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Abstract 6 

Businesses are constrained by and dependent upon nature and institutional context. The global 7 

climate crisis has put pressure on and increased firm sensitivity to environmental issues. 8 

Predicting corporate environmental performance can help plan for environmental impact 9 

mitigation by adjusting organizational practices. Lack of environment-related information 10 

makes it difficult to make such predictions. A theoretical framework informed by the natural-11 

resource-based view (NRBV) of the firm and institutional theory is used to identify variables 12 

for predicting corporate environmental performance. Five dimensions including institutional 13 

context, governance capability, information management capability, system capability, and 14 

technology-related capability, populated with 14 variables are used to empirically investigate 15 

the relationship of these variables with corporate environmental performance. Using 1100 data 16 

points on energy service companies (ESCOs) from 2011 to 2015 in mainland China, the 17 

Extreme Gradient Boosting (XGBoost) algorithm, a statistical nonlinear machine learning 18 

approach, is utilized to predict corporate environmental performance. The results demonstrate 19 

that the XGBoost model can be effective for ESCO environmental performance prediction, 20 

with satisfactory prediction accuracy. This study also adopted the SHapley Additive 21 
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exPlanations (SHAP) values for model interpretation, indicating that total assets, amount of 22 

proactive environmental costs, proportion of technicians and number of patents contribute most 23 

to corporate environmental performance. Several policies and environmental strategies for 24 

improving corporate environmental performance in the ESCO industry are derived from this 25 

analysis. 26 

 27 

Keywords: Corporate environmental performance, Extreme Gradient Boosting (XGBoost), 28 

Energy service company (ESCO). 29 

 30 

1 Introduction  31 

Growing climate and other environmental crises, such as resource depletion, have led to an 32 

increased focus on shifting to a low-carbon world (Millar et al., 2018). Policies have focused 33 

on attempts to cut or mitigate greenhouse gas (GHG) emissions, as policy measures are the 34 

most direct way to reduce the risk of future climate change impacts (IPCC, 2015). Countries 35 

are joining global environmental collaborative efforts including the Kyoto Protocol, the 36 

Copenhagen Accord, and the Global Pact for the Environment. Several market-based 37 

environmental instruments including green credits, green insurance, and pollution tax policies 38 

have been adopted (Crowley, 2013; Garnaut, 2008; Neuhoff, 2011; Newell and Paterson, 2010; 39 

Nyberg et al., 2013; Stern, 2008). According to the Country Policy and Institutional 40 

Assessment (CPIA), ratings on policies and institutions for environmental sustainability of the 41 

world have continued to rise since 2005, as shown in Figure 1(a). Figure 1(b) indicates that 42 

countries with higher income tend to pay more attention to policies concerning environmental 43 

sustainability. With its rapid economic development, China is expected to launch more 44 

environmental policies. 45 
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(a)                                                                            (b) 46 

 47 

Figure 1: CPIA ratings on policy and institutions for environmental sustainability (1=low to 48 

6=high). (a) CPIA ratings on policies and institutions for environmental sustainability by 49 

region; (b) CPIA ratings on policies and institutions for environmental sustainability according 50 

to country income level. (Data source: World Bank) 51 

China became the world’s largest carbon emitter in 2006 and has increased attention to 52 

environmental issues arising from its population growth and economic development (Liu et al., 53 

2016; Zhang et al., 2008). Past environmental policy in China focused on mandatory 54 

regulations. In recent years this role has shifted to market-oriented and voluntary approaches.  55 

Fiscal incentive policies, tax subsidies, a pollution levy system, and technology innovation 56 

support are being provided seeking to achieve economic and environmental protection ‘win-57 

wins’ (Zhang et al., 2007). Energy performance contracting (EPC) is one of these instruments. 58 

EPC is a market-oriented approach in which the energy service companies (ESCOs) invest in 59 

implementing energy services for customers to improve energy efficiency, including energy 60 

savings guarantees, associated design, and installation services. ESCOs get paid annually from 61 

energy savings during the contract period (Deng et al., 2017; Zheng et al., 2018). ESCOs are 62 
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corporations which focus on improving energy efficiency and relieving climate change through 63 

EPC (Liu et al., 2018; Xu et al., 2015; Xu and Chan, 2013).  64 

  Economic growth has been identified as the main driver for sharp CO2 emissions 65 

increases. Anthropogenic causes of climate change are intimately related to economic 66 

behaviour, and the industry is increasingly being called upon to respond (Yeeles, 2018). The 67 

sheer scale of the Chinese economy means that worldwide CO2 emissions are strongly 68 

determined there (Wiedenhofer et al., 2017). The enterprises are the primary damager of 69 

environmental pollution and the major consumer of energy in China (Li et al., 2017). Nearly 70 

two-thirds of China’s groundwater was of poor quality, over 15% of China’s soil and farmland 71 

has been polluted, causing serious threat to food security and human health (Li et al., 2017; 72 

Qiu, 2011). To reduce these impacts, regulating corporate environmental performance in China 73 

is in urgent need.  74 

The institutional theory stipulates that firms will respond to institutional pressures 75 

(mainly regulatory policy pressures) to thrive and gain legitimacy (Meyer and Rowan, 1977; 76 

Scott, 2013). Damaging corporate environmental impact has become increasingly part of the 77 

public and social mindset. This concern over climate change and the policy regulations to 78 

mitigate GHG emissions have exerted greater pressures on corporations to improve 79 

environmental well-being rather than hastening its degradation. These forces have also 80 

incentivized corporations to pursue good environmental performance (Hart, 2010).  81 

The natural-resource-based view (NRBV) of the firm stipulates that a business will be 82 

constrained by natural resources and firm competitiveness is related to natural resources (Hart, 83 

1995). Many corporations now claim that developing a corporate culture that promotes social 84 

and environmental sustainability can improve employee recruitment attraction, motivation, and 85 

retention (Renwick et al., 2013). Corporations are also realizing the significance of climate 86 

change and develop strategies for this environmental issue (Wright and Nyberg, 2015). 87 
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Business and industry play a dual role in climate politics. Firstly, corporations are the principal 88 

agents producing CO2 emissions; secondly, corporations can improve the environment and 89 

reduce emissions through technological innovation. Better environmental performance reduces 90 

the volatility of the firm’s cash flows, decreases potential bankruptcy costs, and increases debt 91 

capacity; all characteristics that can add resources for an organization to build competitive 92 

advantage. Many theoretical and empirical studies also indicate that better environmental 93 

performance boosts and is endogenously influenced by better financial performance (Dixon-94 

Fowler et al., 2013; King and Lenox, 2001; Stanwick and Stanwick, 1998). 95 

Disclosure of corporate environmental performance has been advocated to achieve 96 

better environmental performance. Scholars have argued that information about corporate 97 

environmental performance disclosed to the public can play an important role in determining 98 

business strategies, consumers’ purchasing behaviour, and investors’ financial investment 99 

decisions (Meng et al., 2014; Rockness, 1985; Spicer, 1978). Environmental disclosure may 100 

decrease the agency costs of debt and reduce estimation or information risk (Bansal and 101 

Clelland, 2004; Gao and Connors, 2011). However, a vast majority of companies do not 102 

produce corporate environmental reports or include environmental information in their annual 103 

reports. This result may be due to environmental information disclosure resistance, a desire to 104 

avoid additional costs, fear of threats to local employment, and concerns about reduced profits 105 

(Wang et al., 2004).  106 

Researchers have been investigating corporate environmental performance for decades. 107 

