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Abstract: In the context of climate change and urbanization, urban floods have been one of the 19 

major issues around the world, causing significant impacts on the society and environment. To 20 

effectively handle these floods, an appropriate design of the urban drainage system (UDS) is 21 

highly important as its function can significantly influence the flooding severity and distribution. 22 

In recent years, evolutionary algorithms (EAs) have been increasingly used to design UDS due to 23 

their great ability in identifying optimal solutions. However, low computational efficiency and 24 

low solution practicality (i.e. the final solutions do not satisfy the design criteria) are major 25 

challenges for the majority of EA-based methods. To this end, this paper proposes an improved 26 

ant colony optimization (ACO, a typical type of EAs) based method to enhance the UDS design 27 

effectiveness, where the optimization efficiency is enhanced by initializing the ACO using an 28 

approximate design solution identified by the engineering design method, and the solution 29 

practicality is improved by explicitly accounting for the design criteria within the optimization 30 

using a proposed sampling method. The utility of the proposed method is demonstrated using 31 

two real-world UDSs with different system complexities. Results show that the proposed method 32 

can identify design solutions with significantly improved efficiency and solution practicality 33 

compared to the traditional design approach, with advantages being more prominent for larger 34 

UDS design problems. The proposed method can be used by researchers/ practitioners to explore 35 

and develop better understanding of the UDS design alternatives under various challenges of 36 

climate change and rapid urbanization. 37 

Keywords: urban drainage system (UDS); ant colony optimization (ACO); design criteria; 38 

optimization efficiency; solution practicality  39 

  40 
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1. Introduction 41 

With the influences of global climate change and rapid urbanization, extreme rainstorm events are 42 

increasing in intensity and frequency worldwide, resulting in occurrences of floods that can cause 43 

significant economic losses as well as social and environmental problems (IPCC, 2014; Pumo et al., 44 

2017). For instance, a severe flooding event in Beijing on July 21, 2012 affected over 1.6 million 45 

residents and killed 79 people (Wang, 2012). Within the flooding events, it has been widely 46 

recognized that the urban drainage systems (UDSs) are often unable to deliver the runoffs 47 

resulted from these complex hydrological and hydraulic situations in an effective manner (Duan 48 

et al., 2016a, 2016b). This is, at least partly, because the UDSs are designed based on the 49 

traditional treatment way where the assumed water depths/pipe flows are used in the UDS design 50 

within the local catchments (Pan et al., 2017). Consequently, the resultant design solutions are 51 

vulnerable to extreme rainfall events as their truly underlying process curves are highly complex 52 

and variable in a changing climate (Berg et al., 2013; Wasko and Sharma, 2015; Tung, 2018). 53 

This motivates many studies to optimally design the UDSs with the true rainfall process curves 54 

explicitly considered over the past decade, in order to maximize their effectiveness in dealing 55 

with floods (Fu and Bulter, 2014).  56 

To explicitly consider the rainfall process curves over the catchment, a physical drainage 57 

simulation model has to be developed where the hydrological and hydraulic properties (e.g., 58 

runoff in the urban catchment, water depth in the pipes, or overflows at the manholes) can be 59 

simulated as a result of the specified rainfall curves. This, however, brings challenges for the 60 

UDS design optimization as the majority of the traditionally deterministic optimization 61 

techniques (e.g., linear programing or nonlinear programming) are difficult to incorporate UDS 62 
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simulation models in their implementations (Li et al., 2015; Eckart et al. 2018). To solve this 63 

issue, evolutionary algorithms (EAs) have been employed to enable the UDS design due to their 64 

great flexibility in linking drainage simulation models that can explicitly consider rainfall process 65 

curves (Fu and Bulter, 2014), as well as their great effectiveness in handling the optimization 66 

problems with highly nonlinear and multi-dimensional complexities (Nicklow et al., 2010; Maier 67 

et al., 2014). 68 

Among the various EAs, the ant colony optimization (ACO) has gained a great popularity in 69 

handling urban water resource optimization problems over the past two decades (Peng et al., 2013; 70 

Afshar et al., 2015). Previous studies have demonstrated that the ACO-based techniques are 71 

particularly suited to the optimization problems represented by multi-graph structures in the form 72 

of nodes and links (Zecchin et al., 2005). Typical examples include the water distribution systems 73 

(WDSs) and UDS design problems (Maier et al., 2003; Peng et al., 2013), where nodes and links 74 

are used to represent the underlying hydraulic properties of the systems. In terms of WDS design 75 

problems, Maier et al. (2003) reported that the ACOs exhibited better performance than genetic 76 

algorithms (GAs) in providing optimal solutions for their studied WDS cases. Subsequently, 77 

Zecchin et al. (2005) derived a set of equations to identify the optimal parameter values for the 78 

ACOs applied to WDS design problems. In more recent years, Zheng et al. (2017) developed an 79 

innovative ACO variant based on controlling the convergence trajectory in decision space to 80 

follow the pre-specified path, aimed at finding the best possible solution within a given and limited 81 

computational budget.  82 
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Within the area of the UDS design, Afshar (2006) has proposed an adaptive refinement procedure 83 

for the application of ACOs, aimed to improving the optimization efficiency. In subsequent papers 84 

of the same author (Afshar 2007; Afshar 2010), a number of constrained ACO algorithms were 85 

formulated and successfully applied to UDS design problems. It was claimed in these studies that 86 

the ACOs were able to effectively locate the near optimal solutions and were efficient in 87 

convergence characteristics. In more recent years, Moeini and Afshar (2013) developed a hybrid 88 

optimization technique, where an ACO was combined with a tree growing algorithm (TGA) to 89 

simultaneously solve the layout and size optimization problems for the UDSs. This hybrid method 90 

utilized the TGA to construct feasible tree layouts, followed by the determination of the optimal 91 

pipe diameters with the aid of ACOs.   92 

While many different ACO variants have been successfully used to optimally design UDSs, critical 93 

challenges and issues still exist in their practical implementations, which have limited their wider 94 

applications to large and real-world UDSs. The first issue is the low computational efficiency 95 

associated with the ACO-based optimization techniques, and this issue has been clearly pointed out 96 

in a recent review paper (Afshar et al., 2015). This is because the ACO is a population-based 97 

searching method and hence it requires a large number of objective function evaluations to ensure 98 

the optimal solutions to be identified (Liu et al., 2016). Additionally, the objective function 99 

evaluation often involves a simulation model of the UDS, which has been widely evidenced to be 100 

very time-demanding (Haghighi and Bakhshipour, 2014). For example, for a UDS with 102 pipes 101 

as examined later in the present study, if the storm water management model (SWMM, Rossman, 102 

