 3 and 5 take O(1) time. 

Therefore, the time complexity of Steps 0 to 3 is O(p(logp + m)). Step 4.1 takes O((m2 + n2log3n)σ) 

time to derive d-MCs from the first MC
1kC (Yeh, 2008). Steps 4.2, 4.4, and 4.7 require O(1) time. 

Note that pkσ is the total number of d-MC candidates obtained from Step 4.3, and it takes O(m2 + 

n2log3n) time to verify whether a d-MC candidate is a d-MC in Step 4.5 (Yeh, 2002). As a result, the 

time complexity of Step 4.5 is O((m2 + n2log3n)(pk – 1)σ). For a d-MC
ik jX derived from

ikC , it takes at 

most O((i – 1)m) time to detect whether it is a duplicate in Step 4.6, where i – 1 denotes the maximum 

times for checking whether there exists one r, such that U(
ik jX )⊆

rkC  (or ( )
ik jX e  = W(e) for all 

e∈(
ikC –

rkC )). Then, Step 4.6 requires O(mσ(1 + 2 + … + pk – 1)) = O( 2
kmp σ ) amount of time to 

detect all of the duplicate d-MCs in the group Φk in the worst case. Consequently, The time complexity 

of Step 4 is O( 2
kmp σ ). Note that there are λ groups, and the total time complexity of Step 3 to Step 5 is 

thus O( 2

1
k

k
mp

λ

σ
=
∑ ). Therefore, the time complexity of the suggested algorithm is O(p(logp + m)) + 

O( 2

1
k

k
mp

λ

σ
=
∑ ) = O( 2

1
k

k
mp

λ

σ
=
∑ ). That is, the time complexity of the suggested algorithm for solving all 

d-MCs without duplicates is O( 2

1
k

k
mp

λ

σ
=
∑ ), where m is the number of arcs, pk is the number of MCs in 

the group Φk and p1 + p2 +…+ pλ = p where p is the number of MCs, σ = Min{ 1m d
d
+ − 

 
 

, 

 

(Min{ ( ), }+1)
i

i
e E

W e d
∈
∏ } is the number of d-MC candidates derived from each MC (Yeh, 2008). 

    Note that the time complexity of the methods by Jane et al. (1993), Lin (2002), Yeh (2002, 2004), 

and Yan and Qian (2007) is O(mp2σ2), and the time complexity of the methods by Yeh (2008), 

Forghani-elahabad and Mahdavi-Amiri (2014), and Yeh et al. (2015) is O(mp2σ). In view of the fact 
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that O( 2

1
k

k
mp

λ

σ
=
∑ ) = O(mσ( 2

1p + 2
2p  +…+ 2pλ )) ≤ O(mσ(p1 + p2 +…+ pλ)2) = O(mp2σ) < O(mp2σ2), it is 

trivial to conclude that the suggested algorithm is more efficient than the existing methods. For 

comparison, the time complexities of different algorithms are presented in Table 1. 

 

4. Numerical examples 
4.1 An illustrative example 

To elucidate the suggested algorithm, a simple network in Fig. 1 is adopted to trace the steps of 

the algorithm. Fig. 1 contains 4 nodes and 6 arcs, and is adopted from Yeh (2008). There are 4 MCs in 

Fig. 1: C1 = {e1, e2, e3}, C2 = {e1, e3, e4, e6}, C3 = {e2, e3, e4, e5}, and C4 = {e3, e5, e6}. The largest 

capacities of arcs e1, e2, e3, e4, e5, e6 are W(e1) = 4, W(e2) = 3, W(e3) = 4, W(e4) = 1, W(e5) = 3, and W(e6) 

= 3, respectively. The capacity probabilities of all arcs in Fig. 1 are presented in Table 2. Provided that 

the demand level is 9, the reliability index R9 can be evaluated in terms of 8-MCs (i.e. d = 8). The 

following procedure describes how to obtain all 8-MCs. After finding all 8-MCs, R9 are calculated 

using the SDP method. To facilitate the understanding of the whole procedure, two special notations 

are used throughout the step-by-step solutions: 

1) “X(ei)” denotes that ei is in the related MC and X(ei) = W(ei). 

2) “X(ei)” denotes that ei is in the related MC and X(ei) < W(ei). 

    Solve: 

    Step 0. Cap(C1) = 11, Cap(C2) = 12, Cap(C3) = 11, Cap(C4) = 10, and D = 10.  

 Step 1. 10 – Wi < 8 for i = 1, 2, 3, 5, 6, then, according to Theorem 1, it is easy to obtain L(e1) = 1, 

L(e2) = 0, L(e3) = 2, L(e5) = 1, and L(e6) = 1. 10 – W4 = 9 > 8, thus L(e4) does not exist. 

As a result, Ω ={(1, 3, 4, 1, 3, 3), (4, 0, 4, 1, 3, 3), (4, 3, 2, 1, 3, 3), (4, 3, 4, 1, 1, 3), (4, 

3, 4, 1, 3, 1)}. The value of L(ei) (1 ≤ i ≤ 6) and the corresponding 8-MCs are shown in 

Table 3. 

Step 2. 4 MCs are grouped as follows: Φ1 ={C4}, and p1 = 1; Φ2 ={C1, C3}, and p2 = 2, and Φ3 = 

{C2}, and p3 = 1; λ = 3. 

