1 **Detecting Corporate Misconduct through Random Forest in China's** 2 **Construction Industry** 3

- Ran Wang¹, Vahid Asghari², Shu-Chien Hsu³, Chia-Jung Lee⁴, and Jieh-Haur Chen⁵
- 4

ABSTRACT

5 Construction companies' wrongdoings can result in severe consequences and have been a 6 concern for regulators, investors, and other stakeholders. Though previous studies have 7 identified a great number of factors associated with corporate misconduct, ranking their 8 importance and using them to predict this misconduct in the construction industry have been 9 overlooked. This study developed a random forest (RF) model using data on 873 observations 10 from 97 China construction companies in 2000-2017. Based on the variable importance 11 analysis of RF, the top 10 variables were obtained and variables indicating both corporate 12 governance and financial performance may be associated with an increased risk of corporate 13 illegal activities. Then RF was compared with support vector machine (SVM) and the results 14 indicate that both are suitable for predicting corporate misconduct in the construction industry. 15 These findings expand the study of corporate misconduct in the construction industry and can 16 be used to guide regulatory decision-making for conducting investigations into possible 17 corporate misconduct.

¹ Ph.D. Student, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., 181 Chatham Road South, Hung Hom, Kowloon, Hong Kong SAR.

² Ph.D. Student, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., 181 Chatham Road South, Hung Hom, Kowloon, Hong Kong SAR.

Associate Professor, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., 181 Chatham Road South, Hung Hom, Kowloon, Hong Kong SAR (corresponding author). E-mail: mark.hsu@ polyu.edu.hk

Assistant Professor, Dept. of International Business, Tunghai Univ., No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, Taiwan.

⁵ Distinguished Professor, Dept. of Civil Engineering, National Central Univ., No.300, Chung-da Rd., Taoyuan, Taiwan.

18 Keywords: corporate misconduct; random forest; support vector machine; variable importance

19 Introduction

20	Each year, dozens of deadly construction accidents occur worldwide. Many of these incidents
21	are attributed to the large issue of corporate corruption. Corrupt practices have damaging
22	consequences across multiple levels of the construction industry. For the local community,
23	unemployment may rise, especially when the demand for related secondary business such as
24	restaurants and gas stations decreases (Zahra et al. 2005). For society, the public's faith in senior
25	managers and the ability of an executive board to monitor management is shaken (Zahra et al.
26	2005), with even confidence in the free market system eroded (Paruchuri and Misangyi 2015).
27	This may cause a depressed moral climate in a society (Shadnam and Lawrence 2011). Apart
28	from these repercussions, misconduct in the construction industry can lead to injuries and death.
29	11 workers were killed and 2 seriously injured after the collapse of an elevator at a Chinese
30	construction site in April 2019 (Xinhua 2019).

31 Preventing such events is a top priority among practitioners and academics. A growing 32 body of studies (Le et al. 2014; Liu et al. 2017; Owusu et al. 2019) have focused on identifying 33 causal factors of corruption and generated numerous noteworthy factors. However, due to the 34 limited budget and resources of a firm, coping with all those factors is very difficult. Even 35 though a great deal of effort has been put into misconduct prevention practices and research, 36 corporate scandals continue to arise. Therefore, it is essential to identify and rank the 37 importance of possible factors. By focusing on the most important factors, investors, regulators, 38 and other stakeholders could improve the effectiveness of misconduct detection and other 39 critical evaluations.

40	Though recognizing those important risk factors could assist in mitigating corporate
41	misbehaviors, timely and accurate detection of corporate illegal behaviors is also essential.
42	However, accurately detecting corporate misconduct is a serious challenge. Some studies (Ngai
43	et al. 2011; West and Bhattacharya 2016) claim that data mining approaches may be useful for
44	detecting small anomalies because such approaches can extract and identify relevant
45	information otherwise hidden in large volumes of data. Support vector machine (SVM) and
46	other machine learning tools have been employed in analysis of construction cost, injury,
47	contractor default, and other areas of the construction industry (Cao et al. 2014; Movahedian
48	Attar et al. 2013; Tixier et al. 2016). The use of these tools, however, remains limited in the
49	domain of construction corporate misconduct prediction. Wang et al. (2018) developed an SVM
50	model to predict the occurrence of corporate misconduct in Taiwan based on several variables
51	related to the board of directors. The study explored the role of statistically insignificant
52	variables by comparing models with and without those variables, while also failing to provide
53	a ranking of all variables, let alone the significant ones. In particular, when the number of factors
54	is large, manual comparison would be time-consuming and inefficient. The present study draws
55	upon a large quantity of data related to corporate governance and financial performance to rank
56	feature importance and construct a data mining-based prediction model. By identifying the most
57	influential factors, the prediction model is expected to provide regulators, investors and
58	securities agencies with an effective and early misconduct detection tool.