2010) is used for hydraulic simulation, each evaluation of such model within the ACO based 103 

optimization takes approximately 3 seconds on a Dell PC with 2.9GHz (Inter R). As a result, the 104 
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total optimization time by the standard ACO would take over 800 hours (around 34 days) with 105 

about 1,000,000 evaluations (Wang et al., 2015). Such computational overheads can significantly 106 

go beyond the computational resources that are typically available for industries and consultants 107 

(Beh et al., 2017). While a few ACO variants have been developed to improve the optimization 108 

efficiency (Afshar, 2006), their performance when dealing with large and real-world UDSs are 109 

still unsatisfactory (Afshar, 2015).  110 

In addition to low computational efficiency, the other critical issue for the current EA-based 111 

methods is the difficulty in directly implementing the identified optimal solutions for the UDS 112 

under investigation. This is mainly because the constraints considered in these EAs are often 113 

specified in the solution space (e.g., no overflows), and hence the resultant design solutions cannot 114 

guarantee the feasibility in the decision space. For instance, a common regulation for the UDS 115 

design requires that the size of a drainage pipe in the upstream is usually not larger than the pipe in 116 

its immediately downstream, otherwise such a design solution is considered to be impractical for 117 

implementation (Walski et al., 2001). However, such design criterion has not been explicitly 118 

included in the optimization framework of the currently available EA-based optimization methods. 119 

As a result, the identified optimal solutions may have many pipes that do not obey this regulation 120 

and hence they cannot be adopted as final design schemes for practical applications. This is 121 

actually one of the important reasons that practitioners are reluctant to use EAs in their design 122 

work.  123 

To address these two issues, this paper proposes an improved ACO-based method to enhance the 124 

optimization effectiveness (efficiency and solution practicality) of the UDS design by ccombining 125 
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an engineering design method (EDM) and the existing  algorithm of the Rank-Based Ant System 126 

(ASrank, one type of ACO variants). The ASrank is selected as it has been demonstrated to be a more 127 

effective ACO variant than its counterparts (Zecchin et al. 2005; Zheng et al., 2017). In the 128 

proposed ACO-based method, the EDM is first implemented to identify the approximate design 129 

solution for a UDS being considered, followed by the employment of the ASrank initialized by this 130 

approximate solution to enable the further optimization, thereby enhancing the optimization 131 

efficiency. A constraint in the decision space with regard to a local design criterion of the UDS is 132 

proposed to improve the solution practicality. Two real-world UDSs with different complexities 133 

are used to examine the effectiveness of the proposed ACO-based optimization method.  134 

2. Methodology 135 

Figure 1 presents the overall methodological framework of the proposed optimization method. 136 

As shown in this figure, a single objective optimization function is proposed, followed by the 137 

identification of the approximate solution using an engineering design method (EDM). An 138 

improved ACO variant is introduced, within which a probability density function is proposed to 139 

generate initial solutions based on the approximate design solution (so as to enhance 140 

optimization efficiency), and a sampling rule is proposed to account for the design criterion in 141 

the decision space (in order to improve solution practicality). Then, two real-word UDSs are 142 

used as the case studies to demonstrate the utility of the proposed method. Finally, the 143 

effectiveness of the proposed method in terms of the optimization efficiency and solution 144 

practicality is discussed.  145 

 146 
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2.1 Formulation of the single objective optimization for the UDS design problems 147 

In the proposed optimization method, the decision variables considered are the sizes of the pipes 148 

for the given layout, that is, 
T

nDDD ],...,,[ 21D  where iD  is the diameter of pipe i=1, 2,…,n (n 149 

is the total number of pipes of the UDS being considered). The objective considered is the 150 

minimization of the design cost under a given rainfall return period. The detailed formulation is 151 

given as  152 

Minimize the cost: 
n

i
ii LDCC

1
)(

 
(1) 

Constraints    

(i) no overflow at each manhole: mjOFj ,,1,0  (2) 

(ii) Velocity range at pipe peak flows : maxin vvv im  (3) 

(iii) Diameter choices: ni,Di ,,1 S  (4) 

where C  is the total cost of pipes, which is calculated based on the cost per unit length of the 153 

pipe multiplied by its length; iL  is the length of pipe i; )( iDC  is the cost per unit length of pipe i 154 

for diameter iD , which is comprised of pipe material cost and construction cost; jOF  is the 155 

amount of overflow in the manhole j=1,2,…,m (m is the total number of manhole, which is 156 

represented by the nodes in the UDS model). jOF =0 is one of the typical constraints considered 157 

within the UDS design process (Afshar, 2015), indicating that no overflows are allowed at the 158 

UDS manholes for the rainfall return period considered. As indicated in Equation (3), the 159 

minimum and maximum velocities at peak flow in each pipe are often limited to avoid sediment 160 
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deposition ( minv ) and flushing ( maxv ), which are 0.75m/s and 10m/s respectively (Beijing 161 

General Municipal Engineering Design & Research Institute, 2017). Another constraint in the 162 

decision space (Equation 3) is that the diameters that can be selected for pipes are commercially 163 

discrete, indicated by the set of S. It is noted that the constraint (2) is often handled using a 164 

penalty function method within the optimization process (Zecchin et al., 2005). The values of 165 

jOF  as well as the pipe peak velocity vi are computed with the aid of a hydraulic simulation 166 

model in this paper, which is the Storm Water Management Model (SWMM, Rossman, 2010).  167 

It may be possible to optimally design the UDS (especially the large UDSs) in a sequential 168 

manner, where sizes of the upstream pipes can be optimized first, followed by the downstream 169 

pipe sizing optimization with the fixed configuration of upstream pipes. This is because the 170 

physical structure of the UDS is often tree-based, making the sequential optimization method 171 

possible. If the UDS design problem is defined in such a sequential manner, the size of the 172 

optimization problem and consequently the computational time would be reduced. However, 173 

despite the possible variation in problem definition, the applicability of the proposed method 174 

would be not affected as it also can be applied to the sub-problem straightforward.  175 