Step 3. k = 1. 

Step 4. Solve all 8-MCs from the MCs in Φ1 according to the following steps: 

  Step 4.1. As C4 is the first MC in Φ1, solve all 8-MCs from C4 using Eqs. (10)–(13) and Lemma 

2, and obtain three 8-MCs: (4, 3, 3, 1, 2, 3), (4, 3, 3, 1, 3, 2), and (4, 3, 4, 1, 2, 2). Then 

let Ω =Ω ∪ {(4, 3, 3, 1, 2, 3), (4, 3, 3, 1, 3, 2), (4, 3, 4, 1, 2, 2)}. p1 = 1, then go to 

Step 5.    

Step 5. k = 1 < λ, let k = 2, and return to Step 4. 

Step 4. Solve all 8-MCs from the MCs in Φ2 according to the following steps: 

  Step 4.1. As C1 is the first MC in Φ2, solve all 8-MCs from C1 using Eqs. (10)–(13) and Lemma 
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2, and obtain five 8-MCs: (2, 2, 4, 1, 3, 3), (2, 3, 3, 1, 3, 3), (3, 1, 4, 1, 3, 3), (3, 2, 3, 1, 

3, 3), and (4, 1, 3, 1, 3, 3). Then let Ω =Ω ∪ {(2, 2, 4, 1, 3, 3), (2, 3, 3, 1, 3, 3), (3, 1, 4, 

1, 3, 3), (3, 2, 3, 1, 3, 3), (4, 1, 3, 1, 3, 3)}. p2 ≠ 1. 

     Step 4.2. i = 2.  

  Step 4.3. C3 is the second MC in Φ2, then find all 8-MC candidates from C3 using Eqs. (10)–(13), 

and obtain seven 8-MC candidates: (4, 1, 3, 1, 3, 3), (4, 1, 4, 0, 3, 3), (4, 1, 4, 1, 2, 3), (4, 

2, 3, 0, 3, 3), (4, 2, 3, 1, 2, 3), (4, 2, 4, 0, 2, 3), (4, 3, 3, 0, 2, 3). 

  Step 4.4. Cap(C3) = 11 ≠ D. 

  Step 4.5. Use Lemma 2 to check the obtained seven 8-MC candidates, and obtain (4, 1, 3, 1, 3, 

3), (4, 1, 4, 0, 3, 3), (4, 1, 4, 1, 2, 3), (4, 2, 3, 0, 3, 3), and (4, 2, 4, 0, 2, 3) are 8-MCs. 

  Step 4.6. For the 8-MC (4, 1, 3, 1, 3, 3), when r = 1, U((4, 1, 3, 1, 3, 3)) = {e2, e3}⊆C1 = {e1, e2, 

e3}, then (4, 1, 3, 1, 3, 3) is a duplicate 8-MC. But, (4, 1, 4, 0, 3, 3), (4, 1, 4, 1, 2, 3), (4, 

2, 3, 0, 3, 3), and (4, 2, 4, 0, 2, 3) are not duplicate 8-MCs, then let Ω =Ω ∪ {(4, 1, 4, 

0, 3, 3), (4, 1, 4, 1, 2, 3), (4, 2, 3, 0, 3, 3), (4, 2, 4, 0, 2, 3)}. 

     Step 4.7. i = 2 = p2. 

Step 5. k = 2 < λ, let k = 3, and return to Step 4. 

Step 4. Solve all 8-MCs from the MCs in Φ3 according to the following steps: 

  Step 4.1. As C2 is the first MC in Φ3, solve all 8-MCs from C2 using Eqs. (10)–(13) and Lemma 

2, and obtain one 8-MCs: (2, 3, 4, 0, 3, 2). Then let Ω =Ω ∪ {(2, 3, 4, 0, 3, 2)}. p1 = 1, 

then go to Step 5.    

Step 5. k = 3 = λ, thenΩ is the set of all 8-MCs, and stop. 

     

    The final results are indicated in Table 4. Then, according to the obtained 8-MCs and the SDP 

method, the performance index R9 can be readily calculated: R9 =0.860262.  

4.2 Computational experiments 

    In the previous section, we stated that the suggested algorithm is grounded on the newly obtained 

results, i.e. (1) a new technique for determining lower capacity bounds of arcs; (2) two judging criteria 

for detecting duplicate d-MCs. The detailed theoretical analyses have demonstrated that the suggested 

algorithm holds a performance advantage over the existing algorithms. To further explore the 

performance of the suggested algorithm, this section conducts computational experiments to compare 

it with several typical algorithms, i.e. Lin's algorithm (2002), Yan and Qian's algorithm (2007), 

Forghani-elahabad and Mahdavi-Amiri's algorithm (2014), and the algorithm of Yeh et al. (2015). 

Since one condition for detecting duplicate d-MCs is neglected by Yeh et al. (2015), we add it to their 

method. All of the algorithms are coded into MATLAB programs, and implemented on a PC with 

Intel(R) Core (TM) i5-3210M 2.50 GHz CPU. In addition, the suggested algorithm is identified by 

which criterion is used to detect duplicates as two types: the suggested algorithm using Theorem 5 to 
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detect duplicates, and the suggested algorithm using Theorem 6 to detect duplicates. 