59 Literature Review

60 Corporate Misconduct in the Construction Industry

61	Corporate misconduct is defined as the actions taken by companies to operate them illegally
62	when they consider that the benefits outweigh the risks of doing so (Mishina et al. 2010). In the
63	construction industry, various forms of misconduct have been identified, such as bid cutting
64	(May et al. 2001), collusive tendering (Dorée 2004; Zarkada-Fraser and Skitmore 2000), and
65	establishing front/shell companies (Chan and Owusu 2017). These behaviors may be attributed
66	to underlying factors that are in play at different levels. From a macro perspective, flawed
67	regulation systems may elevate the chances of opportunistic behaviors, and a negative industrial
68	climate may encourage bad practices (Le et al. 2014). From a micro perspective, some scholars
69	emphasize individual traits, like conducive attitude toward corruption (Brown and Loosemore
70	2015), egoism, and utilitarianism (Fan and Fox 2009). From the meso level, economic pressures
71	(Alutu and Udhawuve 2009), board structure (Lee et al. 2018), organizational climate (Liu et
72	al. 2017), commitment of code (Ameyaw et al. 2017), and other organizational factors may
73	contribute to the occurrence of corporate misconduct. This study builds on the foundation of
74	these organizational studies.

Although many factors have been identified as affecting the likelihood of corporate misconduct, less research considers ranking the importance of those factors and employing them to perform corporate misconduct prediction. Moreover, those studies investigating influencing factors relied on questionnaires, interviews, and other field survey tools to collect data. That is, the data sets are difficult to access by other researchers and the relationship between those underlying factors and corporate misconduct may not be verifiable. To address
this gap, this study draws upon public information, especially from corporate annual reports, to
serve as a proxy for organizational factors.

83 Random Forest

84 RF models have been used in various fields of science and engineering, including the 85 construction industry. For instance, Tixier et al. (2016) developed a model to predict 86 construction injury based on RF and Stochastic Gradient Tree Boosting with a set of features 87 and safety outcomes extracted from textual injury reports. Liu et al. (2018) explored the impacts 88 of outdoor ambient environment on scaffolding construction productivity via RF and a 89 generalized additive model. Poh et al. (2018) presented an RF tool to explore safety leading 90 indicators. Following this line of research, this study applies RF to corporate misconduct factor 91 identification and prediction in the construction industry.

92 Random forest is an ensemble of small trees trained on a randomly selected sub-sample 93 of a dataset through bootstrap aggregating or bagging (Breiman 1996). Each tree is trained 94 through recursive partitioning of features to a certain level of depth, d. During this process, the 95 randomly selected observations at each node are partitioned into subgroups to make a prediction 96 (Breiman 2001). The exact partitioning position and the selection of features rely heavily on 97 the distribution of observations (Strobl et al. 2009). The features, partitioning by which provides 98 the most information regarding the observations, are chosen for this process. Several criteria 99 are used for partitioning, but the most frequent ones are Gini Index (Breiman et al. 1984) for 100 classification.

101	For each tree T_i ($i = 1, 2,, n_{tree}$), a new training data set S_i is generated by
102	randomly resampling the original training data set $S = \{(x_i, y_i), i = 1, 2,, n\}, (X, Y) \in$
103	$R^k \times R$. Although these sub-samples are different from each other, they must have similar
104	distribution. Then tree T_i is created with the set S_i , by the above mentioned methodology and
105	without pruning. In this process, some data will be used repeatedly while others might be "left
106	out" and considered as out-of-bag (OOB) samples. This OOB data is used to evaluate the
107	internal performance of each tree and to determine the variable importance (Breiman 2001). To
108	increase the diversity of these trees further, m_{try} input variables are randomly selected from
109	the k variables. Considering the m_{try} input variables and their linear combinations, a tree
110	grows by searching the best split based on the generated training dataset and random variable
111	set. In the same way, all the n_{tree} trees are constructed and trained. They are expected to be
112	independent from each other because of the randomization of training data and input variables.
113	Finally, all the constructed trees are collected into the RF model and vote for the outcomes.
114	For the sample x_t , $f(x_t) = majority \ vote\{T_i(x_t)\}_{i=1}^{n_{tree}}$ (1)