They have mainly focused on evaluating environmental performance and environmental 108 

management strategy using the environmental-related information (Bhatnagar, 1999; Delmas 109 

and Blass, 2010; Ilinitch et al., 1998; Klassen and McLaughlin, 1996; Lober, 1996; Tyteca et 110 

al., 2002; Zhang et al., 2008). In China, various corporations have made efforts toward 111 

environmental protection and generating data related to environmental performance, especially 112 
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given governmental pressures for this type of information. This data provides information 113 

which can be useful for practical governmental and organizational policy decisions, but also 114 

for research purposes. However, this type of data is currently rare in China, resulting in some 115 

hurdles in predicting corporate environmental performance using environment-related 116 

information. Only a few studies emphasize predicting environmental performance, due to the 117 

scant data available and lack of a detailed list of pollutants emitted by corporations (Delmas 118 

and Blass, 2010). It is essential find ways to utilize corporate related information, which can 119 

be accessed easily, for predicting corporate environmental performance. An application using 120 

machine learning method-XGBoost can help in completing various predictive analyses for 121 

multiple settings and purposes, especially when there exists the sparse and noise in the dataset. 122 

In this study, a machine learning model for predicting corporate environmental 123 

performance is constructed with two main functionalities: assessing the corporate 124 

environmental performance of an unknown ESCO and calculating the future performance of 125 

ESCOs. Predicting corporate environmental performance can be used to mitigate 126 

environmental impacts through guiding organizational practices, and to improve a firm’s 127 

reputation. First, we combine the elements of Institutional Theory and NRBV to bring a fresh 128 

perspective to environmental performance prediction research. Second, we explore the factors 129 

in five domains: Institutional context, Governance capability, Information management 130 

capabilities, Systems capability, and Technology-related investment, using 1100 data points on 131 

corporate environmental performance from different industries in mainland from 2011 to 2015 132 

in China. Lastly, we utilize a machine learning tool, XGBoost regression to predict future 133 

performance and adopt Shapely to generate interpretations from the model. Conclusions and 134 

future research finalize the paper. 135 

 136 
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2 Theory foundation and hypotheses development 137 

Corporate environmental performance can be defined as the results of an organisation’s 138 

management of its environmental aspects or more precisely ‘is the totality of a firm’s behaviour 139 

toward the natural environment (i.e. it's level of total resource consumption and emissions)’ 140 

(Tyteca et al., 2002). Corporations compete over limited natural resources, tend to take 141 

strategies to use the resources more efficiently, relieve their impact on the natural environment, 142 

and focus more effort on pollution control. Corporate environmental performance evaluation 143 

has been proposed for self-assessment, benchmarking, and reporting (Delmas and Blass, 2010; 144 

Gao and Connors, 2011; Ilinitch et al., 1998; Veleva and Ellenbecker, 2001).  145 

Several theories have been used to investigate and explain corporate environmental 146 

performance. These theories include the natural-resource-based view (NRBV) (Hart, 1995), 147 

institutional theory (Colwell and Joshi, 2013; Jennings and Zandbergen, 1995), stakeholder 148 

theory (Freeman, 1984), agency theory (Berrone and Gomez-Mejia, 2009; Friedman, 2007), 149 

and transaction cost theory; to name a few organizational theories. Two of these are especially 150 

popular and salient. One is a general external to the organization theory, institutional theory, 151 

the other is an internal theory used to build competitive advantage, the NRBV. Together these 152 

two theories provide a more complete picture of how organizations manage their environmental 153 

performance. 154 

 155 

2.1 Combining Institutional Theory and the Natural-Resource-Based View 156 

The institutional theory posits that organizations enhance or seek to protect their legitimacy 157 

(Scott, 2013) by conforming to the expectations of institutional norms and stakeholder 158 

requirements (Aldrich and Fiol, 1994; DiMaggio and Powell, 2000). Concern over legitimacy 159 

forces firms to adopt managerial practices that are expected to conform to social values and 160 

expectations (Berrone and Gomez-Mejia, 2009). With the increasing importance of 161 
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environmental issues, institutional theory stipulates that companies under heavier institutional 162 

pressure will gain legitimacy by exhibiting good environmental performance (Bansal and 163 

Clelland, 2004; Bansal Pratima, 2005). Researchers have applied institutional theory in the 164 

investigation of corporate environmental performance (Berrone and Gomez-Mejia, 2009; 165 

Campbell, 2007; Gallego‐Alvarez et al., 2017; Tashman and Rivera, 2016). The institutional 166 

context has a significant influence on environmental performance and the adoption of 167 

environmental strategies (Chang et al., 2015; Christmann, 2004; Russo and Fouts, 1997; 168 

Sharfman et al., 2004; Wang et al., 2018). Under institutional pressures, firms have tended to 169 

adopt appropriate strategies and firms with an environmental legacy has incurred less risk 170 

(Bansal and Clelland, 2004).  171 

NRBV (Hart, (1995) and holds that the business is constrained by and dependent upon 172 

natural ecosystems. Organizational competitiveness relies on the capabilities which facilitate 173 

environmentally sustainable economic activity. Many researchers have examined the 174 

relationship between corporate environmental performance and financial performance 175 

(McWilliams and Siegel, 2001; Stanwick and Stanwick, 1998). Al-Tuwaijri et al (2004) 176 

provided an analysis of the interrelations between environmental performance and economic 177 

performance, finding that good environmental performance is significantly associated with 178 

good economic performance. Trumpp and Guenther (2017) build on the theory of a non-linear, 179 

specifically a U-shaped, relationship between corporate environmental performance and 180 

corporate financial performance.   181 

Empirical work by Buysse and Verbeke (2003) identified five essential resource 182 

domains through which environmental proactiveness can be determined: strategic 183 

environmental planning, formal routine-based environmental management, organizational 184 

competencies in environmental management, employees’ green skills, and conventional 185 

technology-based green competencies. These determinants have also been categorized into 186 
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four resource domains: governance capability, information management capabilities, systems 187 

capability, and technology-related investment (Backman et al., 2017). These elements will 188 

prove helpful in our investigation using our machine learning models. 189 

Scholars across a wide range of research areas and disciplines have focused on 190 

examining the relationship between corporate environmental performance and other 191 

organizational constructs or variables (Bansal and Gao, 2006; Trumpp et al., 2015). These 192 

variables include external organizational factors, such as regulation (Camisón, 2010) or 193 

stakeholder pressure (Ilinitch et al., 1998), as well as internal organizational factors, such as 194 

different characteristics of the board (Post et al., 2015) or innovation (Hall and Wagner, 2012). 195 

These findings corroborate the NRBV and institutional theory, dividing corporate 196 

environmental performance into five categories: institutional context, governance capability, 197 

information management capabilities, systems capability, and technology-related capability. 198 

We conceptualize how the possible combinatorial configurations from institutional theory and 199 

the NRBV relate to corporate environmental performance and try to understand how 200 

corporations may achieve improved environmental performance.   201 

Figure 2 summarizes the integration of institutional theory and NRBV for corporate 202 

environmental performance. The figure depicts how corporations will choose to engage in 203 

environmentally friendly behaviour due to limited natural resources in a given institutional 204 

context. Institutional theory is adopted to explain how organizations react to institutional 205 

pressures, while NRBV encompasses building corporate capabilities in such a way to gain a 206 

competitive advantage in the market given natural resources consideration (Delmas and Toffel, 207 

2004; Hart, 1995). Institutional theory categorizes the institutional pressure into three types, 208 

namely, cognitive, regulative and normative pressure (Gao et al., 2019). The cognitive pressure 209 

is related to the economic and ethical aspects which mainly refers to the environmental benefit 210 

and ethical obligation (Gao et al., 2019). The regulative pressure comes from the regulations, 211 
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laws, rules and other formal instruments. The normative pressure is those pressure exerted by 212 

the nongovernmental stakeholders, such as suppliers, consumers, competitors (DiMaggio and 213 