Due to the NP-hard nature of the d-MC problem and the limitations of the PC, we choose one 

medium-sized network (Fig. 7 (1)) and two relatively larger networks (Fig. 7 (2), (3)) as benchmark 

networks to conduct the numerical experiments. The three networks are cited from Soh and Rai (1993), 

and Ramirez-Marquez and Coit (2005b). To make comprehensive comparisons, four different demand 

levels are solved for each benchmark network, i.e. d = 5 (5-MC), d = 7 (7-MC), d = 9 (9-MC), and d = 

11 (11-MC). Experimental results on the number of d-MC candidates and the computational time are 

summarized in Table 5 and Table 6. Additionally, to clearly exhibit the performance of different 

algorithms, the relative ratios of computational times are indicated in Table 7. From Tables 5–7, the 

following observations are made: 

(1) The number of d-MC candidates generated by the proposed algorithm is equal to that 

generated by the algorithms of Yan and Qian (2007), and Forghani-elahabad and Mahdavi-Amiri 

(2014), but is smaller than or equal to that generated by the algorithms of Lin (2002) and Yeh et al. 

(2015). In view of the fact that the concept of lower capacity bound is also used by Yan and Qian, and 

Forghani-elahabad and Mahdavi-Amiri, but is not employed by Lin, and Yeh et al, it can be concluded 

that the usage of lower capacity bound tends to reduce the number of d-MC candidates. This result 

well explains why there is a need to develop efficient methods for finding lower capacity bounds of 

arcs. Moreover, the difference between the algorithms with and without the use of lower capacity 

bound will become more prominent as the demand d grows.  

(2) Note that Tnew1/Tnew2 represents the relative efficiency of Theorem 5 and theorem 6 in 

detecting duplicate d-MCs, and thus Theorem 5 appears to be more efficient than Theorem 6, and is 

more applicable to detecting duplicate d-MCs. 

(3) As expected, the suggested algorithm, regardless of which judging criterion (i.e. Theorem 5 or 

Theorem 6) is used, always outperforms the existing algorithms in solving all d-MCs (d = 5, 7, 9, 11) 

of the benchmark networks. This result is totally consistent with the theoretical analysis presented in 

Section 3.3. 

(4) The suggested algorithm shows a huge advantage over the algorithms of Lin (2002), Yan and 

Qian (2007), Forghani-elahabad and Mahdavi-Amiri (2014) which employ the comparison method to 

detect duplicate d-MCs. To be worthy of attention, while the number of d-MC candidates generated by 

the suggested algorithm is identical with that generated by Yan and Qian, Forghani-elahabad and 

Mahdavi-Amiri, the suggested algorithm is significantly more efficient than the methods of Yan and 

Qian, and Forghani-elahabad and Mahdavi-Amiri. This result is understandable in view of the 

superiority of the two judging criteria over the comparison method in detecting duplicate d-MCs. To 

identify a duplicate d-MC, the comparison method needs to inefficiently compare it with all of the 

other d-MCs whose number is usually enormous. In contrast, the proposed judging criteria really find 

out the fundamental reason for yielding duplicate d-MCs. Specifically, the judging criteria reveal that 
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only the d-MCs derived from MCs with identical capacity need to be checked, which largely in part 

enhances the efficiency of identifying duplicates, and that either the unsaturated components or the 

saturated components in d-MCs can be used to determine duplicates, which is entirely different from 

the comparison method. 

In summary, the developed technique for finding lower capacity bounds is beneficial to solving 

d-MCs, and the two judging criteria outperforms the traditional comparison method with regard to 

detecting duplicate d-MCs. What is more, the experimental results firmly support the superiority of the 

suggested algorithm over the existing algorithms.  

5. A case study of LCD monitor delivery 
Reliability evaluated during the operation phase of complex technological networks is a key 

indicator to measure the level of service of the networks. Furthermore, this information can be deemed 

as a performance criterion to figure out the optimal scheme for network improvement (Kuo and Zuo, 

2003; Ramirez-Marquez and Coit, 2005a). As an NP-hard problem, reliability evaluation has long 

been recognized to be a difficult and challenging task. Developing efficient algorithms for reliability 

analysis contributes to the quick and accurate demonstration of network performance, and thus is a 

popular topic to both researchers and practitioners. We have proposed a new d-MC method to evaluate 

the reliability of a stochastic distribution network, and its performance advantages over the existing 

methods have already been proved through both theoretical and numerical results. In this section, a 

practical distribution network, as presented in Fig. 8, is utilized to further illustrate the application of 

the proposed algorithm.  

5.1 Reliability evaluation of an LCD monitor distribution network between China and France 

    A Chinese manufacturer owning a factory located at Shenzhen city in China produces LCD 

monitor commodities. LCD monitors are usually utilized in consumer electronics industry. Owing to 

the excellent quality and price advantage of products, the manufacturer has not only been one of the 

chief LCD monitor providers for Chinese consumer electronics companies, but also been recognized 

as the premium supplier by many international consumer electronics enterprises for years. One of its 

customers is a famous consumer electronics company in France. When confirming an order from the 

company in France, the manufacturer is responsible for the accurate delivery of LCD monitors. Fig. 8 

illustrates the LCD monitor distribution network between China and France, in which the LCD 

monitor commodity can pass through several transfer centers in different countries. 

    The manufacturer has gotten an order from the company in France to deliver 1000 pieces of 42 in. 