115 Corporate Misconduct Prediction

Though corporate misconduct prediction is not prevalent in the construction industry, some scholars have attempted similar prediction in the field of organizational management. Ravisankar et al. (2011) used a multilayer feed forward neural network, SVM, genetic programming, a group method of data handling, logistic regression (LR), and a probabilistic neural network to recognize fraud and non-fraud companies with 18 financial items. Pai et al. (2011) constructed an SVM-based fraud warning model to detect top management fraud based on 16 financial features about a firm's profitability, leverage, liquidity, and efficiency, as well

123	as 2 variables about director shareholding. Lin et al. (2015) compared the performance of
124	several data mining techniques (LR, DT, and Artificial Neural Networks) used as financial fraud
125	detection tools with experts' judgments to analyze their differences. Most of the variables used
126	were relevant to financial/accounting performance and several were relevant to corporate
127	governance. Kim et al. (2016) established three multi-class prediction models using
128	multinomial LR, SVM, and Bayesian networks. These models drew upon 49 variables,
129	including off-balance sheet variables, nonfinancial measures, market variables and governance
130	measures. Dong et al. (2018) adopted LR, SVM, DT, and neural networks and leveraged 3
131	categories of financial ratios and language-based features for financial misstatement detection.
132	Regarding input variables, most previous research employed financial/accounting
133	variables. This may be related to the reasons for engaging in corporate misconduct. Unusual
134	financial ratio values may represent a need to hide losses, to improve apparent stock market
135	performance, and to satisfy investors, and lenders so as to mitigate managerial pressure
136	(Ravisankar et al. 2011). Therefore, poor financial performance could be an incentive to commit
137	corporate fraud. Fraud has been found to be conducted more often by top management (Zahra
138	et al. 2005). As the chief decision makers, executives have the responsibility for setting the
139	overall direction of an organization (Hambrick and Mason 1984). Once they decide how to
140	behave, corresponding proper or improper actions within the firm follow. Thus, an array of
141	studies attribute corporate fraudulent behaviors to the characteristics of top management
142	(Schnatterly et al. 2018; Shi et al. 2016; Troy et al. 2011). In an effort to reduce such behaviors
143	by executives, a board of directors is appointed by a firm's owners to serve as a monitoring

144	device (Fama and Jensen 1983). A board of directors can play an important role in supervising
145	and guarding against opportunistic behaviors by top management. The effectiveness of this
146	function is associated with board size, board independence, and other board properties (Lee et
147	al. 2018; Raheja 2005). Taken together, this may be why some studies (e.g., Kim et al. 2016;
148	Pai et al. 2011) add several corporate governance related variables (e.g., CEO bonus and board
149	shareholding) as input features. We followed the above studies and included variables about
150	corporate governance and financial/accounting variables as our input features. Then, we ranked
151	their importance, a step not typically considered in previous research, to identify the most
152	influential factors of corporate misconduct in the construction industry.
153	As for classification techniques, previous studies have often used LR, SVM, and DT to
154	develop their financial statement fraud detection models. Among them, LR is typically used as
155	a benchmark (Ngai et al. 2011; Tserng et al. 2011). Though LR is easy to implement, it has
156	difficulty in handling complex issues, especially fraud detection (West and Bhattacharya 2016).
157	SVM is one of the most popular machine learning tools. It transforms the original data into a
158	high dimensional space by nonlinear mapping and separates the data with a hyperplane.
159	However, SVM is prone to overfitting (Pai et al. 2011). More importantly, SVM lacks variable
160	importance ranking. With its ability to predict and provide variable importance, DT is an easy-
161	to-use predictive model that generates mapping from observations to possible consequences
162	(Ngai et al. 2011). It is constructed as a tree-like structure with attributes as branches and
163	outcomes as leaves. When developing a predictive model, DT has no requirement for prior
164	domain knowledge, making its implementation simple (Dutta et al. 2017). However, DT may

165 be unstable and risks overfitting if a single tree is used (Bhattacharyya et al. 2011).

