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Abstract: A correlation of creep index (C,) with high performance is highly recommended for soft
clay engineering practice. Current empirical correlations are only acceptable for a few clays. This
paper aims to propose a robust and effective evolutionary polynomial regression (EPR) model for C,
of clay. First, a database covering various clays is formed, in which 120 data are randomly selected
for training and the remaining data are used for testing. To avoid overfitting, a novel EPR procedure
using a newly enhanced differential evolution (DE) algorithm is proposed with two enhancements:
(1) a new fitness function is proposed using the structural risk minimization (SRM) with L,
regularization that penalizes polynomial complexity, and (2) an adaptive process for selecting the
combination of involved variables and size of polynomial terms is incorporated. By comparing the
predictive ability, model complexity, robustness and monotonicity, the EPR formulation for C,
involving clay content, plasticity index and void ratio with three terms is selected as the optimal
model. A parametric study is then conducted to assess the importance of each input in the proposed
model. All results demonstrate that the proposed model of C, is simple, robust, and reliable for

applications in engineering practice.
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1 Introduction

Natural soft clays exhibit significant creep under both laboratory and in situ conditions after
primary consolidation, which significantly influences the long-term safety of infrastructures in
various fields, such as tunnelling (Ren et al. 2018; Shen et al. 2014; Wu et al. 2015; Wu et al. 2017),
excavation (Feng et al. 2003; Jin et al. 2019; Wang et al. 2009; Zhang et al. 2013), embankment
(Chai et al. 2018; Karstunen and Yin 2010; Rezania et al. 2017; Shen et al. 2005; Yin et al. 2011a;
Zhu et al. 2014; Zhu et al. 2015), urban land subsidence (Shen et al. 2013; Shen and Xu 2011; Xu et
al. 2016; Xu et al. 2012a; Xu et al. 2012b), etc. Usually, the creep property of soft clays is
represented by the creep index C,=Ae/Alog(f), where e is void ratio and ¢ is time during secondary
compression. The creep index is a key parameter for most viscoplastic constitutive models applicable
to the engineering practice (Yin et al. 2002; Yin and Cheng 2006; Yin et al. 2017a; Yin et al. 2015a;
Yin et al. 2014; Yin et al. 2017b; Yin et al. 2010a; Yin and Karstunen 2011; Yin et al. 2011b; Yin et
al. 2010b; Yin and Wang 2012; Zhu and Yin 2000), which is usually obtained by a conventional
oedometer test. According to studies of (Yin et al. 2017b; Yin and Karstunen 2011; Yin et al.
2011b), the C, corresponding to intact clays is not constant because of the effect of destructuration to
the creep. In contrast, the C, of reconstituted clay is an intrinsic property, which is the base for
understanding the creep characteristic and thus more suitable to be adopted in practice (Mesri and
Godlewski 1977). Because of this, the attention is paid to the C, of reconstituted clay in this study.

The creep property should relate to the microstructure of clay (Yin et al. 2014; Yin et al. 2017b;
Yin et al. 2008; Yin and Chang 2009). Unfortunately, the microstructure of clay is expensive to
measure which may lead to a practical obstacle. Physical properties can somehow reflect the
microstructure of clay. Thus practically, it is very convenient to get ideas of the intrinsic value of C,
only based on physical properties of clay. Some attempts have been made to correlate the C, to some
physical properties of soils (such as water content, void ratio, Atterberg limits)(Anagnostopoulos and
Grammatikopoulos 2011; Nakase et al. 1988; Suneel et al. 2008; Yin 1999; Zeng et al. 2012a; Zeng
and Liu 2010; Zhu et al. 2016). However, these correlations are only applicable for few clays and
thus not enough reliable for soft clay engineering practice. Therefore, a robust and effective

correlation between C, and physical properties of clay is worth investigating.
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Numerical regression is the most powerful and commonly applied form of regression used to
solve the problem of finding the best model to fit the observed data (Alemdag et al. 2015; Gurocak et
al. 2008; Gurocak et al. 2012; Zhang et al. 2015; Zhou et al. 2016). Evolutionary Polynomial
Regression (EPR) is a recently developed hybrid regression method (Giustolisi and Savic 2006) that
has advantages in modelling nonlinear complex problems. Applications in geotechnics include
stability prediction of slopes (Ahangar-Asr et al. 2010; Doglioni et al. 2015; Gurocak et al. 2008),
modelling of clay compressibility (Wu et al. 2018; Yin et al. 2016), modelling of permeability and
compaction characteristics of soils (Ahangar-Asr et al. 2011), evaluation of liquefaction potential of
sand (Rezania et al. 2011; Rezania et al. 2010), prediction of soil saturated water content
(Khoshkroudi et al. 2014), settlement prediction of foundations (Ghorbani and Firouzi Niavol 2017,
Shahin 2014; Shahnazari et al. 2014), evaluation of pile bearing capacity (Ahangar-Asr et al. 2014;
Ebrahimian and Movahed 2013, 2017), pipeline failure prediction (Kakoudakis et al. 2017),
modelling of soil behaviours (Faramarzi et al. 2014; Javadi et al. 2012; Nassr et al. 2018; Shahnazari
et al. 2013), etc. These successful applications have demonstrated that the EPR technique is superior
to other soft computing techniques, such as artificial neural networks (ANNs)(Kalinli et al. 2011), or
genetic programming (GP) (Alemdag et al. 2015; Rezania et al. 2010). More recently, the
development of optimization algorithms (Jin et al. 2017a; Jin et al. 2017b; Jin et al. 20164, b; Jin et
al. 2017c; Jin et al. 2018; Yin et al. 2016; Yin et al. 2018; Yin et al. 2017a) can improve the EPR
technique in a more adaptive way. Thus, the optimization combined EPR technique is worth trying
for the C, of clay. However, in current EPR modelling most fitness functions are only based on
training data error, such as the sum of squared errors (SSE) or coefficient of determination (COD).
As a result, the proposed models are usually overfitting and weak in terms of the generalization
ability. Therefore, the EPR technique needs to be improved to avoid overfitting and with good
generalization ability.