LCD monitors. The dimension of each 42 in. LCD monitor is 105.1 × 73.89 × 29.1 (unit: cm3). During 

delivery by either ship or truck, the LCD monitors are typically loaded onto TEU (twenty-feet 

equivalent unit). The size of TEU is 589.8 × 235.2 × 238.5 (unit: cm3), and can load approximately 

146 pieces of 42 in. LCD monitors. Each carrier along routes has multiple available capacities, such as 

0, 1, . . ., 5 TEU with the probability distribution derived from the carrier’s database. The capacity data 
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of carriers along routes are shown in Table 8. For example, Pr(x1 = 2) = 0.029 implies the probability 

that the carrier on route e1 exactly provides 2 TEU per unit of period is 0.029. And, the probability that 

the carrier on route e1 can provide more than or equal to 2 TEU per unit of period is 0.974 because 

Pr(x1 = 2) + Pr(x1 = 3) = 0.974. 

    Since one TEU can load approximately 146 pieces of 42 in. LCD monitors, the capacity of the 

distribution network should be more than or equal to 7 TEU in order to load 1000 pieces of 42 in. 

LCD monitors (i.e. demand level is 7). Therefore, if the manager would like to assess the capability of 

the network to ensure the delivery of required quantity of LCD monitors, the performance index R7 

can be evaluated in terms of 6-MCs, i.e. d = 6. There are 20 MCs in Fig. 8. By using the proposed 

algorithm, a total number of 104 6-MCs are found. Based on all 6-MCs and the RSD method shown in 

Eq. (1), the performance index R7 = 0.778660 is obtained. As a result, the probability that the 

distribution network in Fig. 8 can successfully deliver 7 TEU of LCD monitor commodities from 

China to France is 0.778660. Undoubtedly, this value gives the manager valuable information on the 

capability of the distribution network to accomplish the delivery of required quantity of LCD monitor 

commodities, and thus can be regarded as a decision criterion. For example, if the probability 

0.778660 is below the threshold set by the manager, it means that the performance of the distribution 

network is unsatisfactory, and thereby it is necessary to improve the network. Otherwise, the 

performance of the distribution network is desirable.  

    For comparison, network reliabilities at different demand levels are also computed, and the 

results are summarized in Table 9. As expected, network reliability decreases as the demand level 

increases. Furthermore, the data of the last row in Table 9 reveals that the reliability difference 

between two successive demand levels increases as the demand level increases. When d ranges from 1 

to 5, the reliability difference between two successive demand levels (i.e. Rd+1 – Rd+2 ) is not notable, 

but it becomes prominent from d =5 to d = 7. Therefore, d = 5 (corresponds to the reliability R6) is a 

critical value above which the network reliability sharply decreases.  

5.2 Optimal scheme for improving the LCD monitor distribution network 

    The manager pays close attention to the accurate delivery of LCD monitor commodities. Given 

that the reliability 0.778660 is below the manager's expectation, and the manager intends to improve 

the current distribution network by adding new routes (arcs) to it. As a result, the manager needs to 

determine which routes are the best for network improvement. In addition, because of some objective 

conditions, only several routes are specified to be the candidates for network improvement. That is, the 

candidate routes are limited to China to India, Vietnam to Dubai, Dubai to Greece, and Egypt to 

France, i.e. four candidate routes, and their capacity data are presented in Table 10. Consequently, the 

optimal network improvement scheme is to determine the best from the four candidate routes, such 

that their addition to the current network results in the maximal network reliability. To make a 

comprehensive analysis, three cases are analyzed:  
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        Case 1: One route is added to the existing network. 

        Case 2: Two routes is added to the existing network. 

        Case 3: Three routes is added to the existing network.  

    The reliability of the expanded network is calculated using the proposed algorithm, and the 

results under different selections for each case are presented in Table 11 by which we state the 

following observations: 

    (1) China to India is the best for network improvement if the manager considers to add only one 

route to the current network. Similarly, China to India and Egypt to France (China to India, Dubai to 

Greece and Egypt to France) are the optimal routes for network improvement when the manager plans 

to add two (three) routes to the current network.  

    (2) If the manager hopes that the reliability of the expanded network marginally exceeds 0.95, the 

best choice is adding the two routes China to India and Egypt to France to the current network. 

    (3) It is noteworthy that the route China to India is always involved in the optimal scheme in 

every case, thus the manager should give top priority to the route China to India whenever considering 

to improve the existing network.  

    (4) As expected, the reliability of the expanded network under the optimal scheme increases as 

the number of added routes increases.  

6. Concluding remarks  
    With increasing demands for better and more reliable service, the reliability problem has become 

a major concern in the design of new networks, and the operation and improvement of existing 

networks. This paper proposes a d-MC based algorithm to evaluate the reliability of a stochastic 

distribution network that can be regarded as a typical stochastic-flow network where each arc has a 

random capacity and the corresponding operational reliability. To improve the efficiency of solving 

d-MCs, a new technique is developed to find lower capacity bounds of arcs which are used to cut 

down the number of d-MC candidates. Also, a more effective method based on two judging criteria is 

presented to overcome the drawbacks of the existing methods in detecting duplicate d-MCs. The 

proposed judging criteria are the first to really find out the underlying reason for the generation of 

duplicate d-MCs. Both complexity analysis and computational experiments conducted on benchmark 

networks indicate that the suggested algorithm outperforms the existing methods. Through a practical 

distribution network related to LCD monitor products, this study not only demonstrates the utility of 

the proposed algorithm but also discusses the management implications of network reliability. A 

manager can take network reliability as a decision criterion to determine the optimal network 

improvement scheme. 