2.2 The engineering design method 176 

The engineering design method (EDM), such as the rational method (Mccuen, 1998), has been 177 

commonly used to design the UDSs in many countries, such as China (CDOWE, 2014). It is 178 

noted that while different engineering design approaches can be available, the rational method is 179 

used in this study due to its wide applications (Mccuen, 1998). Within the EDM (rational 180 

method), the flows of each pipe are first calculated using (Gupta, 2016) 181 
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iii qFQ  (5) 

d
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cPaq
)(
))log(1(
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(6) 

where i  is the runoff coefficient of the sub-catchment i associated with pipe i with contributing 182 

area of iF  (m2); q  (litre/second/m2) is rainfall intensity over the entire catchment, with value 183 

semi-empirically determined, where a, b, c and d are parameters identified based on the fit of 184 

rainfall observations; P is the rainfall return period; 1
it  is the concentration time (Westra et al., 185 

2014) of the sub-catchment associated with pipe i and 2
it  is total travelling time of the runoff 186 

from the upstream pipes of pipe i ( 02
it  if pipe i is the first upstream pipe). 1

it  is computed as 187 

the time a drop of rainwater spends to arrive to the basin outlet section starting from the most 188 

hydraulically distant point of the catchment (Grimaldi et al., 2012). In engineering practice, 1
it  is 189 

often estimated based on engineering experience, ranging from 5 to 15 minutes as stated in 190 

Beijing General Municipal Engineering Design & Research Institute (2017).  191 

Once the iQ  has been identified for each pipe, the pipe diameter can be accordingly computed 192 

using the Manning Equation (Gupta, 2016) 193 

2/13/2 )()(1
iii

i
i IRA

nc
Q

 
(7) 
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where inc  is the manning coefficient of pipe i; iA  is the cross sectional area of flow; iR  is the 194 

hydraulic radius with iii WAR /  ( iW  is the wetted perimeter), and iI  is the slope of the 195 

hydraulic grade line. In the EDM, the flows of the pipes are often considered to be full for 196 

simplicity, as so 4/DRi . Consequently, the pipe diameter can be determined using  197 

8/3
2/1

3/5

)4(
i

ii
i I

QncD  (8) 

The diameters identified using Equation (8) are continuous and hence they have to be rounded to 198 

their nearest large discrete values from the commercially available options S in Equation (3). As 199 

shown in Equations from (5) to (8), the EDM can be computationally efficient in determining the 200 

pipe diameters for a given rainfall return period P. However, this method has ignored the 201 

underlying rainfall process curve that can be quite different with that in Equation (5-6), which is 202 

especially the case in the context of a changing climate (Wasko and Sharma, 2015).  203 

2.3 The Rank-Based Ant System (ASrank) 204 

The details of the existing Rank-Based Ant System (ASrank) algorithm used in this study are 205 

presented in this section. For dealing with combinatorial problems (e.g., the UDS design problems 206 

considered in the present work), each ant generates a solution by probabilistically constructing a 207 

permissible path through a directed graph G. At each decision point, edges are probabilistically 208 

selected based on two factors (Dorigo et al., 1996), namely an edge’s pheromone value and the 209 
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visibility value. Within iteration e, at decision point i, the edge j, denoted as edge (i, j), is selected 210 

with the following probability )(ePij  (Zecchin et al., 2005): 211 

Ni

g
igig

ijij
ij

e

e
eP

1
)(

)(
)(  

(9) 

where )(eij  is the pheromone value on edge (i, j) at iteration e; ijη  is the visibility value for edge 212 

(i, j), iN  is the number of decision options for decision point i; α and β are the weighting 213 

exponents for the pheromone and visibility values. The updating process of the pheromone rule 214 

depends on two factors: pheromone decay and pheromone reinforcement, which can be expressed 215 

as (Zecchin et al., 2005) 216 

)()()1( eee ijijij  (10) 

1

1

)( ))(,()())(,()(
g

g
ij

best
ijij elgele  

(11) 

where  is the pheromone persistence factor (0< <1); )(eij  is the pheromone addition for 217 

edge (i,j). The incorporation of pheromone decay allows for a greater emphasis to be placed on 218 

more recent information, as edges that are not regularly updated will experience continual decay. 219 

σ is the number of elitist ants; )(ebestθ  is the best solution found at iteration e; ijl  is the jth edge  for 220 

the decision point I (i.e., the jth diameter option for pipe i of the UDS design problem), )()( egθ  is 221 
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the kth best solution found at iteration e. Only the top σ −1 ranked solutions receive a pheromone 222 

addition, rather than the solutions from the entire colony. The pheromone additions from the 223 

ranked solutions are also scaled up by a factor ranging from 1 to σ −1, depending on their rank. To 224 

this end, a pheromone update equation is introduced as: 225 

otherwise        

  if 

0

,
)()(),(

l
pC

R
l  (12) 

where R is the pheromone reward factor; )(C  is the cost of the solution  determined using 226 

Equation (1) and )(p  is the penalty cost for the infeasible solutions that violate the constraint 227 

(Equation 2). The advantage of the ASrank scheme is that it guides the optimization search towards 228 

promising regions of the search space, encouraging a degree of exploration through the 229 

reinforcement from the ranked ants.  230 

2.4 Proposed probability density function to generate initial solutions  231 

A probability density function is needed to generate initial solutions for ASrank based on the 232 

approximate solution from the EDM to enable further optimization with the rainfall process curve 233 

considered, which is  234 

],1[,
1

1)( , Mj
sjA

df
k

jk  (13) 
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where ks  is the index number of the diameter for pipe k in the approximate design solution (the 235 

total options in S are ranged from the smallest to the largest); M is the total number of the options; 236 