In this study, a simple, robust and reliable correlation between the intrinsic C, and physical
properties of clay is proposed with improving and using the EPR technique. Firstly, a database
including physical properties (clay content, Atterberg limits and void ratio) and C, for various

reconstituted clays is formed, in which 120 randomly selected data are used for training EPR model
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and the remaining data are used for testing. An efficient EPR procedure is proposed, in which the
newly developed Nelder-Mead simplex differential evolution algorithm (NMDE) is employed as the
optimization tool to search the optimal exponents; a fitness function based on structural risk
minimization (SRM) with L, regularization is proposed and implemented; and an adaptive procedure
for selecting the involved variables and the size of terms in EPR model is proposed and
implemented. Then, six EPR models of C, with different combinations of involved variables and
different sizes of terms are obtained. Next, the optimal EPR model of C, is selected among them
based on the predictive ability, model complexity, robustness and monotonicity. Finally, a parametric
study is conducted to assess the level of contribution of each physical property in the proposed

model.

2 Database

2.1 Statistics and basic correlation analysis

Massive experimental data from various studies (Li et al. 2012; Yin 1999; Yin et al. 2015b;
Zeng et al. 2012a; Zhu et al. 2016) were collected and used to develop the EPR model of intrinsic
C,. The clay content (CI), liquid limit (wy), plastic limit (wp), plasticity index (/p) and void ratio (e)
were treated as correlating variables of interest. Table 1 summarizes those physical properties and C,
for all selected reconstituted clays. Based on the data, the statistical analysis (maximum value,
minimum value, mean value and standard deviation) for each property were conducted, summarized
in Table 2.

The linear correlations between C,, and each main basic physical property (CI, wi, wp, Ip and e)
are presented in Fig. 1. It is found that the C, relatively highly correlates to e, followed by I, and w,
and very poorly correlates to wp and CI. It is obvious that none of the basic correlations involving
single physical property for predicting C,, is satisfactory for engineering purposes (R?<0.8) and thus
the performance of the correlation still needs to be improved. Note that the increasing of the ratio of
clay to silt or sand can increase significantly the creep index (Yin, 1999), the CI should be

considered in correlation.
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2.2 Discrepancy of current correlation formula

Table 3 summarizes five existing empirical correlations of C,, which were used to fit the
database presented in Table 1. Fig. 2 shows the comparison between predictions and measurements
for these empirical correlations. For the correlations only involving /p (Nakase et al. 1988; Yin
1999), their performances are poor with a low value of correlation coefficient R%. For the correlations
proposed by Zeng et al. (2012a) and Zhu et al. (2016), their performances are almost the same, but
the R? is still smaller than 0.8. Therefore, it is still recommended and should be practically useful to
improve the correlation of C,, to physical properties.

Therefore, a novel correlation approach to find a reliable and reasonable correlation between C,

and physical properties was proposed, as presented below.

3 Differential evolution-based EPR modelling

3.1 General EPR procedure

The evolutionary polynomial regression (EPR) is a data-driven method based on evolutionary
computing, aiming to search for polynomial structures representing a system, which was first
introduced by Giustolisi and Savic (2006) with applications in the hydroinformatics and environment

related problems. A general EPR expression can be mathematically formulated as:

y:iF(X,f(X),aj)Jrao (1)

where y is the estimated vector of output of the process; ay is an optional bias; g; is an adjustable
parameter for the jth term; F' is a function constructed by the process; X is the matrix of input

variables; f'is a function defined by the user; and m is the number of terms of the target expression.

According to Giustolisi and Savic (2006), the first step in identifying the model structure is to

transfer Eq.(1) to the following vector form:
— J T _ T
YN><1 (G’Z)_I:Ile ZNxm]X[aO al am] _ZNxd ><0d><1 (2)

where Y, (0, Z) is the least-squares (LS) estimator vector of N target values; 0, is the vector of d
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(=m+1) parameters a; and a, (0" is the transposed vector); and Z,,,is a matrix formed by I (unitary

vector) for bias ay, with m vectors of variables Z’. More details about the EPR can be found in

Giustolisi and Savic (2006).