    For future research, there is still a great potential for extending the suggested algorithm to more 

practical applications. For instance, the cost associated with distribution activity is also a major 

concern for logistics providers, and thus the problem of network reliability subject to budget constraint 
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is a practical one worthy of study. Hence, it is meaningful to extend the proposed algorithm to be 

applicable to the cost and reliability integrated performance evaluation of a distribution network. 

Furthermore, the distribution network discussed in this paper is in fact a single-commodity 

stochastic-flow network in which only one type of commodity is transported from the source to the 

destination. In practice, however, a distribution network usually allows multiple types of commodity 

to be delivered from the source to the destination simultaneously. Because different types of 

commodity may consume the arc capacity differently, it is inappropriate to treat the network capacity 

as the maximal sum of the commodity. Therefore, it is worthwhile to study how to modify the 

suggested algorithm to evaluate the reliability of multi-commodity stochastic-flow networks, which 

would enhance applicability of the algorithm.  
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Appendix A 
A.1. The existing results with respect to the d-MC problem 

    Lemma 2: For a d-MC candidate X, if M(X) = d and there is a path between the source node and 

the destination node in Rd(V, E, X +0(ei)) for all ei∈U(X), then X is a d-MC. 

    Lemma 3: For a d-MC candidate X with M(X) = d, if |U(X)| = 1, then X is a d-MC. 

    Lemma 4: For an MC C, if Cap(C) = D, every d-MC candidate derived from C is a d-MC.   

    Lemma 2 is used to verify whether a d-MC candidate is a d-MC, and Lemmas 3 and 4 describe 

two special cases in which the verifications are avoidable. Lemma 3 reveals that there is only one 
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unsaturated component in the d-MC. In Lemma 4, Cap(C) = D means the capacity of C is minimal 

among all MCs.  

    Lemma 5: For a d-MC candidate X, if there exists no d-MC candidate X*, such that X ≤ X*, then 

X is a d-MC without duplicates. 

    Lemma 6: Let Ci and Cj be two distinct MCs and X be a d-MC generated from Ci, if U(X)⊆Cj, X 

is also a d-MC generated from Cj, i.e., X is a duplicate d-MC. 

    Lammas 5 and 6 are utilized to detect duplicate d-MCs. The well-known comparison method is 

based on Lemma 5, and Yeh's method (2008) relies on Lemma 6. Lemma 5 indicates that each d-MC 

candidate must be verified by comparing it with all of the other d-MC candidates. It is a 

time-consuming task to implement the comparison process due to the exponentially growing number 

of d-MC candidates (Yeh, 2008). Lemma 6, as opposed to Lemma 5, provides helpful insight into the 

fundamental reason for the generation of duplicate d-MCs. Unfortunately, Lemma 6 may work 

incorrectly under certain condition. Specifically, the usage of Lemma 6 may lead to the loss of 

non-duplicate d-MCs. Fig. 1 is used as an example to illustrate this point.  

    Fig. 1 shows that there are 4 MCs in the network: C1 = {e1, e2, e3}, C2 = {e1, e3, e4, e6}, C3 = {e2, 

e3, e4, e5}, and C4 = {e3, e5, e6}. It is easy to check that X = (4, 3, 3, 1, 2, 3) is an 8-MC derived from C4 

= {e3, e5, e6}, and U(X) = {e3, e5}⊆C3. Consequently, (4, 3, 3, 1, 2, 3) is identified by Lemma 6 as a 

duplicate 8-MC also generated from C3, and it will be removed from the list of 8-MCs. Actually, 

however, X = (4, 3, 3, 1, 2, 3) is not an 8-MC (candidate) generated from C3 because
3

( )
e C

X e
∈∑ = 

X(e2) + X(e3) + X(e4) + X(e5) = 9 ≠ 8. Hence, the non-duplicate 8-MC (4, 3, 3, 1, 2, 3) is lost due to the 

malfunction of Lemma 6. 

A.2. Several newly obtained results  

    The following conclusion is directly from the definition of L(ei) (1 ≤ i ≤ m). 

Corollary 1: For an arc ei (1 ≤ i ≤ m), if L(ei) exists, then M(X) = d, where X = (W1, W2, …, Wi-1, 

L(ei), Wi+1, …, Wm).  

The basic requirement for a capacity vector X to be a d-MC is the satisfaction of the flow demand 

d, thus the following conclusion is at hand. 

Corollary 2: For a d-MC candidate X = (X(e1), X(e2)  ,…, X(em)) derived from MC C, if X is a 

d-MC, then X(ei) ≥ L(ei) when L(ei) exists for all ei∈C. 

Proof: By the definition of lower capacity bound, we have M(X) < d if X(ei) < L(ei) for ei∈C, 

which is contrary to the definition of d-MC. Hence, the conclusion holds true. � 

Grounded on Lemma 3 and Corollary 1, it is trivial to obtain the following conclusion. 

Corollary 3: For an arc ei (1 ≤ i ≤ m), if L(ei) exists, then X = (W1, W2, …, Wi-1, L(ei), Wi+1, …, Wm) 

is a d-MC.  