)( , jkdf  is the probability density of pipe k in choosing the diameter with index j from the total 237 

options; A is a scale parameter to adjust the characteristics of the probability density function. It is 238 

seen from Equation (13) that the diameter with the index of ks  (the diameter selected by the 239 

approximate design solution for pipe k) can be selected with the highest probability for pipe k 240 

within the initialization process. In addition, the diameter with larger distances to ks  will be 241 

assigned a lower selection probability. The rationale behind the proposed probability function is 242 

that the diameters selected by the EDM can be considered as the approximate optimal solutions 243 

and hence initializing the ASrank’s searching around this approximate solution is more likely to 244 

identify optimal solutions in an efficient manner. A larger value of A in Equation (13) indicates a 245 

steeper distribution of the density function, representing a more biased initialization toward the 246 

approximate solution identified by the EDM. The proposed probability density distribution can be 247 

easily normalized to facilitate the practical application, which can be  248 

M

j
jk

jk
jk

df

df
P

1
,

,
,

)(

)(
 

(14) 

where jkP ,  is the probability of pipe k in selecting the diameter with index j from the total options. 249 

It is highlighted that Equation (14) is used to replace Equation (9) for the generation of initial 250 
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solutions in the proposed method, but Equation (9) is again used to enable the generation of the 251 

offspring solutions afterwards.  252 

2.5 Proposed sampling rule to account for the design criterion 253 

In engineering practice, the pipe sizes for the upstream drainage sections/regions should not be 254 

larger than those of the downstream areas. For example, a three-pipe connection is shown as in 255 

Figure 2, with pipe flow directions described, that is: Pipe 1 and Pipe 2 are upstream pipes 256 

connecting to the downstream Pipe 3 via Node 2 (N2). As a result, according to the engineering 257 

design practice, the diameter size of Pipe 3 should not be smaller than any one of Pipe 1 and Pipe 2. 258 

Generally, this engineering criterion for the UDS design can be expressed as:  259 

)()( u
j

d
j MaxMin  (15) 

where d
j  represents the set of downstream pipes connected node j (i.e., the manhole j), and u

j  260 

represents the set of upstream pipes connected node j. This design criterion can be explicitly 261 

considered within the proposed optimization method, thereby improving the likelihood of the 262 

final optimal solutions to be practically implemented. 263 

To account for the design criterion (Equation 15), a sampling rule is proposed as part of developed 264 

optimization method. To implement this sampling rule, all the decision variables (i.e., pipes) are 265 

indexed, with a lower index value representing a pipe at a further upstream location (e.g., the index 266 

1 indicates the first upstream pipe). Such an indexing can be easily achieved with the aid of the 267 

topology of the UDS. More specifically, when applying Equation (14) or (9) to generate the initial 268 



16 

 

solutions or the offspring solutions for the ASrank, the selected diameter of the pipe is checked 269 

against its upstream pipes if available using Equation (15) immediately. If Equation (15) is not 270 

satisfied (i.e., the pipe diameter is lower than its upstream pipes), Equation (14) or (9) is used to 271 

generate the diameter for this pipe again until Equation (15) is satisfied. Such a process is 272 

undertaken sequentially for all pipes based on the assigned index (i.e., upstream pipes are 273 

considered before downstream pipes). 274 

2.6 Different ACO methods considered and the performance evaluation 275 

In this paper, three different ACO methods are considered and compared to evaluate the 276 

effectiveness of the proposed approach for the design of UDSs. These are ACO1: the standard 277 

ASrank method initialized by purely random solutions without the consideration of the design 278 

criterion (Equation 15), ACO2: the proposed probability density function is used to generate initial 279 

solutions for ASrank but the design criterion is not considered, and ACO3 (the proposed 280 

optimization method) Equation (14) is used to generate initial solutions and Equation (15) is used 281 

to explicitly account for the design criterion. These three ACO schemes are applied to two real-282 

word UDSs to compare their performances in terms of efficiency solution practicality.  283 

As shown in Fig. 1, the result analysis is conducted in the solution space to demonstrate the 284 

efficiency of the proposed method, and in the decision space to demonstrate the utility of the 285 

proposed method in ensuring the engineering practicality of the design solutions. A metric of 286 

practicality level (PL) is used to facilitate the result analysis, which is defined as  287 
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with )( iD  being the set of diameters of all upstream pipes for pipe i with a diameter of iD . A 288 

larger value of PL indicates that a larger number of pipes of the design solution conform to the 289 

design criterion (i.e. the downstream pipes are no lower than their corresponding upstream pipes).  290 

3 Cases Study 291 

3.1 Descriptions of two real-world UDSs 292 

Two real-world UDSs from Hangzhou city of China (denoted as UDS1 and UDS2) are used to 293 

demonstrate the effectiveness of the proposed method. The UDS1 has a drainage area of 0.081 294 

km2 with 19 sub-catchments. This system contains 19 pipes with a total length of 1.3 km, 19 295 

manholes, and one outlet, with slopes of pipes ranging from 3‰ to 10‰. Fig. 3(a) shows the 296 

catchment land uses of the UDS1, while Fig. 3(b) presents the schematic of network used for the 297 

hydraulic simulation. The UDS2 has a drainage area of 3.2 km2 consisting of 102 sub-catchments. 298 

This system has 102 pipes with a total length of 39,984 m, 102 manholes and one outlet. The 299 

different types of land uses for the UDS2 are outlined in Figure 3(c), and Figure 3(d) shows the 300 

typology of this drainage system.  301 
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The hyetograph of a three-hour rainfall event plotted in Fig. 4 was considered for the design the 302 

two UDSs, and this event was extracted from historic rainfall data with a five year return period. 303 

This implies that the design solutions of the UDS1 and UDS2 should be able to deliver the runoff 304 

caused by this rainfall event without any overflows. It should be noted that the selected three-305 

hour rainfall event may less critical than the Chicago curve derived from the local rainfall 306 

intensity-duration-frequency relation in producing peak manhole water depths/pipe flows. 307 

However, the selection of the most representative rainfall event was not the focus of this study 308 

(which is the proposal of an effective UDS design method), and hence the rainfall event selection 309 

would not affect the application of the proposed design method. Table 1 gives the unit cost of the 310 

discrete diameters that can be used for the two case studies. For the UDS1, the diameters ranging 311 

from 200 to 1000 mm were used, while for the larger UDS2, all these 11 diameters were 312 

considered. The SWMM was used to conduct the hydrology and hydraulic simulations for the 313 

two case studies, in which the kinematic-wave method and the Horton equation were employed 314 

to simulate the hydraulics and the infiltrations respectively, with details given in Rossman (2010). 315 

It should be noted that the optimization results could be affected by the parameterizations/ 316 

methods selected for the SWMM. For example, the Green-Ampt method could be used as an 317 

alternative to simulate the infiltration process for the catchments. However, since all the ACO 318 

methods used the same SWMM model parameterizations/ methods, the performance comparison 319 