Fig. 3 shows a typical flow chart for the EPR procedure (Giustolisi and Savic 2006). The

general functional structure represented by f (X, a j) in Eq.(1) is constructed from elementary

functions by EPR using an optimization algorithm strategy (such as genetic algorithm). Note that any
optimization algorithm guaranteeing the global optimal solution can be employed in the EPR
procedure. The building blocks (elements) of the structure are defined by the user based on
understanding of the physical process. The selection of feasible structures to be combined is
conducted through an evolutionary process, while the parameters g; in Eq.(2) are estimated by the

least squares method.

3.2 Implementation of NMDE in EPR modelling

In order to improve the efficiency of EPR modelling, the newly developed NMDE by Yin et al.
(2018) was employed to select the useful input vectors from X to formulate the EPR. In NMDE the
Nelder-Mead simplex (NMS) is used to accelerate the convergence speed (Fig. 4). Before
performing the differential evolution (DE) mutation, all individuals are sorted based on their fitness
value, and the best n+1 (n is the number of variables) is selected to perform the NMS. Based on the
results of the NMS, the best individual is updated and then recombined with the N-(n+1) remaining
individuals to perform the DE mutation. This process will be executed N times, resulting in a new
population of N individuals. Then, the obtained population is applied to the crossover operation. To
avoid a rapid loss of diversity, an elitism strategy is adopted when performing the selection, in which
the 10% of individuals with the highest fitness are selected from the parents and children to survive
to the next generation. The remainders are chosen by tournament selection from the mating pool
composed of parents and children. The completion mechanism can help the NMDE to identify better

solutions.
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3.3 New fitness function considering L, regularization

The performance of an EPR procedure mainly depends on fitness function. A widely used
fitness function is structural risk minimization (SRM) (Garg et al. 2017), which involves the addition
of model complexity term (size of model) in the empirical error and punishes the model fitness based
on its size. Another problem is that a relatively small amount of data will increase the risk to cause
the model overfitting, making the training error small and the testing error particularly large, which
would weaken the generalization ability of an EPR model. Then, the use of regularization/penalty
functions (e.g., Lo, L; and L, regularizations) to avoid overfitting is suggested (Coelho and Neto
2017). Among various regularizations, the L, regularization is usually adopted (Ng 2004). Therefore,
a modified mathematical formulation of SRM considering the L, regularization was adopted in this

study, given as:

log(nj
SRM = >5E |- i—(ﬁlog(ij}- NI s 2l 3)
N N \ N N 2N 2
with
SSE = i(Ym -Y, )2 and ||(o||§ = Zn:(oj —o'o 4)
=

i=1

where N is the number of data points on which the SRM is computed; Y, is the vector of measured
values; Y, is the vector of predicted values; o is the vector of model coefficients; A is regularization
parameter that requires manual adjustment to find an appropriate value.
3.4 Adaptive selection of correlating variables and term size

A reliable EPR model should have a reasonable trade-off between predictive ability and
generalization ability. As stated by Wood (2003), simple yet adequate models are favoured on the
basis of practicality. Therefore, an EPR procedure combining with model selection process should be
proposed to ensure the model “simple” enough based on minimizing the training error. Then the
model could also have a good generalization performance (e.g., the testing error is also small). In this
case, the model selection involves two aspects: selecting the suitable combination of correlating

variables and the appropriate size of terms.
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Fig. 5 presents the proposed procedure, where @is the decision variables corresponding the
exponents of EPR model; Comb represents the number of combination of correlating variables; m is
the size of terms. Compared to the common EPR process, two additional variables Comb (an integer
number) and m (an integer number) are added to the vector of optimization variable in the proposed
procedure. Firstly, all variables in initial generation are generated randomly within their domains.
Next, the possible combination of correlating variables is selected according to the value of Comb
and then a possible term size is chosen according to the value of m. Subsequently, a generated EPR
model with unknown coefficients according to Eq.(6) is attained. Then, the vector of coefficients a is
determined by regression between the measurements and predictions. Finally, the fitness SRM with
L, regularization is computed to evaluate the performance of EPR model, which determines whether
the formula can survive to next generation in the DE-evolution. Once the stop criterion (e.g., the
maximum number of generation) is reached, the whole process is exited; otherwise, the process will
continue to the next generation.

With increasing the number of generations, the appropriate combination of correlating variables
and term size will be automatically selected among numerous calculations. Moreover, through
adjusting the regularization parameter, the most appropriate EPR model in terms of model
complexity and generalization ability can be finally found.