Powell, 2000; Gao et al., 2019; Lee et al., 2018). Firms depend directly on natural capital and 214 

ecosystem services (Pogutz & Winn, 2009; Starik & Rands, 1995). Without air, water, a 215 

favourable climate, and a variety of natural resources, no organization can survive (Gladwin et 216 

al., 1995). Key resources and capabilities also affect organizational ability to adopt competitive 217 

environmental strategies (Hart, 1995). With the increasing consequences of climate change and 218 

growing severity of resource scarcity, firms are facing loss of access to natural resources and 219 

must adapt according to their dependence on nature. Both theses institutional pressures and 220 

natural resources pressure drive the organization to minimize emissions, effluents, waste, life-221 

cycle environmental costs of products, and environmental burden of firm growth and 222 

development.  That is, organizations adopt environmental strategies to achieve higher corporate 223 

environmental performance. Corporate capabilities are the key factors which will affect the 224 

adoption of environmental strategies. As stated by NRBV, these capabilities consist of 225 

governance capability, information management, systems, and technology-related capabilities. 226 

Corporates will adopt environmental strategies to pursue competitive advantages in the market 227 

since researchers found that firms with better environmental performance have superior 228 

financial performance (McWilliams et al., 2006).  Environmental strategies can also lead to 229 

reduced costs and improved environmental performance simultaneously (Lyon and Maxwell, 230 

1999).   231 
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 232 

Figure 2: Framework of corporate environmental relationships and performance based on 233 

Institutional Theory and the Natural-Resource-Based View of the firm. 234 

 235 

2.2 Institutional context and corporate environmental performance 236 

Institutional forces play a significant role in corporate environmental strategy adoption (Chang 237 

et al., 2015); impacting corporate environmental performance. High-income regions of the 238 

world have generally exerted the strongest regional or national institutional pressure for 239 

improved environmental performance. Institutional pressure has been found to be lower in 240 

middle-income and lessens in lowest-income regions (Luxmore et al., 2018)). The reason for 241 

this is an overwhelming need for economic development in some regions, where institutional 242 

measures from an environmental perspective may be lessened. 243 

 In China, developed regions and their governmental agencies, invest more in 244 

improving energy efficiency and require organizations to emphasize environmental 245 

performance (Zheng et al., 2018).  In this study, the gross domestic product (GDP) and the 246 

population are proxies for institutional (government) pressure since this metric reflects the 247 

development of a region.  Natural resource availability may also exert pressure on corporate 248 
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environmental performance from NRBV.  Consumption of coal is used to reflect the level of 249 

dependency on natural resources; renewable energies may also be dependent on natural 250 

resources but are not as constrained due to the continuous sources (e.g. sunlight and wind 251 

power).  Using these perspectives, the following hypothesis is proposed for testing. 252 

Hypothesis 1 (H1): Corporates facing greater institutional and natural resource pressures will 253 

exhibit greater improvements in corporate environmental performance. 254 

2.3 Organizational characteristics and corporate environmental performance 255 

There are multiple levels of pressures and contexts. The first hypothesis focused on broader 256 

social and natural resource considerations and relationships to environmental performance. 257 

Organizational (corporate) contexts and characteristics will also relate to corporate 258 

environmental performance. Corporate specific internal resources and capabilities are 259 

particularly useful in generating unique, preventive and voluntary environmental actions to 260 

reduce firms’ environmental impacts (Hart, 1995). According to NRBV, corporate 261 

characteristics can be divided into four domains: governance, information management, system, 262 

and technology-related capabilities.  263 

(1) Governance capability indicators 264 

Governance capability refers to a strategic planning process reconfiguration ability and 265 

integration of environmental issues into corporate policies and routines (Backman et al., 2017; 266 

Walls et al., 2012). A measure of governance capability and policy focus includes 267 

environmental costs which are the investments made in addressing pollution issues and 268 

adopting environment strategies (Salo, 2008);. Another, proxy measure includes the number of 269 

formal legal warnings a firm has received since its founding. This warnings measure indicates 270 

how well the governance structure supports good or poor behaviour and can be closely linked 271 

environmental policy; e.g. going beyond compliance (Li et al., 2017). 272 
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Firms with a high level of environmental commitment and stronger governance policies 273 

are more likely to regard environmental protection as their corporate social responsibility and 274 

be eager to protect the environment, thus achieving higher corporate environmental 275 

performance (Al-Tuwaijri et al., 2004; Muller and Kolk, 2010; Wang et al., 2018). Furthermore, 276 

organizations with historically poor environmental records are often subjected to more scrutiny 277 

by their local communities and regulators. Thus, organizations with poor environmental 278 

records may try to build greater corporate environmental governance capabilities to achieve 279 

higher environmental performance to gain more resources. Together, the following is expected. 280 

Hypothesis 2 (H2): Greater organizational environmental governance capability, measured by 281 

the combination of environmental cost and formal legal warning, relates to higher corporate 282 

environmental performance. 283 

(2) Information management capability 284 

Information management capabilities mainly focus on formal management systems and 285 

procedures of investment. Researchers found that effective information management 286 

capabilities and corporate social responsibility are synergistically related, and can facilitate 287 

transition to corporate sustainability (Gangi et al., 2019). Countries paying attention to climate 288 

change mitigation tend to set develop stronger information management capability for 289 

organizations (Backman et al., 2017). This information refers to environmental-related 290 

information, such as the climate change impact mitigation and carbon footprint, denoting the 291 

attitude towards sustainability. The work environment is considered to evaluate the 292 

organizational culture regarding how a corporation views the importance of environment 293 

(Bhatnagar, 1999). High environmental awareness can help firms to implement environmental 294 

management practices smoothly and then help them improve environmental performance. 295 

Based on this analysis, the following is hypothesized. 296 
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Hypothesis 3 (H3): Corporates with stronger information management capability tend to 297 

achieve higher corporate environmental performance than corporates with weaker information 298 

management capability. 299 

(3) Systems capability 300 

Systems capability covers investments in employee skills and organizational competencies, 301 

such as research and development funding, finance and accounting, and storage and human 302 

resources in environmental management (Backman et al., 2017; Buysse and Verbeke, 2003). 303 

Previous research investigated the relationship between organizational characteristic variables 304 

and environmental performance/environmental benefits, such as the top management’s 305 

leadership skills, human resources and organizational size (Etzion, 2007; Lee et al., 2018). 306 

Kitada and Ölçer (2015) put forward that employee element is essential when considering 307 

corporate social responsibility. It was found that there appears to be a positive relationship 308 

between a firm’s environmental performance and its financial performance (Dixon-Fowler et 309 

al., 2013; Rockness, 1985; Spicer, 1978). Accordingly, we postulate the following. 310 

Hypothesis 4 (H4): Corporations with stronger system capability tend to achieve higher 311 

corporate environmental performance than corporates with weaker system capability. 312 

(4) Technology-related capability 313 

Technology-related capability covers the conventional green competencies related to green 314 

product and manufacturing technologies. Technologies will affect corporate competitiveness 315 

since the environmental problems arise increasing awareness (Shrivastava, 1995). Technology 316 

in energy efficiency proved options and solutions for organizations to pursue better 317 

environmental performance by implementing the energy efficiency retrofit projects (Kitada and 318 

Ölçer, 2015). Benitez-Amado and Walczuch (2012) believed that technology-related 319 

capabilities are a key enabler for organizations to achieve better environmental performance. 320 

Environmental innovations contribute to corporate environmental performance since they can 321 
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improve energy efficiency and reduce pollution. Therefore, our last hypothesis is as following 322 

(Kagan et al., 2003). 323 

Hypothesis 5 (H5): Corporates with stronger technology-related capability tend to achieve 324 

higher corporate environmental performance than corporates with weaker technology-related 325 

capability. 326 

3 Research method and data processing 327 

3.1 Sample and data 328 

The combination of institutional theory and NRBV identifies five domains for selecting the 329 

index to predict corporate environmental performance. Considering the data availability and 330 

referring to the previous research, 14 factors as shown in Table 1 were chosen to test the 331 

hypotheses. The research data we employed was provided by the ESCO Committee of China 332 