(efficiency and practicality) was meaningful.  320 

In the proposed method, the rainfall intensity estimated using Equation (6) was only employed to 321 

design pipe diameters in the EDM method, where the concentration time ( 1
it  in Equation 6) for 322 

each sub-catchment was assumed to be 10 minutes based on the engineering experience (Beijing 323 
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General Municipal Engineering Design & Research Institute, 2017). This was because the sub-324 

catchments within the selected two case studies had a large proportion of the impermeable area. 325 

However, when using the ACO methods to further optimize pipe sizes based on the EDM initial 326 

solutions, the concept of the concentration time was not used as the rainfall-runoff process was 327 

physically simulated using the SWMM. In addition, it was observed that the design rainfall used 328 

in the EDM method significantly differed to the observed rainfall event in Figure 4, highlighting 329 

the importance to account for the true rainfall curve within the UDS design process. 330 

3.2 Settings for the ACOs 331 

For the two cases considered herein, the runoff coefficient was 0.8 ( =0.8) according to the land 332 

uses offered by the local water utility, and the Manning coefficient nc=0.013 for all pipes. For 333 

the rainfall intensity equation (Equation 5), a=57.694, b=31.546, c=0.93 and d=1.008, which 334 

were provided by the local water utility. For the proposed density function in Equation (13), a 335 

value of A=1 was used to generate the initial solutions based on the approximate design solution, 336 

which was determined based on a preliminary analysis.  337 

For ASrank applied to the two case studies, all the parameters used including )0(eij , ijη  α, β  338 

σ and R were taken from the calibration method recommended by Zecchin et al. (2005). It should 339 

be noted that all the three ACO methods used the identical parameter values for a fair 340 

performance comparison. The numbers of ants used for ASrank were 100 for the UDS1 and 500 341 

for the UDS2. Since the UDS1 was a relatively small system, the optimization was conducted 20 342 

trials with different random number seeds, and each trial was run 500 generations, in order to 343 

obtain a statistically meaningful characterization of algorithm performance. For the large UDS2 344 
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case study, five trials were undertaken and each trial allowed 400 generations. Given that one 345 

model evaluation of the UDS2 took about 3 seconds on a Dell PC with 2.9GHz (Inter R), and the 346 

total number of hydraulic simulations was 1×106, the total computational time was about 35 days 347 

to finalize the optimization trials of the UDS2.  348 

4 Results and Discussion 349 

4.1. Computation efficiency analysis  350 

Figures 5 and 6 plots the results of solution costs versus the number of generations for the three 351 

ACO optimization methods applied to the UDS1 and UDS2 respectively. The average cost across 352 

multiple trials of the ACO1, ACO2 and ACO3 are represented by ACO1-ave, ACO2-ave and ACO3-ave 353 

respectively, indicating their overall performance. The best solution of the multiple trials of the 354 

ACO1, ACO2 and ACO3 are represented by ACO1-best, ACO2-best and ACO3-best respectively for 355 

illustration. As shown Figure 5, initialized by the approximate design solution with the aid of the 356 

proposed probability density function, ACO2-ave exhibited significantly better performance than 357 

the standard ACO (ACO1-ave in Figure 5). While an additional constraint in the decision space 358 

(the design criterion) was considered in the proposed ACO3, ACO3-ave still significantly 359 

outperformed ACO1-ave with 20 trials as shown in Figure 5.  360 

In terms of the best solutions, ACO2-best was able to produce significantly lower cost solution 361 

than the standard ACO (ACO1-best). However, it was found that the best solution identified by 362 

ACO3-best was worse than that provided by ACO1-best. Similarity, the performance of ACO3-ave 363 

was worse than ACO2-ave for this small UDS design problem. This is because ACO3-best and 364 

ACO3-ave explicitly account for the pipe size design criterion (Equation 15) as an additional 365 
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constraint relative to other ACO methods, and hence the costs of the final optimal solutions 366 

identified by ACO3 can be higher than those from ACO1 and ACO2. It is noted that all final 367 

solutions from ACO3 can satisfy the pipe size constraint (Equation 15) for that the sizes of the 368 

downstream pipes are no lower than their corresponding upstream pipes, but this cannot be 369 

guaranteed for ACO1 and ACO2, with the practicality level results given in section 4.2.  370 

For the relatively large UDS2 problem, ACO2 and ACO3 clearly dominated the performance of 371 

ACO1 as shown in Figure 6 in terms of both the average cost and best cost of the final optimal 372 

solutions. The approximate solution identified by the engineering design method (EDM) was 373 

consistently significantly better than the optimal solution provided by ACO1 after 400 374 

generations (approximate 35 days). This highlights great challenges and difficulties of the 375 

standard ACO in identifying the optimal solutions for large and real-world UDS design 376 

problems, as well as great effectiveness of the EDM in generating approximate solutions to 377 

enable the UDS design optimization. The latter was proved by the fact that the ACO2-ave and 378 

ACO3-ave was substantially lower than the ACO1-ave. As shown in Figure 6, the best solution 379 

found by ACO3-best was approximately 0.28 million US dollars, which was about 28.5% lower 380 

than the best solution identified by ACO1-ave. As the same for the UDS1, the performance of 381 

ACO3 (ACO3-ave and ACO3-best) was slightly worse than that of ACO2 (ACO2-ave and ACO2-best) 382 

for the UDS2 in terms of the solution cost (Figure 6) due to that ACO3 has considered an 383 

additional constraint on pipe size in the decision space.  384 

Figure 7 outlines the solution costs versus the number of generations for all different 20 trials of 385 

ACO1 and ACO3 applied to the UDS1. In addition to the relative overall better performance in 386 

identifying optimal solutions, the performance variation of ACO3 caused by different random 387 
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number seeds was significantly lower than that of ACO1. Similar results were observed for the 388 

UDS2 problem. This demonstrates that the proposed optimization method with initial design 389 

solutions from the EDM, was robust to identify optimal solutions with performance not heavily 390 

relied on the random number seeds. This benefit is especially attractive for practical applications, 391 

as typically a very limited number of trials (i.e., one or two trials) are performed for the 392 

optimization techniques when dealing with large and real-world UDS design problems.  393 