3.5 Suggestion of regularization parameter

To find an appropriate value of regularization parameter A to trade off the performance between
prediction and generalization, several attempts to assign different values of Aare needed in the
proposed EPR procedure. Firstly, the 4=0 is tested to check the general predictive performance of the
EPR model without regularization. Then, a value of A (e.g., 10#) that closes to zero is assigned to
evaluate the effect of regularization on the selection of model. Note that the value of first tried A is
different for various concerned cases, because the value of A is related to the coefficients of obtained
equation. Next, based on investigated results, a series of calculation attempts using different values
of A are conducted based on which several formulas can be achieved. Among them, the formula that
the predictive performance is similar to the one of the model with A=0 is saved, otherwise discarded.

The finally retained formulas have different number of term sizes. The most appropriate model will
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be eventually selected through the comparison of predictive ability and the number of term sizes,
even other criteria depending on the problem on which for instance the robustness is more important

or the accuracy.
4 EPR modelling of creep index

4.1 EPR modelling process for C,

Since selecting (wr, I,) or (wy, I,) is physically the same for evaluating the C,, based on the
statistics results of database, four physical properties (CI, wy, Ip and e) were selected as the
correlating variables of interest to training the EPR model. To attain the nonlinear creep behaviour
with a consecutively decreasing creep index C, that fully relates to the soil density (Yin et al. 2015b;

Zhu et al. 2016), a general structure of EPR expression for C, was proposed as:
In(C,)=Y[ f(CL w,, 1,)e]+a, (5)
j=1
which was further expressed as:
N 0 0 (1 \05
ln(Ca)z(Z[aj(C])f (WL) (1,) Be+ao (6)
j=1
where ay is a constant in the EPR equation; a; is the coefficient corresponding to j term and & is the
vector of exponent. Note that the use of logarithm in C, can guarantee the positiveness of C,,.

To obtain an accurate and reasonable correlation, 120 data randomly selected in the prepared
database were used for training and the remaining data were used for testing. For simplicity, the
value of exponent was constrained to [-2, 2] with a step size to 1. Also, the maximum number of
terms was set to 8 for restricting the model complexity. For NMDE, the number of initial population
was set to ten times of decision variables and the maximum generation was set to 200. The
probability of crossover CR is 0.3. For NMS, the tolerance for convergence was set to 10

Independent multiple runs were performed to avoid randomness.

As shown in Fig. 5, for modelling C,, the variable e is fixed to keep the unique relationship

between C, and e. A total of seven combinations (=C} +C; +C;) that each one contains different

physical properties are obtained. Thus, the total number of combinations Comb is 7 and the total
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number of term size m is 8. Following the proposed EPR procedure, the most appropriate EPR model
for C, in terms of model complexity and generalization ability can be finally found.
4.2 Analysis of results

To evaluate the performance of the obtained EPR model, five indicators are used. Besides the
mean value u and standard deviation value o, coefficient of determination (R?), root mean square

error (RMSE) index and mean absolute error (MAE) are expressed as:

Z(Ym)z _Z(Ym _Yp)2
R? =L - (7)
>(Y.)
1 & 2
RMSE = \/N;(Ym -Y,) (8)
1 N
MAE=N;|Ym -Y,| 9)

Higher R? or lower RMSE and MAE values represent better model performance. Meanwhile,
both the mean value “u” and the standard deviation value “o” of Y,/Y,, were calculated. A “u” value
greater than 1.0 indicates over-estimation and under-estimation otherwise.

Followed the suggestion of selecting A, a series of calculation attempts using different values of
A (i.e., 4=0,0.0001, 0.001, 0.01, 0.05 and 0.1) were carried out. Fig. 6 shows the evolution of model
selection in terms of variable combination and size of terms for different values of A. The results
show that all models compete with each other to keep the diversity of population during the initial
stage of EPR; then, with increasing the number of generations, the models having higher fitness
(small training error) survive to next generation and the others with lower fitness are discarded;
finally, the percentage of the models with good performance continues to rise to 100 %. Therefore,
the most appropriate model represented by variable combination and size of terms are automatically
selected using the proposed EPR procedure. The results demonstrate that the proposed EPR
procedure combined with model selection is efficient.

Table 4 summarizes the expressions of all the proposed EPR models. It is found that all
obtained EPR expressions contain the /p, which demonstrates that the /p has an important effect on

the C,. Fig. 7 shows the comparison of C, between measurements and different EPR predictions for
10
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training and testing data. All obtained results are summarized in Table 5. With increasing the value
of A, a trend that the term size of obtained model decreases is found. Apart from the model with 1=0,
the performance of other models is similar in terms of R?, RMSE, MAE, u and o. The performance
of all EPR models is acceptable. Based on preliminary results, it seems that the performance of all
EPR models is acceptable. However, considering the less complexity of an appropriate model, only
EPR models with three terms (Eq.(11) and Eq.(12)) can be considered as the optimal models.
4.3 Robustness testing for proposed EPR models

An appropriate model has not only a good predictive ability and less complexity but also good
robustness. The latter indicates the predicted values are always guaranteed reasonable for reasonable
input values. To assess the robustness of each EPR model, the robustness tests were performed and a

criterion representing the robustness was defined as:

Samples located in reasonable range

(13)

Robustness ratio=
Total samples

The reasonable range for C,, in this case is [0.001~0.1] according to the statistical results, which
is also applicable for most reconstituted soft clays (Yin et al. 2014; Yin et al. 2017b; Yin et al.
2015b; Zhu et al. 2016). To generate the testing samples, it supposes that variables (CI, wy, I, and e)
are independent of each other and meet the multivariable lognormal distribution according to various
studies (Cao and Wang 2014; Zhang et al. 2009; Zhang et al. 2017). According to the statistic results
of used database shown in Table 2, the values of mean and standard deviation for each variable were
employed to randomly generate 10000 samples from its lognormal distribution. Note that for the
robustness testing, the samples should be adjusted according to the specific problem and the related
variables, not 10000 samples for all cases. Then, the C, was predicted by each proposed EPR model
and the robustness ratio was then computed for each model. For each robustness test, the mean and
standard deviation for samples locating in the reasonable range were also calculated.

Fig. 8 presents the results of robustness tests for four potential EPR models. It can be seen that
the proposed EPR model (Eq.(11)) involving CI and Ip with 3 terms has the highest robustness ratio,
and the mean and standard deviation values (0.0191£0.0125) predicted by this model are very close
to the values (0.0182+0.0110) of the used database. Thus this EPR model can most probably give

11
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more reliable prediction of C, on unseen data. Therefore, Eq. (11) is the optimal model in terms of
robustness, followed by Eq.(12). These two formulas will be further examined.
4.4 Monotonicity and sensitivity analysis

The mathematical characteristics (e.g., monotonicity) of a formula can somehow imply whether
it is physically correct or not. Thus, to deeply understand the mathematical characteristics of two
proposed EPR models and select one of them as the optimum, a parametric study was conducted on
the involving physical properties. Note that when one variable is being studied, the other two
variables were fixed to their common values (C/=50 %, =40 % and e=1.0) for Eq.(11) and
(wr=50 %, Ip=40 % and e=1.0) for Eq.(12). Fig. 9 and Fig. 10 show the results of parametric study
for Eq.(11) and Eq.(12), respectively. For Eq.(11), it is found that with increasing the value of CI, the
predicted values of C, has a slight decrease; with increasing the value of /p, the value of C, increases
quickly up to a point then increases slowly; However, for Eq.(12), the C,, decreases firstly and then
increases with increasing wy; with increasing the /,, the C,decreases, which is different from the
investigation shown in Fig. 1 so that it is unreasonable. With increasing the void ratio, the C,
increases for both EPR models, which is in accordance with the findings by Yin et al. (2015b).
Therefore, the EPR model involving CI and /p with 3 terms for C, is better in the monotonicity.
Overall, this model was finally selected in terms of the predictive ability, model complexity,
robustness and monotonicity.

To assess the importance of each input of the proposed EPR model on C,, a sensitivity analysis
was performed. The composite scaled sensitivity (CSS;) analysis proposed by Hill (1998) was
adopted, which indicates the amount of information provided by the i-th observations for the

estimation of j-th parameter and is defined as:

e ((2) )
CSS, = NZ{[axejﬁJ (14)

where y; is the ith simulated value; x; is the jth estimated parameter; 0y, /dx; is the sensitivity of the

ith simulated value with respect to the jth parameter; N is the number of observations; w; is the

weighting factor, which is related to the ith observation and can be evaluated based on the statistics

12
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(1.e. variance, or standard deviation, or coefficient of variation of the error of the observations). The
composite scaled sensitivities indicate the total amount of information provided by the observations
for the estimation of parameter j and measure the relative importance of the input parameters being
simultaneously estimated.

To obtain a reliable sensitivity, the CSS; was calculated on three different points for each
involved variable and thus an average value was finally given. Fig. 11 shows the results of sensitivity
analysis for C, based on the proposed EPR model. The variable having the most significant influence
on C, is I,, which has been highlighted by Yin (1999) and Nakase et al. (1988). The e and CI have a
relatively minor important influence on predicting C,,. A slight higher sensitivity of CI well reveals
the experimental results of Yin (1999).

4.5 Discussion

The CI is involved in the proposed EPR model, which implies the need of measurement of C/ in
laboratory. Comparing to Atterberg limits and void ratio, the measurement of C/ is less conventional.
Thus the need of CI will reduce the utility of the proposed model. Therefore, when the data of CI is
not available, the EPR correlation (Eq.(12)) only involving Atterberg limits (wy and /,) can also be
an alternative choice for predicting C, although its monotonicity is worse.

In contrast to other techniques to obtain non-linear creep parameters of clays, such as trust-
region reflective least squares algorithm (Le and Fatahi 2016; Le et al. 2015; Le et al. 2017), Simplex
(Ye et al. 2016), genetic algorithm (Jin et al. 2017b; Yin et al. 2017a), the proposed EPR model only
requires the basic physical information of soil samples and no additional laboratory tests (e.g.,
oedometer test, triaxial test) are needed. Moreover, the computational cost is less compared to
numerous calculations on obtaining the fitness, sorting and selection for optimizations.