Energy Conservation Association (EMCA). The collected data covers 3225 ESCOs in 30 333 

provinces in mainland China from 2011 to 2015 (Zheng et al., 2018). However, some ESCOs 334 

were excluded for one or more of the following reasons: (i) data for environmental performance 335 

is missing; (ii) data for more than 3 variables are missing. Thus, 1134 ESCO projects have 336 

sufficient information for further analysis. The value of the corporate environmental 337 

performance for most projects are between 0 and 1, however, the corporate environmental 338 

performance of 34 projects (3% of total projects) is 0, meaning there is no environmental 339 

income for these companies, which is not suitable for our research. Then, 1100 ESCO projects 340 

are finally analysed to predict the corporate environmental performance, which is mainly 341 

located in the Beijing, Shandong, and Guangdong provinces (see Fig. 3). Table 2 shows an 342 

example of the detailed information for each project, including investment, number of formal 343 

legal warnings since foundation, proportion of in-plant environmental, proportion of 344 

technicians, assets, equity, environmental projects payback period, asset age, revenue, tax 345 

bracket, and number of patents. All the variables in Table 1 can get or calculated based on 346 
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Table 2. The amount of proactive environmental costs is the investment for improving energy 347 

efficiency and reducing the impact of environment. The proportion of technician can be get 348 

using the number of technicians divided by number of employees. Information related to GDP, 349 

population, and consumption of coal was gained through the National Bureau of Statistics of 350 

China. 351 

 352 

Table 1: Corporate environmental performance indicator system. 353 

Destination 

layer 

Standard 

layer 
Index layer 

Data source References 

Corporate 

environmental 

performance 

prediction 

indicator 

system 

Institutional 

context 

GDP (GDP) 

National Bureau of 

Statistics of China 

(Chan and 

Makino, 

2007; Zheng 

et al., 2018) 

Population 

(PO) 

National Bureau of 

Statistics of China 

(Cui and 

Jiang, 2012) 

Consumption 

of coal (CC) 

National Bureau of 

Statistics of China 

(Zheng et al., 

2018) 

Governance 

capability 

Amount of 

proactive 

environmental 

costs (PEC) 

EMCA (Fu et al., 

2017; Salo, 

2008) 

Number of 

formal legal 

warnings since 

firm founding 

(FLW) 

EMCA (Li et al., 

2017; Yoon et 

al., 2006) 

Information 

management 

capability  

Proportion of 

In-plant 

environment 

(PIE) 

EMCA (Bhatnagar, 

1999) 

Systems 

capability 

Proportion of 

technicians 

(PT) 

EMCA, 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑐ℎ𝑖𝑛𝑖𝑐𝑖𝑎𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠
 

(Etzion, 

2007; Lee et 

al., 2018) 

Total assets 

(TA) 

EMCA (Backman et 

al., 2017; 

Buysse and 
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Verbeke, 

2003) 

Equity (EQ) 

EMCA (Backman et 

al., 2017; 

Buysse and 

Verbeke, 

2003) 

Environmental 

projects 

payback 

period (PP) 

EMCA (Dibrell et al., 

2011) 

Asset age 

(AA) 

EMCA (Li et al., 

2017) 

Revenue (RE) 

EMCA (Orlitzky et 

al., 2003; 

Russo and 

Fouts, 1997) 

Tax bracket 

(TB) 

EMCA (Hoi et al., 

2013) 

Technology-

related 

capability  

Number of 

patents (PA) 

EMCA (Benitez-

Amado and 

Walczuch, 

2012) 

 354 

 355 

Table 2: Example of detailed information about ESCO 356 

Liaoning 

Nengfaweiye 

Energy 

Technology 

Co., Ltd. 

Region Number 

of 

Employee

s 

Number of 

Technicians 

Number of 

Patents 

Investment  

(million 

yuan) 

Assets 

Liaoning 450 68 13 27.53 240.23 

Equity Payback 

Period 

Asset Age Ratepaying 

Credit Grade 

Number of 

Penalties  

Received 

Environmental 

Performance 

(Environmental 

income per unit 

of an asset) 

20.205 0.8 6 A 0 0.354502 

 357 

 358 
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 359 

Figure 3: Distribution of Sampled ESCOs 360 

 361 

These samples cover all kinds of firms, including state-owned enterprises, corporations, 362 

general partnership firms, private enterprises, foreign-owned enterprises, and others, with their 363 

assets varying from 0 to more than 1 trillion yuan (shown in Table 3). 364 

 365 

Table 3: Sampled firms by business type and asset size 366 

Business type Number  Assets (in yuan) Number 

State-owned enterprise 157  0-500 20 

Corporation 128  500-1000 202 

General Partnership 54  1000-5000 531 

Private enterprise 736  5000-10000 171 

Foreign-owned enterprise 14  10000-100000 171 

Other 11  ≥100000 5 

 367 
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Fig. 4 displays the scatter plots for each of the (normalized) input variables and output variables. 368 

These scatter plots show that none of the functional relationships between the input variables 369 

and the output variables are trivial.  370 

 371 

Figure 4: Scatter plots of the relationships between each input variable and output 372 
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This suggests that we can reasonably accept that classical learners such as linear regression 373 

may fail to find an accurate mapping of the input variables to the output variables. Therefore, 374 

these plots intuitively justify the need to experiment with more complicated learners such as 375 

machine learning methods. However, the machine learning methods are mainly used for 376 

prediction and classification, without the ability to interpret the relationship between variables. 377 

Recently, SHAP (SHapley Additive exPlanations) was developed to interpret the variables’ 378 

impact on the model’s prediction (Lundberg and Lee, 2017).  A SHAP value for a feature of a 379 

specific prediction represents how much the model prediction changes when we observe that 380 

feature. This SHAP figure not only indicates which features are most important but also their 381 

range of effects over the dataset, revealing the relationship between variables and model output.  382 

3.2 Machine learning method-XGBoost 383 

In recent years, machine learning has been generating a lot of curiosity for its superior 384 

performance compared to other more traditional statistical techniques. Numerous machine 385 

learning models like Linear/Logistic regression, Support Vector Machines, Neural Networks, 386 

and Tree-based models are being tried and applied in analysis and prediction (Gumus and Kiran, 387 

2017). Tso and Yau (2007) predicted electricity energy consumption adopting the decision tree 388 

and neural network models. Lee (2007) applied support vector machines to suggest a new 389 

model for corporate credit ratings with better explanatory power and stability. Among these 390 

methods, Extreme Gradient Boosting, also known as XGBoost (Chen and Guestrin, 2016), is 391 

a model that has a high success rate in the majority of machine learning competitions and has 392 

proven to be efficient for predictive modeling.  393 

        XGBoost has algorithms that can deeply explore data-label correlations by adaptively 394 

fitting large-scale data via tree boosting. Compared to conventional regression approaches such 395 

as logistic regression and SVM regression, XGBoost’s tree-ensemble approaches can easily 396 

handle data with missing values (Torlay et al., 2017). Third, XGBoost penalizes the complexity 397 
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of an individual tree as a regularization term, which has better generalization ability compared 398 

to other MART (multiple additive regress trees) methods. Ajit and Punnoose R (2016) applied 399 

XGBoost to predict employee turnover within an organization, addressing the prevalence of 400 

noise in data to reduce overfitting and improve accuracy. XGBoost is suitable for our case since 401 

there exist sparse data and noisy data in the realm of corporate environmental performance. 402 

Furthermore, the tree-ensemble algorithm provides strong interpretability of the model. By 403 

constructing the model, we can visualize the tree’s structure and explore implicitly how the 404 

model makes decisions and which attributes are dominant. 405 

        XGBoost is a typical tree-ensemble model related to CART (Classification And 406 

Regression Trees), which grows the tree in a top-down manner. Each tree consists of internal 407 