166	To overcome this drawback of DT, random forests (RF) was introduced by Breiman
167	(2001). As an ensembled tool, RF is composed of a set of trees generated by a classification
168	and regression tree (CART) (Breiman et al. 1984) and a combination of randomly chosen
169	explanatory factors. This method inherits several advantages of DT (Sutton 2005). First, RF is
170	able to handle complex nonlinear high-order interactions among features and does not require
171	feature selection. It is also robust even with outliers and irrelevant inputs, as well as able to
172	avoid overfitting (Rodriguez-Galiano et al. 2012). Next, there is no requirement for prior
173	knowledge of underlying processes and no assumptions about the target function (Prinzie and
174	Van den Poel 2008). RF has been shown to be among the most accurate general-purpose tools
175	to date (Biau 2012). It additionally provides useful estimates of variable importance (Breiman
176	2001). With identifying variable importance and establishing an accurate prediction model as
177	the primary aims of this study, RF is thus applied to the factor identification and prediction of
178	corporate misconduct in the construction industry.

179 Method

180 Variable Importance

One of the most desirable characteristics of RF is its ability to generate variable importance. To compute the importance of a variable, RF first randomly permutes the value of a variable and keeps the others unchanged. Then a set of new trees is established. A set of accuracies corresponding to the modified OOB data is generated and compared with accuracies corresponding to the original OOB data with all of the variables. Their differences are

186	calculated and averaged. The average value indicates the importance of that permuted variable.
187	The larger the absolute value of the average of the differences is, the more important that
188	variable is. The underlying rationale is that the data permutation of a variable would break its
189	association with the output, and as a result, there would be a decrease in the accuracy if the
190	permuted data were used as an input (Strobl et al. 2009). That is, if there is indeed a relationship
191	between a variable and the output, replacing the original data with the permuted data would
192	lead to a significant decrease in the accuracy, otherwise the replacement would make no
193	difference to the accuracy. By doing so, RF reveals the variable importance and the association
194	with the output. In particular, this association takes into consideration interactions with other
195	variables (Strobl et al. 2009; Tsanas and Xifara 2012). The redundant variables are not given a
196	priority even if they have a high correlation with the output. This function of RF facilitates
197	research with high-dimensional data as is the case with the present study analyzing dozens of
198	variables about financial performance and corporate governance.

199 Evaluation Metrics

Some studies (Bhattacharyya et al. 2011; Hajek and Henriques 2017) claim the cost of misidentifying lawful corporate behaviors as wrongful is much higher than that of neglecting to identify wrongful behaviors. This present study proposes that the cost of incorrectly classifying a lawful company as a violating one should not be overlooked as well. When a company is considered violating, subsequent investigation can be undertaken. If such actions are wasted on a lawful company, a fraudulent company would remain at large because of the limited resources of regulators. Moreover, investors would prefer to identify a trustworthy firm

207	than a questionable one to achieve profits from their investments. Therefore, this study attempts
208	to assess the performance of RF on both violating and lawful observations.
209	Whether the evaluated company is violating or lawful, the metrics used in this study
210	are calculated mainly on the basis of the confusion matrix shown in Fig. 1.
211 212 213	Insert Figure 1 about here.
214	If the aim is to evaluate the performance of RF on violating observations, the violating
215	companies are considered as positive while the lawful ones would be negative. Then TP is the
216	number of violating observations classified correctly as violating. FN is the number of violating
217	observations classified incorrectly as lawful. FP is the number of lawful companies falsely
218	classified as violating while TN is the number of lawful companies accurately classified as
219	lawful. On the other hand, if the aim is to evaluate the performance of RF on lawful companies,
220	then the lawful companies are considered as positive while the violating one would be negative.
221	TP and FN are the number of lawful observations correctly classified as lawful and wrongly
222	classified as violating, respectively. FP and TN are the number of violating companies
223	incorrectly classified as lawful and rightly classified as violating, respectively.
224	Based on the above confusion matrix, the metrics applied in this study include accuracy,
225	precision, recall, and F1-score. These metrics can be formulated as follows:
226	$Accuracy = \frac{TP + TN}{P + N} \tag{1}$
227	$Precision = \frac{TP}{TP + FP} $ (2)
228	$Recall = \frac{TP}{P} $ (3)
229	$F1 - score = 2 \times \frac{Precision \times Recall}{Precision + Recall} $ (4)