Figure 8 shows the percent of different pipe sizes between the EDM design solution and the final 394 

optimal solutions identified by the proposed method for the UDS1 (20 trials) and the UDS2 (five 395 

trails). It was observed that the approximate design solutions produced by the EDM had around 396 

45% and 35% pipes with different sizes compared to the final optimal solutions found by the 397 

proposed method for the UDS1 and UDS2 respectively. This means that the optimal sizes of a 398 

large proportion of UDS pipes have already identified by the EDM before the implementations 399 

of the ACO algorithm. Therefore, the proposed method (combine the EDM and the ACO) was 400 

capable of finding good quality optimal solutions with a significantly improved efficiency 401 

compared to the standard ACO.  402 

The relative poor performance of the standard ACO (ACO1) compared to the proposed ACO 403 

(ACO2 and ACO3) can be caused by (i) ACO1 was initialized by randomly generated solutions, 404 

and hence it was more difficult to identify good quality optimal solutions with a relatively limited 405 

time framework compared to the proposed ACO with initial solutions provided by the EDM, 406 

which was especially the case when dealing with large UDSs, and (ii) the most appropriate ACO 407 

parameterization can be varied as a function of the searching stages as demonstrated in Zheng et 408 

al. (2017), and hence the searching ability of the standard ACO can be deteriorated during the later 409 



23 

 

stages (see Figures 5-7). However, it was noted that the adaptive parameterization was not the 410 

focus of this study.  411 

Results in Section 4.1 clearly show that the proposed method is able to significantly improve the 412 

optimization efficiency compared the standard ACO. In other words, the proposed method can 413 

identify substantially better solutions than ACO1 with the same time framework. This implies 414 

that the approximate design solution provided by the EDM is effective in guiding the search 415 

towards the promising regions with optimal solutions, as well as that the proposed probability 416 

distribution is effective to sample the initial solutions in the neighborhood region of this 417 

approximate design solution. The solution practicality is discussed in the next section.  418 

4.2 Solution practicality analysis and discussion  419 

Figures 9 and 10 present the solution practicality levels defined in Equation 16 and 17 as a function 420 

of the number of generations for the three ACO methods applied to the UDS1 and UDS2 421 

respectively. Results of practicality levels in these two figures were averaged values of the best 422 

solutions across multiple trials for a statistically meaningful discussion. Interestingly, many pipes 423 

of the final optimal design solutions identified by the standard ACO method could not satisfy the 424 

pipe size design criterion (Equation 15) and hence these solutions are infeasible for practical 425 

implementations. For example, for the UDS1 and UDS2, the practicality levels of the ACO1 were 426 

about 60% at the beginning of searching. While this number gradually increased as the searching 427 

continued, its final value was about 90% for the UDS1 and about 78% for the UDS2 on average as 428 

shown in Figures 9 and 10.  429 
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As expected, the practicality levels of the ACO with the constraint in the decision space explicitly 430 

considered (ACO3) were consistently to be 100% across various trials for both case studies. 431 

Interestingly, while the design criterion was not considered for ACO2, its practicality levels were 432 

significantly higher than those of the standard ACO (ACO1). This is because the initial solutions of 433 

ACO2 were generated based on the approximate design solution with pipe size design criterion 434 

satisfied, and hence the optimal solutions can possess relatively high values of practicality level. It 435 

is noted that the practicality level of the best solution at the first generation was consistently 100% 436 

for ACO2 as shown in Figures 9 and 10. This is because the best solutions at the first generation 437 

were the approximate design solutions form the EDM, which have satisfied the pipe size design 438 

criterion (Equation 15).  439 

Figure 11 shows the final design solution of a typical optimization trial of ACO1 applied to the 440 

UDS2, with a cost of 0.36 million US dollars. The dotted lines represent the pipes that do not 441 

satisfy the pipe size design criterion in Equation (15). As observed in this figure, a total of 20 pipes 442 

violated this constraint in the decision space, and hence this optimal solution could not be adopted 443 

for practical implementation. Similar observations were found for other optimal solutions 444 

identified by ACO1 applied to the UDS1 and UDS2. This highlights the great necessity and 445 

importance to explicitly account for the engineering design criteria within the optimization process; 446 

otherwise the final optimal solutions are practically not accepted.  447 

5 Summary and conclusions  448 

The urban drainage system (UDS) design is of great importance to the society and environment as 449 

it can significantly affect the severity and spatial distribution of urban floods, especially for 450 
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flashing flooding events that have often occurred in developing countries such as China (Li et al., 451 

2015). This motivates many studies to optimally design the UDSs, in order to maximize their 452 

effectiveness in runoff delivery under a given rainfall return period. While the conventional 453 

engineering design method (EDM) is efficient in identifying design solutions for a given UDS, 454 

the performance of the resultant designs are often unsatisfactory as the EDM is often based on 455 

assumed water depths/flows. Such assumed water depths/flows can be significantly different to 456 

those produced by the rainfall process curves (the critical storm event), especially in a changing 457 

climate (Wasko and Sharma, 2015). To solve this problem, evolutionary algorithms (EAs) are 458 

introduced to explicitly account for the rainfall process curves with the aid of physically based 459 

simulation models of the UDSs. However, high computational overheads and low solution 460 

practicality have significantly hampered the practical applications of EA-based design methods. 461 

To address the issues stated above, this paper proposed a new optimization method to improve the 462 

optimization effectiveness, where the optimization efficiency was enhanced through combining the 463 

conventional EDM and the Rank-Based Ant System (ASrank, one type of ACO variants), and the 464 

solution practicality was improved by explicitly considering a pipe size design criterion 465 

(Equation 15) within the optimization process. More specifically, the EDM was used to generate 466 

the approximate solution for the given UDS being considered, and this approximate solution was 467 

then used to generate initial solutions for ASrank using the proposed probability density function. 468 

Two UDSs with different complexities were used to examine the effectiveness of the proposed 469 

optimization method. Observations from this study and their implications are outlined below: 470 

(i) The proposed method, initialized by the approximate solution with the aid of the proposed 471 

probability density function, exhibited significantly improved optimization efficiency 472 
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compared to the standard ACO initialized by purely random solutions. The efficiency 473 

improvement became more pronounced when dealing with larger UDS design problems. 474 