(or split) nodes and terminal (or leaf) nodes. Each split node will make a binary decision and 408 

the final decision is made based on the terminal node reached by the input feature. Tree-409 

ensemble methods regard different decision trees as weak learners, and then construct a strong 410 

learner by either bagging or boosting. Bagging, also known as bootstrap aggregating (Breiman, 411 

1996), is used to reduce the variance of the model. Multiple random subsets of the dataset with 412 

replacements are first selected, one for training an individual sub-model. Then an average 413 

prediction from these sub-models is calculated. Random Forest (Liaw and Wiener, 2002) 414 

extends the bagging by exploiting a small tweak that reduces the correlation between the 415 

bagged trees. For the boosting algorithm, the boosted tree (strong learner) is regarded as a 416 

combination of the single trees (weak learners). The weight of the combination is updated 417 

adaptively according to the different designs of the objective function and optimization 418 

methods. AdaBoost (Freund and Schapire, 1997) is the first version of the boosting method, in 419 

which the weak learners are iteratively trained on a weighted dataset by minimizing the 420 

exponential loss.  XGBoost extends to more general loss function via gradient boosting 421 

optimization and learns a model with an additive training trick.  422 
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The objective of XGBoost is to learn a model with good variance-bias balance.  In other 423 

words, the model should have strong predictive power but also large variance to be generalized 424 

on the extra data. This can be represented with the following objective function with respect to 425 

model parameter θ: 426 

obj(θ) = L(θ) +  Ω(θ) 427 

where the first term is the loss function which should be minimized, and the second term is a 428 

regularization term of the model’s complexity to prevent it from over-fitting. Considering a 429 

tree-ensemble model where the overall prediction is the summation of K predictive values 430 

across all the trees fk(xi)，  431 

𝑝𝑖 = ∑ fk(xi)

K

k=1

, 432 

the objective function can be written as: 433 

obj(θ) = ∑ l(pi, ti)

n

i

+ ∑ Ω(fk)

K

k=1

, 434 

where l(pi, ti) is the mean-squared loss imposed on each sample 𝑖  regarding its predictive 435 

value pi  and the label ti , and Ω(fk)  is the regularization constraint imposed on each tree. 436 

XGBoost applies an efficient addictive training algorithm to optimize such an objective 437 

function. This algorithm will learn one tree at each step, then add a new tree by fixing what it 438 

has learned, mathematically,   439 

pi
(0)

= 0, 440 

pi
(1)

= f1(xi) = pi
(0)

+ f1(xi), 441 

⋯ ⋯ 442 

pi
(t)

= ∑ fk(xi)

𝑡

𝑘=1

= pi
(t−1)

+ ft(xi). 443 

Thus, the objective at step t becomes, 444 
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obj
(t)  = ∑ (ti  −   (pi

(t−1)
  +  ft(xi)))

2
n

i=1

   + ∑i=1
t Ω(fi)445 

= ∑ [2(pi
(t−1)

  −  ti)ft(xi)  +  ft(xi)
2]

n

i=1

  + Ω(ft) + constant 446 

This can be easily optimized with second-order Tylor expansion, considering the first and 447 

second-order gradients, gi = ∂
pi

(t−1)l(ti, pi
(t−1)

) and hi = ∂
pi

(t−1)
2 l(ti, pi

(t−1)
) respectively, with 448 

the objective function at step t now becoming, 449 

obj
(t) ≈ ∑ [gift(xi) +

1

2
hift

2(xi)]

n

i=1

+ Ω(ft) 450 

To this end, we introduced how to efficiently train the boosted trees with an additive 451 

strategy, i.e. training a new tree at a step 𝑡 by optimizing above step-based objective function. 452 

One of the merits of this definition is that the objective value only depends on the 𝑔𝑖 and ℎ𝑖, 453 

which allows using custom loss function. Ω(𝑓𝑡) is the regularization term, which controls the 454 

complexity of the model. Now, we re-define the tree by a vector of prediction score in leaves,  455 

𝑓𝑡(𝑥)  = 𝑤𝑞(𝑥) , 𝑤 ∈ ℝ𝑇  456 

where 𝑞(𝑥𝑖) is a mapping function that maps a training instance to a leaf.  Based on this re-457 

defined formulation,  Ω(𝑓) can be heuristically defined as 458 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

, 459 

where 𝑇 is the number of leaves of the tree and wj is the prediction score in each leaf.  By re-460 

grouping the training samples on each leaf 𝑗, the objective function can hence be reformed as 461 

𝑜𝑏𝑗(t) ≈ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

462 

= ∑ [(∑ 𝑔𝑖

𝑖∈𝐼𝑗

) 𝑤𝑗 +
1

2
(∑ ℎ𝑖

𝑖∈𝐼𝑗

+ 𝜆) 𝑤𝑗
2] + 𝛾𝑇

𝑇

𝑗=1

, 463 
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where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is the indices of training instances which reach the 𝑗th leaf. We use 464 

𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
 and 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

 to express the summation of first/second ordered gradients 465 

across leaves. Thus, the objective function can then be further simplified as  466 

𝑜𝑏𝑗(t) ≈ ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2]

𝑇

𝑗=1

+ 𝛾𝑇 467 

Note that 𝑤𝑗 are independent with each other, thus the equation has a quadratic form, the 468 

solution for the above equation is 469 

𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗 + 𝜆
, 470 

and the resulting objective value is 471 

𝑜𝑏𝑗∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗 + 𝜆

𝑇

𝑗=1

+  𝛾𝑇. 472 

This equation measures how good a tree structure 𝑞(𝑥𝑖) is for a certain training instance. 473 

Based on this property, one can grow a tree greedily using the information gain. To specify this 474 

information gain, we consider the gradients flow before and after splitting,  475 

𝐺𝐿 = ∑ 𝑔𝑗

𝑗∈𝑇𝐿

, 𝐺𝑅 = ∑ 𝑔𝑗

𝑗∈𝑇𝑅

 476 

𝐻𝐿 = ∑ ℎ𝑗

𝑗∈𝑇𝐿

, 𝐻𝑅 = ∑ ℎ𝑗

𝑗∈𝑇𝑅

 477 

where 𝑇𝐿 and 𝑇𝑅 are the indices of left and right leaves respectively. Before splitting, the tree’s 478 

complexity is 479 

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + λ
+ γ. 480 

After splitting, the tree has complexity, 481 

𝐺𝐿
2

𝐻𝐿 + λ
+

𝐺𝑅
2

𝐻𝑅 + λ
+ 2γ, 482 

Then the information gain of a splitting tree can be calculated as 483 
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𝐺𝑎𝑖𝑛 =  
1

2
[

𝐺𝐿
2

𝐻𝐿 + λ
+

𝐺𝑅
2

𝐻𝑅 + λ
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + λ
] − γ 484 

As a result, we can outline the XGBoost algorithm as an iteration process. For each iteration, 485 

we perform the following operations: 1) Grow the tree to the maximum depth by finding the 486 

best splitting points via information gain. 2) Assign prediction score to the two new leaves. 3) 487 

Prune the tree by deleting the nodes with negative gain. 488 

4 Implementation of XGBoost – a reliable prediction model 489 

There exists some sparse data in our experimental dataset that needs the adoption of XGBoost. 490 

The dataset was arbitrarily split into two subsets; 75% of the data was used as a training set 491 

and 25% as a validation set. All the training data for Xbgoost was used to construct the model. 492 

The validation data was used to test the results with the data that was not utilized to develop 493 

the model. In order to improve the calculation efficiency, and prevent individual data from 494 

overflowing during the calculation, input and output parameters were normalized. In addition, 495 

all 14 variables show independence from each other after doing correlation analysis, which 496 

indicates these 14 variables can be used for predicting the environmental performance in a 497 

model. 498 

PyCharm was adopted to train and develop the XGBoost model for corporate environmental 499 

performance. A statistical package scikit-learn in python was used to implement the XGBoost. 500 