    Corollary 4: If X = (X(e1), X(e2)  ,…, X(em)) is a d-MC generated from MC C, then 
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    Proof：By Lemma 1, ( ) ( ) ( )
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  Corollary 5: If X = (X(e1), X(e2)  ,…, X(em)) is a d-MC generated from MC C, then U(X)⊆C. 

    Proof：It is directly from Eq. (4) in Lemma 1. � 

Corollaries 4 and 5 point out the basic properties which a d-MC should satisfy.   

A.3. Nomenclature 

Demand level d 

 

Cut 

 

 

Minimal cut 

0 ≤ d < D, a non-negative integer-valued flow demand from the source 

to the destination. 

a cut is a subset of E such that there exists no path from the source 

node to the destination node after elimination of all its elements from 

G(V, E, W). 

a cut such that none of its proper subsets is a cut.  

d-MC 

 

Y ≥ X 

Y > X 
 

a network capacity vector X = (X(e1), X(e2),…, X(em)) is a d-MC if and 

only if M(X) = d, and M(X+0(ei)) > d for each ei∈U(X). 

(Y1, Y2,…, Ym) ≥ (X1, X2,…, Xm) with Yi ≥ Xi for i = 1, 2, …, m 

(Y1, Y2,…, Ym) > (X1, X2,…, Xm) with Yi ≥ Xi for i = 1, 2, …, m, and Yi > 

Xi for at least one i. 

A.4. Notations 

G(V, E, W) 

 

 

G(V, E, X) 

Rd(V, E, X) 

a stochastic-flow network with the set of nodes V = {1, 2,…, n}, where 1 is the 

source node and n is the destination node, the set of arcs E = {e1, e2,…, em}, and W 

= (W1, W2,…, Wi), where Wi = W(ei) denotes the max-capacity of ei for 1 ≤ i ≤ m. 

the network corresponds to G(V, E, W) except that W is replaced by X. 

the corresponding residual network to G(V, E, X) after sending d units of flow from 

source node 1 to destination node n. 

e an arc  

ei the ith arc in E.  

m, n the number of arcs, and the number of nodes. 

X(ei) the current capacity of arc ei representing the amount of flow allowed to be sent 

through ei. 

L(ei) 

E* 

lower capacity bound of arc ei in d-MCs. 

E* = {ei | L(ei) exists} which is a subset of E. 
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X a network capacity vector X = (X(e1), X(e2)  ,…, X(em)) . 

C a minimal cut. 

Ci 

Cap(C) 

the ith minimal cut. 

the capacity of minimal cut C, i.e., Cap(C) = ( )
e C

W e
∈∑  

M(X) the max-flow of the network under X. 

U(X) 

W(0i) 
 

U(X) = {ei | X(ei) < W(ei)}. 

W(0i)= (W1, W2, …, Wi-1, 0, Wi+1, …, Wm), capacity is 0 for ei and the largest  

for others. 

0(ei) 0(ei) = (0, 0, …, 0, 1, 0, …, 0), i.e. capacity is 1 for ei and zero for others. 

d 

D 

demand level for the network. 

M(W), the max-flow of the network under W. 

p, σ 

 

Rd+1 

|• | 

the number of MCs in the network, and the number of d-MC candidates obtained 

from an MC, respectively. 

reliability at demand level d+1. 

the number of elements of• , e.g. |V| is the number of nodes in V. 
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Figures: 

 
 

Fig. 1 A stochastic-flow network (Yeh, 2008). 

 

 

 
Fig. 2 An illustration of 8-MC X = (2, 2, 4, 1, 3, 3). 
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Fig. 3 An illustration of non-8-MC X = (3, 3, 2, 1, 3, 3). 

 

 

 
Fig. 4 Lower capacity bound of e3 when d = 8. 
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Fig. 5 An illustration of Theorem 1. 

 

 

 

 
Fig. 6 The relationship between two MCs when generating identical d-MCs. 
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Fig. 7 Benchmark networks (Soh and Rai, 1993; Ramirez-Marquez and Coit, 2005b)
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Fig. 8 An LCD monitor distribution network between China and France. 
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Tables: 
           

            Table 1 
            Time complexities of different algorithms. 

Algorithm Time complexity 

Jane et al. (1993), Lin (2002), Yeh (2002, 

2004), Yan and Qian (2007) 
O(mp2σ2) 

Yeh (2008), Forghani-elahabad and 

Mahdavi-Amiri (2014), Yeh et al. (2015) 
O(mp2σ) 

The proposed algorithm O( 2

1
k

k
mp

λ

σ
=
∑ ) 

            Note: p1 + p2 +…+ pλ = p, and 2

1
k

k
mp

λ

σ
=
∑ ≤ O(mp2σ) < O(mp2σ2). 

 

 

        Table 2 
        Capacities & capacity probabilities of arcs in Fig. 1. 