(ii) The proposed method was able to ensure that the final optimal solutions entirely satisfy the 475 

engineering design criterion, thereby greatly improving the likelihood of the final design 476 

solutions to be adopted for practical implementations (i.e. improving the solution 477 

practicality).  478 

(iii) It was noted that the average cost solutions were only used to enable the performance 479 

comparison between different ACO variants in the solution space. In engineering practice, 480 

the best solution of the multiple algorithm trials was often used for practical 481 

implementation. The appropriate number of trials can be dependent on the robustness level 482 

of the algorithms, as well as the time budgets allowed. Based on the experience of the 483 

present study, about five different trials of the proposed ACO were overall sufficient in 484 

identify near-optimal solutions.  485 

It is noted that the optimization results of the two UDSs were conditioned on the selected 486 

parameterizations/methods for the SWMM. While the utility of the proposed method in both 487 

computational efficiency and solution practicality has been demonstrated, the practical 488 

implementations of these final solutions need to account for the potential impacts of different 489 

model parameterizations/methods. In closing, the proposed ACO-based optimization method can 490 

be a useful and necessary tool for researchers to explore and develop better understanding of the 491 

UDS design alternatives. An important future focus is to account for other hydraulic facilities (e.g., 492 

pumps and ponds) within the proposed optimization method.  493 

 494 



27 

 

Acknowledgements 495 

The corresponding author Professor Feifei Zheng was funded by the National Natural Science 496 

Foundation of China (Grant No. 51922096), and Excellent Youth Natural Science Foundation of 497 

Zhejiang Province, China (LR19E080003). Dr Weiwei Bi was funded by National Natural 498 

Science Foundation of China (51808497). 499 

References  500 

Afshar, A., Massoumi, F., Afshar, A., Marino, M.A., 2015. State of the Art Review of Ant Colony 501 

Optimization Applications in Water Resource Management. Water Resources Management, 502 

29(11): 3891-3904. DOI:10.1007/s11269-015-1016-9 503 

Afshar, M., 2006. Improving the efficiency of ant algorithms using adaptive refinement: 504 

Application to storm water network design. Advances in water Resources, 29(9): 1371-1382.  505 

Afshar, M.H., 2007. Partially constrained ant colony optimization algorithm for the solution of 506 

constrained optimization problems: Application to storm water network. Advances in Water 507 

Resources, 30(4): 954-965. DOI:10.1016/j.advwatres.2006.08.004 508 

Afshar, M.H., 2010. A parameter free Continuous Ant Colony Optimization Algorithm for the 509 

optimal design of storm sewer networks: Constrained and unconstrained approach. Advances 510 

in Engineering Software, 41(2): 188-195. DOI:10.1016/j.advengsoft.2009.09.009 511 

Beh, E.H.Y., Zheng, F.F., Dandy, G.C., Maier, H.R., Kapelan, Z., 2017. Robust optimization of 512 

water infrastructure planning under deep uncertainty using metamodels. Environmental 513 

Modelling & Software, 93: 92-105. DOI:10.1016/j.envsoft.2017.03.013 514 



28 

 

Beijing General Municipal Engineering Design & Research Institute (2017). "Water Supply and 515 

Drainage Handbook: Urban Drainage" China Architecture & Building Press, p. 20 516 

Berg, P., Moseley, C., Haerter, J.O., 2013. Strong increase in convective precipitation in response 517 

to higher temperatures. Nature Geoscience, 6(3): 181.  518 

CDOWE (Code for Design of Outdoor Wastewater Engineering) (2014). Design Manual for 519 

Outdoor Wastewater Engineering. The People's Republic of China Ministry of Housing and 520 

Urban Rural Development: 12-28 521 

Dong, X., Chen, J., Zhao, D., 2006. Application of SWMM model in urban drainage system 522 

planning. Water & wastewater engineering, 32(5): 106-109.  523 

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: optimization by a colony of cooperating 524 

agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1): 525 

29-41.  526 

Duan, H.-F., Li, F., Tao, T., 2016a. Multi-objective Optimal Design of Detention Tanks in the 527 

Urban Stormwater Drainage System: Uncertainty and Sensitivity Analysis. Water Resources 528 

Management, 30(7): 2213-2226. DOI:10.1007/s11269-016-1282-1 529 

Duan, H.-F., Li, F., Yan, H., 2016b. Multi-Objective Optimal Design of Detention Tanks in the 530 

Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resources 531 

Management, 30(13): 4635-4648. DOI:10.1007/s11269-016-1444-1 532 

Eckart, K., McPhee, Z., Bolisetti, T., 2018. Multiobjective optimization of low impact 533 

development stormwater controls. Journal of Hydrology, 562: 564-576.  534 



29 

 

Fu, G., Butler, D., 2014. Copula-based frequency analysis of overflow and flooding in urban 535 

drainage systems. Journal of hydrology, 510: 49-58.  536 

Grimaldi, S., Petroselli, A., Tauro, F., Profiri, M., 2012. Time of concentration: a paradox in 537 

modern hydrology. Hydrological Sciences Journal, 57(2):217-228. 538 

Gupta, R.S., 2016. Hydrology and hydraulic systems. Waveland Press.  539 

Haghighi, A., Bakhshipour, A.E., 2015. Deterministic Integrated Optimization Model for Sewage 540 

Collection Networks Using Tabu Search. Journal of Water Resources Planning and 541 

Management, 141(1). DOI:10.1061/(asce)wr.1943-5452.0000435 542 

IPCC (2014). Climate change 2014: impacts, adaptation, and vulnerability. part a: global and 543 

sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the 544 

Intergovernmental Panel on Climate Change (Edited by Field and Barros, et al.), Cambridge 545 

University Press, Cambridge, UK, 1132 pp. 546 

Li, F., Duan, H.-F., Yan, H., Tao, T., 2015. Multi-Objective Optimal Design of Detention Tanks in 547 

the Urban Stormwater Drainage System: Framework Development and Case Study. Water 548 

Resources Management, 29(7): 2125-2137. DOI:10.1007/s11269-015-0931-0 549 

Liu, Y., Liu, J., Li, X., Zhang, Z., 2016. A Self-Adaptive Control Strategy of Population Size for 550 

Ant Colony Optimization Algorithms. In: Tan, Y., Shi, Y., Niu, B. (Eds.), Advances in Swarm 551 