To determine the hyper-parameters of the model, we applied a brute force grid search with 5-501 

fold cross-validation. In order to achieve optimal parameter setting, we needed to initialize the 502 

searching with some prior knowledge of the parameters’ ranges. For example, the learning rate 503 

for XGBoost is usually 0.05, and the maximum depth is usually 6, 7, or 8. Other parameters, 504 

such as ‘min_child_weight’, ‘subsample’, and ‘colsample_bytree’ need to be carefully tuned 505 

since they greatly affect the model’s generalizability. Thus, we applied different seed during 506 

the searching to increase the variance of the model. The boosting iterations were determined 507 
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using early stopping, and mean squared error was applied as the evaluation metrics during the 508 

searching. Table 4 shows the finally determined values for the hyper-parameters of the 509 

XGBoost model which achieve the best performance.  510 

Table 4: Values Determined for the Hyper-parameters of the XGBoost Model 511 

 Description Value 

‘eta’ Boosting learning rate 0.03 

‘subsample’ Subsample ratio of the training instance 0.8 

‘colsample_bytree’ Subsample ratio of columns when constructing each tree 0.8 

‘objective’ Specify the learning task and the corresponding learning 

objective 

‘linear’ 

‘max_depth’ Maximum tree depth for base learners 7 

‘min_child_weight’ Minimum sum of instance weight(hessian) needed in a child 0.5 

‘num_boost_round’ Number of boosting iterations 1000 

 512 

4.1 Evaluation Criteria for model 513 

The performance evaluation indices for the models tested in this paper are Mean Absolute Error 514 

(MAE), Root Mean Square Error (RMSE), Correlation Coefficient (CC) and Coefficient of 515 

Determination (R-square, R2), which are defined as follows: 516 

MAE =
1

𝑚
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑚

𝑖=1
 517 

RMSE = √
1

𝑚
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑚

𝑖=1
 518 

CC =
∑ (𝑥𝑖 − 𝑥𝑖̅

𝑚
𝑖=1 )(𝑦𝑖 − 𝑦𝑖̅)

√∑ (𝑥𝑖 − 𝑥𝑖̅)
2𝑚

𝑖=1 ∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑚

𝑖=1

 519 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑚
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑚

𝑖=1

 520 

where 𝑦𝑖 is the observed value for parameter y, 𝑦𝑖̂ is the predicted value and 𝑦𝑖̅ is the mean of 521 

observed values. 522 

 523 
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4.2 Reliability of XGBoost model 524 

Random Forest (RF) and Support Vector Machines for regression (SVMreg) are commonly 525 

adopted machine learning methods when dealing with prediction problems (Chaudhuri and De, 526 

2011; Lee, 2007; Pan, 2018; Tsanas and Xifara, 2012). In this research, RF and SVMreg 527 

prediction methods were implemented and compared with an XGBoost model.  528 

        Fig. 5 presents the initial data curve and relative error curve of the training set and testing 529 

data. For the training course curve and testing course curve, a dot was extracted from the curve 530 

every 10 samples, 88 samples in total. And for the training error and testing error curves, a dot 531 

was extracted from each curve every 3 samples, 73 samples each in total. It can be seen that 532 

the prediction relative errors of the training samples under the XGBoost model are nearly 533 

0.04%, exhibiting much better performance compared to SVMReg and RF. This demonstrates 534 

that the developed XGBoost model can more precisely describe the complex relationship 535 

between corporate environmental performance and explanatory variables. The predicted 536 

environmental performance on validation data by the three models and the relative errors 537 

between the predicted value and real value are illustrated in Fig. 5(b), Fig. 5(d), and Fig. 5(f). 538 

The MAE, RMSE, CC, and R2 of the testing samples under the three models are compared in 539 

Table 5. 540 

        Fig. 5 and Table 5 also show that using the XGBoost method to predict corporate 541 

environmental performance is better than using RF and SVMreg. The XGBoost method is more 542 

efficient and is a reliable alternative for corporate environmental performance prediction.  543 

 544 

 545 
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 546 

Figure 5: Course curves and relative error curves. (a) training course curve of initial data and 547 

three models, (b) testing course curve of initial data and three models, (c) training error curve 548 

of three models, (d) testing error curve of three models, (e) XGBoost error curve on training 549 

data, and (f) XGBoost error curve on testing data. 550 

 551 

Table 5: Comparison of the prediction accuracy of SVMReg, RF, and XGBoost 552 

Method MAE RMSE CC R2  

SVMreg 0.19304 0.23527 0.39971 0.15951 

RF 0.16578 0.20429 0.61295 0.36630 

XGBoost 0.14546 0.18336 0.70244 0.48952 

 553 

5 Empirical results and discussions 554 

A SHAP value for a feature of a specific prediction represents how much the model prediction 555 

changes when we observe that feature. In the summary plot below (Fig. 6), all the SHAP values 556 

(c) Training error curve (d) Testing error curve 

(a) Training course curve (b) Testing course curve 

(e) XGBoost error curve on training data (f) XGBoost error curve on testing data 
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for a single feature on a row are drawn, where the x-axis is the SHAP value (which for this 557 

model is in units of log odds of corporate environmental performance). 558 

        Fig. 6 indicates that total asset (TA), amount of proactive environmental costs (PEC), 559 

proportion of technicians (PT) and number of patents (PA) were more important in this model 560 

while tax bracket (TB), formal legal warning since firm founding (FLW), equity (EQ), 561 

proportion of in-plant environment (PIE) and environmental projects payback period (PP) were 562 

relatively less important.  563 

 564 

Figure 6: Summary of SHAP values for 14 variables (impact on model output) 565 

         566 

This SHAP figure not only indicates which features are most important but also their range of 567 

effects over the dataset. Each dot is coloured by the value of that feature from high to low. For 568 

example, as shown in Fig. 6, red dots for the rows of ‘total asset’ tend to appear on the left side. 569 

This means that high values for total asset lead to lower corporate environmental performance, 570 
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or in other words, total asset exhibit a positive relationship to corporate environmental 571 

performance. As shown in Fig. 6, GDP shows a positive relationship with corporate 572 

environmental performance, while population and consumption of coal have a negative effect 573 

on corporate environmental performance. Based on the analysis above, Hypothesis 1 cannot be 574 

supported. Amount of proactive environmental costs and number of formal legal warnings 575 

since firm founding reflect a positive relationship with corporate environmental performance. 576 

These results provide support for Hypothesis 2. It is revealed that the higher value for 577 

proportion of in-plant environment, the better environmental performance corporates will get. 578 

As such, Hypothesis 3 is supported. There indicates a negative effect on corporate 579 

environmental performance for total assets, environmental projects payback period and asset 580 

age. In contrast, a positive relationship exists between proportion of technicians, equity, 581 

revenue, and corporate environmental performance. Fewer total assets correlated with higher 582 

corporate environmental performance. As for tax bracket, the relationship reveals unclear. Thus, 583 

Hypothesis 4 cannot be supported. Fig. 6 clearly indicates that number of patents shows a 584 

positive relationship with corporate environmental performance, verifying Hypothesis 5. 585 

Total assets (TA) represents the size and ability of a firm, which is highly related to 586 

corporate environmental performance (Trumpp Christoph and Guenther Thomas, 2017; Zhang 587 

et al., 2008). Amount of proactive environmental costs (PEC) is a direct reflection of 588 

investment in the environmental strategy of a firm. The proportion of technicians (PT) and 589 

number of patents (PA) show the technological innovation ability of a firm. Advanced 590 

technology can reduce the environmental impact of firms, improve energy efficiency, and 591 

increase corporate environmental performance (Dietz and Rosa, 1994; Wang et al., 2013). The 592 

variable explanation rankings show the firm characteristic variables explain more about the 593 

prediction model, indicating that Natural-resource-based view is better to study the corporate 594 

environmental performance. As researchers pointed out before, the external environment, 595 
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including normative and regulative environmental, remains undeveloped and fragmented in 596 