Arc Capacity Capacity probabilities 
e1 0 1 2 3 4 0.01 0.01 0.03 0.05 0.90 
e2 0 1 2 3 - 0.01 0.02 0.02 0.95 - 
e3 0 1 2 3 4 0.01 0.01 0.03 0.05 0.90 
e4 0 1 - - - 0.02 0.98 - - - 
e5 0 1 2 3 - 0.01 0.02 0.02 0.95 - 
e6 0 1 2 3 - 0.01 0.02 0.02 0.95 - 

 

 

 

                Table 3 
                Lower capacity bounds and the corresponding 8-MCs. 

ei L(ei) The corresponding 8-MCs 

e1 1 (1, 3, 4, 1, 3, 3) 

e2 0 (4, 0, 4, 1, 3, 3) 

e3 2 (4, 3, 2, 1, 3, 3) 

e4 does not exist - 

e5 1 (4, 3, 4, 1, 1, 3) 

e6 1 (4, 3, 4, 1, 3, 1) 
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Table 4  
The 8-MC candidates and 8-MCs with more than one unsaturated component. 

Φ1: C4 = {e3, e5, e6}: x3 + x5 + x6 = 8 x1 =4  

x2 =3 

x4 =1 

8-MC candidate 8-MC? 
A 

duplicate? 3 ≤ x3 ≤ 4 2 ≤ x5 ≤ 3 2 ≤ x6 ≤ 3 

3 2 3 

 

(4, 3, 3, 1, 2, 3) Yes No 

3 3 2 (4, 3, 3, 1, 3, 2) Yes No 

4 2 2 (4, 3, 4, 1, 2, 2) Yes No 

Φ2: C1 = {e1, e2, e3}: x1 + x2 + x3 = 8 x4 =1  

x5 =3 

x6 =3 

8-MC candidate 8-MC? 
A 

duplicate? 2 ≤ x1 ≤ 4 1 ≤ x2 ≤ 3 3 ≤ x3 ≤ 4 

2 2 4 

 

(2, 2, 4, 1, 3, 3) Yes No 

2 3 3 (2, 3, 3, 1, 3, 3) Yes No 

3 1 4 (3, 1, 4, 1, 3, 3) Yes No 

3 2 3 (3, 2, 3, 1, 3, 3) Yes No 

4 1 3  (4, 1, 3, 1, 3, 3) Yes No 

Φ2: C3 = {e2, e3, e4, e5}: x2 + x3 + x4 + x5 = 8 x1 =4  

x6 =3 
8-MC candidate 8-MC? 

A 

duplicate? 1 ≤ x2 ≤ 3 3 ≤ x3 ≤ 4 0 ≤ x4 ≤ 1 2 ≤ x5 ≤ 3 

1 3 1 3 

 

 (4, 1, 3, 1, 3, 3) Yes Yes 

1 4 0 3  (4, 1, 4, 0, 3, 3) Yes No 

1 4 1 2  (4, 1, 4, 1, 2, 3) Yes No 

2 3 0 3  (4, 2, 3, 0, 3, 3) Yes No 

2 3 1 2   (4, 2, 3, 1, 2, 3) No - 

2 4 0 2   (4, 2, 4, 0, 2, 3) Yes No 

3 3 0 2   (4, 3, 3, 0, 2, 3) No - 

Φ3: C2 = {e1, e3, e4, e6}: x1 + x3 + x4 + x6 = 8 x2 =3  

x5 =3 
8-MC candidate 8-MC? 

A 

duplicate? 2 ≤ x1 ≤ 4 3 ≤ x3 ≤ 4 0 ≤ x4 ≤ 1 2 ≤ x6 ≤ 3 

2 3 0 3 

 

 (2, 3, 3, 0, 3, 3) No - 

2 3 1 2  (2, 3, 3, 1, 3, 2) No - 

2 4 0 2  (2, 3, 4, 0, 3, 2) Yes No 

3 3 0 2  (3, 3, 3, 0, 3, 2) No - 
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Table 5     
The number of d-MC candidates generated by different algorithms. 

Net ID m n p d 
No. of d-MC candidates 

σnew = σYQ = σFM σL = σYBH 

1 21 10 58 

5 8930 8930 

7 10265 18915 

9 10561 27663 

11 2118 30684 

2 21 12 111 

5 27063 27063 

7 58509 59883 

9 66144 81321 

11 27014 70644 

3 23 13 140 

5 39621 39621 

7 93801 107403 

9 109578 192260 

11 18391 238944 

Note: σnew, σL, σYQ, σFM, and σYBH are the number of d-MC candidates generated by the proposed 

algorithm, Lin's algorithm (2002), Yan and Qian's algorithm (2007), Forghani-elahabad and 

Mahdavi-Amiri's algorithm (2014), and the algorithm of Yeh et al. (2015), respectively.  
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Table 6     
 The computational time of different algorithms. 

Net 

ID 
m n p d-MC 

Computational time (in CPU second) 

Tnew1 Tnew2 TL TYQ TFM TYBH 

1 21 10 58 

5-MC 4.258 5.345 83.255 83.289 18.604 5.604 

7-MC 4.293 5.714 206.328 85.775 21.495 7.247 

9-MC 3.166 4.106 198.224 46.498 16.299 6.765 

11-MC 0.655 0.868 64.405 1.802 3.335 5.401 

2 21 12 111 

5-MC 16.753 29.337 813.263 813.285 212.359 31.051 

7-MC 24.949 40.754 2204.765 2054.746 340.908 42.543 

9-MC 19.928 28.021 1815.567 1415.052 189.528 31.332 

11-MC 5.925 6.908 422.149 116.938 43.764 14.349 

3 23 13 140 

5-MC 28.103 38.882 859.071 859.112 127.815 41.156 

7-MC 36.252 45.761 1792.282 1310.053 203.868 49.341 

9-MC 27.652 29.673 1073.176 525.361 193.595 51.689 

11-MC 3.931 4.165 237.842 12.404 32.188 69.302 

Note: Tnew1, and Tnew2 are the running times of the suggested algorithm using Theorem 8, and Theorem 

9, respectively, to detect and remove duplicate d-MCs; TL, TYQ, TFM, and TYBH are the running times of 

Lin's algorithm (2002), Yan and Qian's algorithm (2007), Forghani-elahabad and Mahdavi-Amiri's 

algorithm (2014), and the algorithm of Yeh et al. (2015), respectively.  
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 Table 7    
 The relative performance of different algorithms. 