Intelligence, Icsi 2016, Pt I. Lecture Notes in Computer Science, pp. 443-450. 552 

DOI:10.1007/978-3-319-41000-5_44 553 



30 

 

Maier, H.R. et al., 2014. Evolutionary algorithms and other metaheuristics in water resources: 554 

Current status, research challenges and future directions. Environmental Modelling & 555 

Software, 62: 271-299. DOI:10.1016/j.envsoft.2014.09.013 556 

Maier, H.R. et al., 2003. Ant colony optimization distribution for design of water systems. Journal 557 

of Water Resources Planning and Management, 129(3): 200-209. DOI:10.1061/(asce)0733-558 

9496(2003)129:3(200) 559 

Mccuen, R.H., 1998. Hydrologic analysis and design. Journal of the American Water Resources 560 

Association.  561 

Moeini, R., Afshar, M.H., 2013. Constrained Ant Colony Optimisation Algorithm for the layout 562 

and size optimisation of sanitary sewer networks. Urban Water Journal, 10(3): 154-173. 563 

DOI:10.1080/1573062x.2012.716445 564 

Nicklow, J. et al., 2010. State of the Art for Genetic Algorithms and Beyond in Water Resources 565 

Planning and Management. Journal of Water Resources Planning and Management, 136(4): 566 

412-432. DOI:10.1061/(asce)wr.1943-5452.0000053 567 

Pan, C., Wang, X., Liu, L., Huang, H., Wang, D., 2017. Improvement to the Huff Curve for Design 568 

Storms and Urban Flooding Simulations in Guangzhou, China. Water, 9(6). 569 

DOI:10.3390/w9060411 570 

Peng, C., Pang, Z., Zhu, Y., Tang, K., 2013. Application of Ant Colony Algorithm in Optimized 571 

Design for Drainage Systems. In: Tian, L., Hou, H. (Eds.), Advances in Civil and Industrial 572 

Engineering, Pts 1-4. Applied Mechanics and Materials, pp. 2938-2942. 573 

DOI:10.4028/www.scientific.net/AMM.353-356.2938 574 



31 

 

Pumo, D., Arnone, E., Francipane, A., Caracciolo, D., Noto, L.V., 2017. Potential implications of 575 

climate change and urbanization on watershed hydrology. Journal of Hydrology, 554: 80-99. 576 

DOI:10.1016/j.jhydrol.2017.09.002 577 

Rossman, L.A., 2010. Storm water management model user's manual, version 5.0. National Risk 578 

Management Research Laboratory, Office of Research and Development, US Environmental 579 

Protection Agency Cincinnati.  580 

Tung, Y.-K., 2018. Effect of uncertainties on probabilistic-based design capacity of hydrosystems. 581 

Journal of Hydrology, 557: 851-867. DOI:10.1016/j.jhydrol.2017.12.059 582 

Walski, T.M., 2001. The wrong paradigm—Why water distribution optimization doesn’t work. 583 

Journal of Water Resources Planning and Management, 203. 584 

Wang, G., 2012. Urban flooding disasters, Invited Talk for the Forum on the Urban Geo-585 

Environment and Sustainable Development, pp. 3-7.  586 

Wang, Q., Guidolin, M., Savic, D., Kapelan, Z., 2015. Two-Objective Design of Benchmark 587 

Problems of a Water Distribution System via MOEAs: Towards the Best-Known 588 

Approximation of the True Pareto Front. Journal of Water Resources Planning and 589 

Management, 141(3). DOI:10.1061/(asce)wr.1943-5452.0000460 590 

Wasko, C., Sharma, A., 2015. Steeper temporal distribution of rain intensity at higher temperatures 591 

within Australian storms. Nature Geoscience, 8(7): 527.  592 

Westra, S. et al., 2014. Future changes to the intensity and frequency of short-duration extreme 593 

rainfall. Reviews of Geophysics, 52(3): 522-555. DOI:10.1002/2014rg000464 594 



32 

 

Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B., 2005. Parametric study for an ant 595 

algorithm applied to water distribution system optimization. IEEE Transactions on 596 

Evolutionary Computation, 9(2): 175-191. DOI:10.1109/tevc.2005.844168 597 

Zheng, F., Zecchin, A.C., Newman, J.P., Maier, H.R., Dandy, G.C., 2017. An adaptive 598 

convergence-trajectory controlled ant colony optimization algorithm with application to water 599 

distribution system design problems. IEEE Transactions on Evolutionary Computation, 21(5): 600 

773-791. DOI:10.1109/tevc.2017.2682899  601 



33 

 

Table 1 Unit cost of the pipe diameters 602 

Diameters (mm) Cost (US $/m) 
200 10.5  
300 16.0  
400 20.6  
500 27.5  
600 33.5  
800 51.3  

1000 69.4  
1200 111.5  
1500 163.3  
1800 172.8  
2000 206.5  

 603 

 604 
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Figure Captions 

Figure 1. The overall methodology of the proposed method for UDS design 

problems 

Figure 2 Illustration of the engineering design criterion 

Figure 3 Land uses of the UDS1 (a) and UDS2 (c), and the network topology of 

the UDS1 (b) and UDS2 (d) 

Figure 4 The hyetograph considered for the UDS design 

Figure 5. Solution cost versus number of generations for the three ACO methods 

applied to the UDS1 (the average cost and best cost are indicated by solid and 

dotted lines respectively) 

Figure 6. Solution cost versus number of generations for the three ACO methods 

applied to the UDS2 (the average cost and best cost are indicated by solid and 

dotted lines respectively) 

Figure 7. Solution costs versus the number of generations for all 20 runs of ACO1 

and ACO3 applied to the UDS1 (Each line represents the best solution for each 

optimization trial) 

Figure 8 Percent of pipes with different sizes between the EDM design solution 

and the final optimal solutions identified by the proposed method  

Figure 9. Practicality level (average of the best solution across 20 trials) versus 

the number of generations of the three ACO methods applied to UDS1 

Figure 10. Practicality levels (average of the best solution across multiple trials) 

versus the number of generations of the three ACO methods applied to UDS2 



Figure 11. A Typical optimal solution of ACO1 applied to the UDS2, where the 

dotted lines represent pipes do not satisfy the design criterion in Equation (14) 