China (Gao et al., 2019). Thus, the Institutional theory explained less about corporate 597 

environmental performance in China. 598 

There are massive reasons leading to the complex relationship between variables and 599 

corporate environmental performance. Amount of proactive environmental costs is the direct 600 

investment in environmental strategy, and the result is similar with the previous research which 601 

indicates that greater investment leads to higher corporate environmental performance (Fu et 602 

al., 2017).  The negative relationship between formal legal warnings since firm founding could 603 

due to that the corporates need to keep its positive image. If a firm receives a legal warning 604 

that damages its social image, it may adopt measures to mitigate this effect, such as developing 605 

and implementing environmental strategies. 606 

The negative relationship between total assets and corporate environmental performance 607 

stands in contrast to previous research findings (Al-Tuwaijri et al., 2004). This may be because 608 

the proportion of assets dedicated to environmental investment by large firms is relatively low 609 

although the large firms care more about social responsibility (Udayasankar, 2008). Firms 610 

survive based on their profitability, which enforces firms to invest in profitable projects. As for 611 

the payback period, firms tend to invest in projects with short payback period to avoid the risks. 612 

If the payback period is too long, firms will engage in these projects, leading to less 613 

environmental improvement projects and poorer environmental performance. Revenue can 614 

show the profitability of a firm and firms with strong profitability tend to pay more attention 615 

to environmental issues (Orlitzky et al., 2003; Russo and Fouts, 1997). Regions with higher 616 

GDP are usually developed regions in China, such as Beijing, Shanghai, Jiangsu, and 617 

Guangdong. These regions are stricter about environmental protection and have inaugurated 618 

several policies regarding environmental sustainability (Zheng et al., 2018). 619 

 620 
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Based on the findings of positive and negative relationships between variables and 621 

corporate environmental performance, several policies can be put in place to improve corporate 622 

environmental performance. To increase firms’ contributions to corporate proactive 623 

environmental costs, the government should provide more financial incentives for 624 

environmental protection, including tax benefits, green loans, and environmental subsidies. 625 

When providing these incentives, the payback period should be taken into consideration since 626 

longer periods entail more risks. Currently many corporations have spent hundreds of millions 627 

of dollars on environmental projects (Berry and Rondinelli, 1998). Fines for noncompliance 628 

need to be increased and enforcement of environmental regulations should be strengthened, 629 

making business executives and owners liable for environmental pollution. The number of fines 630 

and intensity of enforcement also need to be applied in accordance with the size of the 631 

corporation. Corporate environmental issues need to receive more attention in regions with 632 

lower GDP. The local governments of these regions can learn from the experiences of more 633 

developed regions. At present, the incentives are primarily provided to the larger-scale 634 

corporations since they demonstrate better financial performance. However, as knowledge, 635 

practices, systems, and routines at the business and natural environment interface become more 636 

widely dispersed, smaller companies may also begin to adopt voluntary niche environmental 637 

strategies (Sharma, 2000). Governments ought to promote the environmental strategies of 638 

small companies and develop some targeted incentives tailored to them. 639 

        Whatever policies the government may implement, corporations could internally choose 640 

to direct more investment toward environmental prevention and minimization. Introducing 641 

advanced technologies, employing more technicians, reusing materials, and adopting an 642 

environmental corporate culture are other advisable measures. Full-cost accounting is 643 

suggested for adoption when managing the corporations, considering direct costs (labour, 644 

capital, and raw materials), hidden costs (monitoring and reporting;), contingent liability costs 645 
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(fines and remedial action), and less tangible costs (public relations and goodwill). 646 

Corporations can use full-cost accounting to choose the most eco-effective projects and 647 

improve corporate environmental performance. 648 

 649 

6 Conclusion 650 

In this study, we identified the relationship between institutional context, corporate 651 

environmental performance with corporate environmental performance based on a 652 

combination of Institutional Theory and the Natural-Resource-Based View. We presented an 653 

approach to conducting this identification by predicting corporate environmental performance 654 

with machine learning methods. The key challenge of dealing with noise in the data from 655 

ESCOs that compromises the accuracy of these predictive models was also highlighted. In this 656 

study, a newly introduced machine learning algorithm, XGBoost, was applied to predict 657 

corporate environmental performance. Data from 1100 projects for ESCOs in the time period 658 

between 2011 and 2015 was analyzed to explore the statistical relationship between 14 input 659 

variables (GDP, population, consumption of coal, amount of proactive environmental costs, 660 

number of formal legal warnings since a firm’s founding, proportion of in-plant area, 661 

proportion of technicians, total worth, equity, environmental projects payback period, asset age, 662 

revenue, tax bracket, number of patents) and the output variable, corporate environmental 663 

performance. The results indicate that XGBoost achieved higher accuracy than other learning 664 

algorithms and was reliable to test the relationship. 665 

The findings of this research agree with those in the machine learning literature strongly 666 

endorsing the use of XGBoost in complex applications (Gumus and Kiran, 2017; Pan, 2018). 667 

Applying SHAP in XGBoost model interpretation enables the impact of input variables on the 668 

output to be determined. In the model, total assets (TA), amount of proactive environmental 669 

costs (PEC), proportion of technicians (PT) and number of patents (PA) are found to contribute 670 
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the most to corporate environmental performance. Also, the impacts each feature has on the 671 

model output was obtained through SHAP summary plotting. Amount of proactive 672 

environmental costs (PEC), Revenue (RE), GDP, and number of formal legal warnings since 673 

the firm’s founding (FLW) show a positive relationship with corporate environmental 674 

performance, while total assets (TA) and environmental projects payback period (PP) show a 675 

negative relationship. Based on the SHAP findings, several policy recommendations and 676 

environmental strategies for governments and corporations to carry out are proposed to 677 

improve corporate environmental performance. Corporates with stronger governance 678 

capability, information management capability and technology-related capability will perform 679 

better corporate environmental performance.  680 

Although this paper contributes to corporate environmental performance, there are still 681 

some research limitations. First, the prediction accuracy for all observations is relatively low 682 

due to the result of noisy data and the limited input gaps between machine learning and social 683 

sciences (CHEN et al., 2018). The rate may increase if more information about corporate 684 

environmental performance is considered. Second, the data used are only from the ESCO 685 

industry in China. It could add more value if the model can be tested in other industries and in 686 

other countries. 687 

In future studies, more variables and more data should be introduced to achieve greater 688 

accuracy in predicting corporate environmental performance. Since corporates in China are 689 

becoming increasingly aware of the environmental performance, along with increasing national 690 

policies regarding corporate environmental performance, more variables from the perspective 691 

of institutional theory can be taken into consideration. In addition, due to the contrast results 692 

with previous research about the relationship between total assets and corporate environmental 693 

performance, the total assets could be considered to have a nonlinear relationship as the 694 
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moderators when investigating the relationship between corporate financial performance and 695 

corporate environmental performance. 696 
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 967 