Net 

ID 
m n p d-MC 

Relative performance 

Tnew1/ Tnew2 Tnew2/TL Tnew2/TYQ Tnew2/TFM Tnew2/ TYBH 

1 21 10 58 

5-MC 0.797 0.064 0.064 0.287 0.954 

7-MC 0.751 0.028 0.067 0.266 0.789 

9-MC 0.771 0.021 0.088 0.252 0.607 

11-MC 0.755 0.014 0.482 0.260 0.161 

2 21 12 111 

5-MC 0.571 0.036 0.036 0.138 0.945 

7-MC 0.612 0.019 0.020 0.120 0.958 

9-MC 0.711 0.015 0.020 0.148 0.894 

11-MC 0.858 0.016 0.059 0.158 0.481 

3 23 13 140 

5-MC 0.723 0.045 0.045 0.304 0.945 

7-MC 0.792 0.026 0.035 0.225 0.927 

9-MC 0.932 0.028 0.057 0.153 0.574 

11-MC 0.944 0.018 0.336 0.129 0.060 

Note: Tnew1, and Tnew2 are the running times of the suggested algorithm using Theorem 8, and Theorem 

9, respectively, to detect and remove duplicate d-MCs; TL, TYQ, TFM, and TYBH are the running times of 

Lin's algorithm (2002), Yan and Qian's algorithm (2007), Forghani-elahabad and Mahdavi-Amiri's 

algorithm (2014), and the algorithm of Yeh et al. (2015), respectively.  

 
 
               Table 8 
               Capacity data of routes (arcs) in Fig. 8. 

Route 

Available capacity (unit: TEU) 

  0   1   2   3   4   5 

Probability 
e1 0.008 0.018 0.029 0.945 - - 
e2 0.007 0.009 0.016 0.023 0.032 0.913 
e3 0.005 0.021 0.023 0.951 - - 
e4 0.006 0.019 0.026 0.949 - - 
e5 0.011 0.018 0.025 0.946 - - 
e6 0.015 0.026 0.044 0.915 - - 
e7 0.007 0.019 0.031 0.042 0.901 - 
e8 0.006 0.014 0.023 0.035 0.922 - 
e9 0.011 0.053 0.936 - - - 
e10 0.008 0.013 0.026 0.037 0.916 - 
e11 0.012 0.056 0.932 - - - 
e12 0.006 0.019 0.023 0.031 0.921 - 
e13 0.007 0.012 0.019 0.023 0.037 0.902 
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Table 9 
 Network reliabilities at different demand levels. 

d 1 2 3 4 5 6 7 

No. of d-MCs 64 140 203 204 140 73 34 

Rd+1 0.999000 0.996841 0.985919 0.962932 0.902387 0.778660 0.610428 

Rd+1 – Rd+2 0.002159 0.010922 0.022987 0.060545 0.123727 0.168232 - 

 

 

 

 

 

                Table 10  
                Capacity data of the candidate routes. 

Candidate route 
Available capacity (unit: TEU) 

0 1 2 3 
Probability 

China to India 0.005 0.012 0.026 0.957 
Vietnam to Dubai 0.002 0.008 0.013 0.977 

Dubai to Greece 0.004 0.009 0.011 0.976 
Egypt to France 0.003 0.009 0.015 0.973 
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  Table 11  
  Network reliabilities under different network improvements. 

 No. of 
new routes The added route(s) 

Reliability of 
the improved 

network 

The difference to the 
reliability without 

network improvement  

 
Remark 

 

1 

China to India 0.876436 0.097776 Optimal 

Vietnam to Dubai 0.804974 0.026314 - 

Dubai to Greece 0.801931 0.023271 - 

Egypt to France 0.844690 0.066030 - 

2 

China to India and 
Vietnam to Dubai 0.884229 0.105569 - 

China to India and 
Dubai to Greece 0.902382 0.123722 - 

China to India and 
Egypt to France 0.950799 0.172139 Optimal 

Vietnam to Dubai and 
Dubai to Greece 0.835693 0.057033 - 

Vietnam to Dubai and 
Egypt to France 0.873018 0.094358 - 

Dubai to Greece and 
Egypt to France 0.862951 0.084291 - 

3 

China to India,  
Vietnam to Dubai and 
Dubai to Greece 

0.917757 0.139097 - 

China to India,  
Vietnam to Dubai and 
Egypt to France 

0.959055 0.180395 - 

China to India, 
Dubai to Greece and 
Egypt to France 

0.971245 0.192585 Optimal 

Vietnam to Dubai, 
Dubai to Greece and 
Egypt to France 

0.898314 0.119654 - 

 

 

 

 