Since EPR is a data mining technique which is heavily dependent on the amount of data used,
especially the range covered by the data, the formula obtained will be more applicable if more
experimental data with wide range can be found and used. Currently, both EPR models are trained on
limited data. Thus, their further performance needs more unseen data to verify. Moreover, since the
EPR models are polynomial, it is inevitable to predict very unreasonable values on few special cases.

As both models have high robustness ratios, this unreasonable probability should be slight. However,
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the robustness ratio is always smaller than 1, which means that the proposed ERP model fails in
generating a reasonable value on some samples. Therefore, it is still necessary to pay attention when
the predicted values are out of the proposed range of C,,.

For the applicability of proposed EPR model in real engineering practice, the basic physical
properties (e.g., e, I, and CI) of soil samples from the dominated soil layer can be easily measured in
laboratory. Then, the intrinsic C, (corresponding to reconstituted state) can be obtained using the
proposed EPR model. This C, is a key input parameter for many elasto-viscoplastic models (e.g.
Kimoto and Oka, 2005; Yin et al., 2002; Yin et al., 2010, 2011), and then long-term performance of
various real engineering structures (e.g. embankment, slope and tunnel) can be estimated by

numerical simulations.
5 Conclusions

A simple, robust, and accurate EPR model for modelling C, of reconstituted clays using
physical properties has been proposed. Prior to EPR procedure, the database for training the EPR
model was built, which contains clay content (CI), liquid limit (wr), plastic limit (wp), plasticity
index (/p), void ratio (e) and C,. Based on the database, the statistical analysis and basic correlations
between C, and each physical property have then been conducted. The C, is relatively highly
correlated to e, followed by /, and wy, and very poorly correlated to wp and CI.

To avoid overfitting and reduce the model complexity, a novel EPR procedure using a newly
enhanced DE algorithm was proposed with two enhancements: (1) a new fitness function was
proposed using the structural risk minimization (SRM) with L, regularization factor that penalizes
polynomial complexity; (2) an adaptive process for selecting the combination of involved variables
and size of polynomial terms was incorporated. The selection of regularization parameter was
suggested.

To attain the nonlinear creep behaviour that the C, consecutively decreases with increasing the
soil density, a general structure of EPR expression for C, was proposed, in which the CI, wi and Ip
were chosen as the dynamic correlating variables and the e was considered as a fixed variable. 120

data randomly selected in database were used for training and the remaining data were used for
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testing. The maximum size of terms was set to 8 and the total number of possible combinations of
involved variables was 7.

Six EPR models with different variable combinations and size of model terms corresponding to
different values of regularization parameter A were firstly achieved. The performance of each model
was compared using five indicators. Based on preliminary results, two EPR models with three terms
were temporarily suggested as the optimal models. Then, a robustness testing was conducted on all
obtained EPR models, in which the EPR model involving CI with three terms was selected as the
optimal model. To deeply understand the mathematical characteristics of two proposed EPR models
and select one of them as the optimum, a monotonicity analysis was conducted. Overall, the EPR
model involving CI and Ip with 3 terms is finally recommended in terms of the predictive ability,
model complexity, robustness and monotonicity. Hereafter, the sensitivity analysis of CI, I, and e for
the optimal model was carried out. The analysis results indicated that the /, has the most significant
influence on predicting C,.

In the future, the proposed correlation will be applied to more engineering practices.
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Tables

Table 1 Summary of physical properties and creep index for all selected clays

Clay CIl /% wr /% wp /% I /% Cy e Reference
65 88 26 62 00461 2283 02{11; o 211 22%115;)”
65 88 26 62 0.0299  2.006
65 88 26 62 0.0226  1.733
65 88 26 62 00154  1.486
65 88 26 62 0.0140 1.273
65 88 26 62 0.0297  2.044
65 88 26 62 0.0329 1779
Haarajoki clay 65 88 26 62 0.0244  1.545
65 88 26 62 0.0173 1.338
65 88 26 62 0.0113 1.141
65 88 26 62 0.0332  2.058
65 88 26 62 0.0258  1.831
65 88 26 62 00187  1.602
65 88 26 62 0.0154  1.395
65 88 26 62 0.0108 1.196
80 80 23 57 0.0467 1.881 (32{11; Ztt 211 22%1156;”
80 80 23 57 0.0267 1558
80 80 23 57 00166  1.092
80 80 23 57 0.0484 1862
80 80 23 57 0.0203 1.635
80 80 23 57 00196  1.430
80 80 23 57 0.0143 1.272
80 80 23 57 0.0161 1.127
Suurpelto clay 80 80 23 57 0.0548  2.080
80 80 23 57 0.0279  1.831
80 80 23 57 00196  1.579
80 80 23 57 00159 1356
80 80 23 57 0.0131 1.147
80 80 23 57 0.0516  2.035
80 80 23 57 0.0288 1782
80 80 23 57 00138 1311
80 80 23 57 00117  1.104
78 45 26 19 0.0069 1.040 (32{111131 Ztt 111 22%11561)’;
Mixed clay 78 45 26 19 0.0053  0.963
78 45 26 19 0.0062  0.883
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78 45 26 19 00041 0803
78 45 26 19 00037 0729
78 45 26 19 00071  1.063
78 45 26 19 00053  0.809
78 45 26 19 00076  1.057
78 45 26 19 00062 0982
78 45 26 19 00069 0918
78 45 26 19 00051 0843
78 45 26 19 00051 0761
78 45 26 19 00058 0997
78 45 26 19 00055 0929
78 45 26 19 00051 0858
78 45 26 19 00051  0.790
53 98 30 68 00447 1926 (zﬁizttaallzz%lls;)’
53 98 30 68 00336 1498
53 98 30 68 00315 1287
53 98 30 68 0.0265  1.165
53 98 30 68 00272 1075
53 98 30 68 00451 1908
53 98 30 68 00230 1677
53 98 30 68 0.0345 1460