Appendix-XGBoost algorithm 968 

 969 

from XGBoost import plot_tree 970 

import matplotlib.pyplot as plt 971 

import numpy as np 972 

import pandas as pd 973 

from pandas import read_csv, read_excel 974 

import XGBoost as xgb 975 

from sklearn.model_selection import train_test_split 976 

from sklearn.metrics import mean_squared_error,r2_score, mean_absolute_error 977 

from sklearn.ensemble import RandomForestRegressor 978 

from sklearn.preprocessing import Imputer, StandardScaler 979 

from statsmodels.stats.outliers_influence import variance_inflation_factor 980 

from sklearn.base import BaseEstimator, TransformerMixin 981 

import matplotlib.pyplot as plt 982 

from sklearn import svm 983 

import shap 984 

  985 

data= pd.read_excel("data/111.xlsx") 986 

data = data.drop(['NO.'],axis=1) 987 

label = data.pop('Y2') 988 

 989 

 990 

 991 

def main(): 992 

    # split data into train and test sets 993 

    seed = 7 994 

    test_size = .25 995 
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 996 

    X_train, X_test, y_train, y_test = train_test_split(data, label, test_size=test_size, 997 

random_state=seed) 998 

    original_col = X_train.columns 999 

    imp = Imputer(missing_values='NaN', strategy='mean', axis=0) 1000 

    imp.fit(X_train) 1001 

    X_train = imp.transform(X_train) 1002 

    X_test = imp.transform(X_test) 1003 

 1004 

 1005 

    # random forest algorithm 1006 

    regr_rf = RandomForestRegressor(max_depth=30, random_state=2) 1007 

    regr_rf.fit(X_train, y_train) 1008 

    y_pred_train1= regr_rf.predict(X_train) 1009 

    y_pred1 = regr_rf.predict(X_test) 1010 

    # random forest end 1011 

 1012 

    # XGBoost algorithm 1013 

    xgdmat=xgb.DMatrix(X_train,y_train) 1014 

    our_params={'eta':.03,'seed':0,'subsample':0.8,\ 1015 

                'colsample_bytree':0.8,'objective':'reg:linear',\ 1016 

                'max_depth':7,'min_child_weight':.5} 1017 

 1018 

    # train the model 1019 

    final_gb=xgb.train(our_params,xgdmat,num_boost_round=1500) 1020 

 1021 

    testmat = xgb.DMatrix(X_test) 1022 

    trainmat=xgb.DMatrix(X_train) 1023 

    y_pred2 = final_gb.predict(testmat) 1024 

    y_pred_train2= final_gb.predict(trainmat) 1025 

    # XGBoost end 1026 

 1027 

    # svm regression 1028 

    clf = svm.SVR(kernel='rbf', degree = 3, gamma = 'auto', coef0=0.0, tol=0.1, C=1.0, epsilon=0.1, 1029 

shrinking = True, cache_size=200, verbose=False, max_iter=-1) 1030 

    clf.fit(X_train, y_train) 1031 

    y_pred_train3 = clf.predict(X_train) 1032 

    y_pred3 = clf.predict(X_test) 1033 

    # end svm 1034 

 1035 

#random forest 1036 

    mae = mean_absolute_error(y_test.values, y_pred1) 1037 

    print("MAE: %.5f" % mae) 1038 

    rmse =np.sqrt(mean_squared_error(y_test.values, y_pred1)) 1039 

    print("RMSE: %.5f" % rmse) 1040 

    R = np.corrcoef(y_test.values,y_pred1) 1041 

 1042 

    print("Correlation Coef: %.5f" % R[0,1]) 1043 

    r2 = r2_score(y_test.values,y_pred1) 1044 

    print("r2 score: %.5f" % r2) 1045 

 1046 

 #XGBoost 1047 

    mae = mean_absolute_error(y_test.values, y_pred2) 1048 

    print("MAE: %.5f" % mae) 1049 

    rmse =np.sqrt(mean_squared_error(y_test.values, y_pred2)) 1050 



44 

 

    print("RMSE: %.5f" % rmse) 1051 

    R = np.corrcoef(y_test.values,y_pred2) 1052 

 1053 

    print("Correlation Coef: %.5f" % R[0,1]) 1054 

    r2 = r2_score(y_test.values,y_pred2) 1055 

    print("r2 score: %.5f" % r2) 1056 

 1057 

    #svm 1058 

    mae = mean_absolute_error(y_test.values, y_pred3) 1059 

    print("MAE: %.5f" % mae) 1060 

    rmse =np.sqrt(mean_squared_error(y_test.values, y_pred3)) 1061 

    print("RMSE: %.5f" % rmse) 1062 

    R = np.corrcoef(y_test.values,y_pred3) 1063 

 1064 

    print("Correlation Coef: %.5f" % R[0,1]) 1065 

    r2 = r2_score(y_test.values,y_pred3) 1066 

    print("r2 score: %.5f" % r2) 1067 

 1068 

# #plot predict error 1069 

    plt.gcf().set_size_inches((10, 4)) 1070 

 1071 

    plt.plot(((y_pred1-y_test.values)/y_test.values)[::8], color='g', marker='*', label='random forest') 1072 

    plt.plot(((y_pred2-y_test.values)/y_test.values)[::8], color='c', marker='s', markerfacecolor='none', 1073 

label='XGBoost') 1074 

    plt.plot(((y_pred3-y_test.values)/y_test.values)[::8], color='y', marker='o', 1075 

markerfacecolor='none', label='SVM') 1076 

    # plt.gca().legend() 1077 

    plt.legend(loc='upper right') 1078 

    plt.savefig('junk.jpg') 1079 

 1080 

# plot training error 1081 

    plt.gcf().set_size_inches((10, 4)) 1082 

    plt.plot(((y_pred_train1-y_train.values)/y_train.values)[::20], color='g', marker='*', 1083 

label='random forest') 1084 

    plt.plot(((y_pred_train2-y_train.values)/y_train.values)[::20], color='c', marker='s', 1085 

markerfacecolor='none', label='XGBoost') 1086 

    plt.plot(((y_pred_train3-y_train.values)/y_train.values)[::20],color='y', marker='o', 1087 

markerfacecolor='none', label='SVM') 1088 

    # plt.gca().legend() 1089 

    plt.legend(loc='upper right') 1090 

    plt.savefig('junk.jpg') 1091 

 1092 

 1093 

# plot predict test 1094 

    plt.gcf().set_size_inches((10, 4)) 1095 

    plt.plot(y_test.values[::3], color='b', label='value') 1096 

    plt.plot(y_pred1[::3], color='g', marker='*', markerfacecolor='none', label='random 1097 

forest',linestyle='None') 1098 

    plt.plot(y_pred2[::3], color='c', marker='s', markerfacecolor='none', 1099 

label='XGBoost',linestyle='None') 1100 

    plt.plot(y_pred3[::3], color='y', marker='o', markerfacecolor='none', 1101 

label='SVM',linestyle='None') 1102 

    # plt.gca().legend() 1103 

    plt.legend(loc='upper right') 1104 

    plt.savefig('junk.jpg') 1105 
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 1106 

#plot training data 1107 

    plt.gcf().set_size_inches((10, 4)) 1108 

    plt.plot(y_train.values[::10], color='b', label='value') 1109 

    plt.plot(y_pred_train1[::10], color='g', marker='*', markerfacecolor='none', label='random 1110 

forest',linestyle='None') 1111 

    plt.plot(y_pred_train2[::10], color='c', marker='s', markerfacecolor='none', 1112 

label='XGBoost',linestyle='None') 1113 

    plt.plot(y_pred_train3[::10], color='y', marker='o', markerfacecolor='none', 1114 

label='SVM',linestyle='None') 1115 

    # plt.gca().legend() 1116 

    plt.legend(loc='upper right') 1117 

    plt.savefig('junk2.jpg') 1118 

 1119 

# shap value 1120 

    shap.initjs() 1121 

    shap_values = shap.TreeExplainer(final_gb).shap_values(X_train) 1122 

    X_train = pd.DataFrame(data=X_train, columns=original_col) 1123 

    X_train = X_train.rename(columns={ 1124 

        "X2": "X7", "X3": 1125 

"X6","X4":"X14","X5":"X4","X6":"X8","X7":"X9","X8":"X10","X9":"X12", 1126 

        "X10":"X11","X11":"X13","X12":"X5","X13":"X1","X14":"X2","X15":"X3"}) 1127 

    shap.summary_plot(shap_values, X_train) 1128 

 1129 

main() 1130 