Vanttla clay 53 98 30 68 0.0249 1252
53 98 30 68 00235 1062
53 98 30 68 00357 1942
53 98 30 68 00338 1726
53 98 30 68  0.0239 1518
53 98 30 68 0.0246 1313
53 98 30 68 00196 1121
53 98 30 68 00212 1019
53 98 30 68 00302 1999
53 98 30 68 0.0253 1825
26 88 34 S4 00359  1.684 (;{;‘;2121122%11565’
26 88 34 s4 00302 1536
26 88 34 s4 00269 1385
26 88 34 s4 00286 1231

Murro clay 26 88 34 s4 00233 1.099
26 88 34 s4 00207 0954
26 88 34 s4 00311 1.691
26 88 34 s4 00283 1536
26 88 34 s4 00281 14101
26 88 34 s4 00237 1.260
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26 88 34 54 0.0214 1.123
26 88 34 54 0.0233 1.394
26 88 34 54 0.0228 1.246
26 88 34 54 0.0184 1.107
26 88 34 54 0.0184 0.980
26 88 34 54 0.0269 1.446
26 88 34 54 0.0235 1.294
26 88 34 54 0.0228 1.145
26 88 34 54 0.0249 0.997
26 88 34 54 0.0258 1.411
26 88 34 54 0.0262 1.331
26 88 34 54 0.0214 1.183
26 88 34 54 0.0196 1.042
83 40 20 20 0.0060 0913 (Zhu et al. 2016)
83 40 20 20 0.0065 0.841
Kaolin clay 83 40 20 20 0.0062 0.766
83 40 20 20 0.0060 0.689
83 40 20 20 0.0058 0.598
33 51 26.4 24.6 0.0086 0.949 (Li et al. 2012)
Shanghai clay-1 33 51 26.4 24.6 0.0083 0.857
33 51 26.4 24.6 0.0076 0.746
33 51 26.4 24.6 0.0072 0.680
26 42.5 22.5 20 0.0076 0.861 (Zhu et al. 2016)
Shanghai clay-2 26 42.5 22.5 20 0.0074 0.763
26 42.5 22.5 20 0.0069 0.671
26 42.5 22.5 20 0.0062 0.585
34 52 26 26 0.0154 1.015 (Zeng et al. 2012b)
34 52 26 26 0.0142 0.915
Nanjing clay-9m 34 52 26 26 0.0124 0.805
34 52 26 26 0.0116 0.699
34 52 26 26 0.0107 0.605
34 52 26 26 0.0093 0.518
47.6 65 28 37 0.0228 1.334 (Zeng et al. 2012b)
47.6 65 28 37 0.0212 1.207
Wenzhou clay-10m 47.6 65 28 37 0.0200 1.077
47.6 65 28 37 0.0184 0.938
47.6 65 28 37 0.0173 0.799
47.6 65 28 37 0.0152 0.654
38 63 27 36 0.0179 1.101 (Zeng et al. 2012b)
Lianyungang clay-12m 38 63 27 36 0.0147 0.834
38 63 27 36 0.0142 0.700
Zhoushan clay 37 40.7 26.7 20 0.0071 0.882 (Zhu et al. 2013)

24



37 407 267 20 0.0074  0.778
37 407 267 20 0.0069  0.669
37 407 267 20 0.0069  0.574
37 40.7 267 20 0.0058  0.482
27.5 60 28 32 0.0071 1.158 (Yin 1999)
27.5 60 28 32 0.0046  0.894
HKMC 27.5 60 28 32 0.0036  0.730
27.5 60 28 32 0.0034  0.610
27.5 60 28 32 0.0024  0.466
11.5 44 23 21 00111 0901  (Zengetal. 2012b)
115 44 23 21 0.0100  0.846
Nanjing clay-7m 1.5 44 23 21 0.0091  0.786
115 44 23 21 0.0089  0.704
1.5 44 23 21 0.0086  0.644
1.5 44 23 21 0.0074  0.562
40.7 60 28 32 0.0208 1404  (Zengetal. 2012b)
40.7 60 28 32 0.0192 1.289
40.7 60 28 32 00176  1.169
Wenzhou clay-4m 407 60 28 32 0.0164 1.032
40.7 60 28 32 0.0153  0.901
40.7 60 28 32 00144  0.786
40.7 60 28 32 00134  0.639
40 86 31 55 0.0347 1704  (Zengetal. 2012b)
Lianyungang clay-4m 40 86 31 55 0.0314 1.502
40 86 31 55 0.0284 1289
Kyuhoji clay 70 1.02 783 282  0.0320 1.02 (Kim"zt(‘)’oasn)d Oka
Ilite clay 61 1.354 58 26 0.0092 1354  (Yin afggg})raham
Merville clay 26 1.223 99 40 0.0158 1.223 (Han et al. 2018)
Kawasaki clay 23 107 553 259 00134  1.07 (Nakasf;g“g Kamei
Boston blue clay 57.6 1.181 454 21.7 1.1801 (Qu et al. 2010)

Table 2 Statistics of properties in the database

Properties

Cl/%

WL/%

Wp /%

I, /%
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Maximum value 83 98 34 68 2.284 0.0548

Minimum value 11.5 40 20 19 0.466 0.0037
Mean value 50.3 70.6 27.4 434 1.175 0.0182
Standard deviation 22.0 20.5 3.8 18.3 0415 0.0110

Table 3 Summary of existing empirical correlations for C,

Empirical correlations Applicability Reference
C,=0.00168+ ()_()()()33]p Remould clays  (Nakase et al. 1988)
C, =0.0003697, -0.00055 Remould clays  (Yin 1999)

C, = (—0.0067 +0.0115¢, —0.0016(e, )’ )(1 +e) Remould clays  (Zeng et al. 2012a)

w

Wy

0.7872-0.0369%, +0.06191, Remould clays  (Zhu et al. 2016)
C, =(~0.0274+0.001 1w, —0.000487, )[ ]

w

0.014978w, 023031 Remould clays  (Zhu et al. 2016)
C, =(0.0007w, —0.0223)[ J

Wy

where e is the void ratio corresponding to liquid limit; w is water content, equivalent to e for a given

clay.
Table 4 Optimal correlations of C,, for different values of 4
A Proposed optimal correlation
2 2 2
0 In(C,)=|0.9092 o +0.6283 Cz] —10.3212(1PCI)2 —0.1963[ c J +3.9741(1, )2 e—5.1618 (10)
WL P WL P WL P

I, 1 1
0.0001 In(C,)={0.3114—%—-0.1229—+0.6455— |e—5.1308 (11

cI I& 1,
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2
0.001 and 0.01 ln(Ca)z 0.1265 21 —0.2463%+0.6264[ﬁ] e—5.1098 (12)
WL[P 1;1 P
2 2
1 w 1 (w,)
0.05 and 0.1 ln(C“): —0.0877 ——+0.1998| —= | +0.1497——+0.3846 e—5.1660 (13)
wLIp I, wil, I,
Remark: CI, w and /p are in real number, not in percentage.
Table 5 Summary of indicators for all calculations of C, with different values of 4
Training Testing
A Comb m
R? RMSE MAE u o R? RMSE MAE u o
0 7 6 |1 0924 0.0042 0.0028 1.0464 0.0042 | 0.889 0.0053 0.0035 1.0284 0.1983

0.0001 4 31089 0.0045 0.0032 1.0226 0.2204 | 0.863 0.0055 0.0036 1.0035 0.2218

0.001 6 3 10.892 0.0047 0.0032 1.0233 0.2219 | 0.853 0.0057 0.0038 1.0215 0.2219

0.01 6 3 10.892 0.0047 0.0032 1.0233 0.2219 | 0.853 0.0057 0.0038 1.0215 0.2219

0.05 6 4 10.895 0.0045 0.0031 1.0229 0.2221 | 0.857 0.0055 0.0037 1.013 0.2209

0.1 6 4 10.895 0.0045 0.0031 1.0229 0.2221 | 0.857 0.0055 0.001 1.013 0.2209
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Figure captions

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

1 Basic correlations between C, and each physical property of soils

2 Comparison between predictions and measurements for five empirical correlations

3 Typical flowchart of EPR procedure

4 Flowchart of NMDE

5 Procedure of model selection combined with EPR process

6 Evolution of model selection in terms of variable combination and size of terms

7 Comparison of C, between measurements and EPR predictions for different values of 4

8 Distribution of C,, located in reasonable range in robustness testing

9 Results of the C, computed by Eq.(11) against (a) clay content, (b) plasticity index, and (c)
void ratio

10 Results of the C, computed by Eq.(12) against (a) liquid limit, (b) plasticity index, and (c)
void ratio

11 Results of sensitivity analysis for EPR model of C,
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Figure 3
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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