230 Sample and Data

231 Our samples consist of all the publicly traded construction companies listed on the Shenzhen 232 Stock Exchange and Shanghai Stock Exchange in China. All of these companies' information 233 is derived from the China Stock Market and Accounting Research (CSMAR) database. This 234 database collects financial and governance data mainly from the companies' annual, semi-235 annual, and quarterly reports. Some governance data is complemented by interim 236 announcements by the board of directors, board of supervisors, and shareholder meetings. 237 Regarding violation information, a list of violating companies was extracted from enforcement 238 information published by the China Securities and Regulatory Commission (CSRC). By 239 examining the violating cases carefully, this study identifies the year when violating behaviors 240 are actually taken. If an illegal activity lasts for several years, we treat the company as a violator 241 each year on the assumption that the activity could have been stopped at any time. If the date 242 when a firm participated in fraud is not mentioned in the violating cases, it is assumed that the 243 violation was detected immediately after the action took place. Though the CSMAR database 244 collects enforcement information from 1994 to date, most records about construction 245 companies begin after 2000. Thus, this study focuses on 97 construction companies over the 246 period 2000-2017 to capture as much available data as possible. After data points with missing 247 values were excluded, 873 final observations are yielded. Among them, 155 observations 248 engaged in misconduct have been reported.

249 Measurement

250 As the output, corporate misconduct is operationalized by a dummy variable indicating whether

273	Model Development
270 271 272	Insert Table 2 about here.
268 269	Insert Table 1 about here.
266 267	based on the definition of CSMAR. Table 2 gives the descriptive statistics of the 61 variables.
265	Lin et al. 2015; Pai et al. 2011; Perols 2011; Ravisankar et al. 2011). Their calculation was
264	detection (Dutta et al. 2017; Hajek and Henriques 2017; Kim et al. 2016; Kirkos et al. 2007;
263	financial variables were adopted mainly based on previous studies on fraudulent statement
262	capacity (X38-X46), per share indexes (X47-49), and profitability capacity (X50-X60). The
261	structure ratios (X24-X28), liquidity ratio (X29-X36), growth capability (X37), operating
260	2005). Financial ratios included several financial aspects of the construction companies, i.e.,
259	et al. 1986; Lee et al. 2018; Schnatterly et al. 2018; Sen 2007; Wowak et al. 2015; Zahra et al.
258	corporate behaviors (Chen et al. 2006; Dechow et al. 1996; Harris 2008; Jia et al. 2009; Kesner
257	related information about the board and TMT. They have been reported to be related to illegal
256	financial ratios. Governance variables (X0-X23) show the structure, compensation, and other
255	selected because they encompass a wide cross-section of corporate governance information and
254	about corporate governance and the remaining were financial variables. These variables were
253	is 0. This study employed 61 variables as the input, shown in Table 1. Among them, 24 were
252	violating and its label equals 1. Otherwise the observation is considered as lawful and its label
251	an observation engaged in corporate misconduct or not. If yes, the observation is considered as

All the 893 observations were randomly and proportionally split into two parts. 80% were used

as the training data (698 observations, 124 with corporate misconduct) while the other 20% were the testing data (175 observations, 31 with corporate misconduct). The training data was used to establish the learning model, and then the performance of the established model was evaluated adopting the testing data. All the variables were input without feature selection because of RF's ability to handle higher-order interactions among features.

280 Like other machine learning models, RF has several hyperparameters which need to be 281 tuned (Breiman 2001; Ma and Cheng 2016). Previous studies (Poh et al. 2018) have mainly 282 focused on the number of trees n_{tree} while other hyperparameters need to be meticulously 283 tuned. In addition to the number of trees n_{tree} , the maximum depth which each tree will be 284 split d, minimum number of samples on a node for branching S_n , minimum number of 285 samples in a final leaf S_l , and features being considered for branching at each step mtry are 286 of equal importance. The sampling method could possibly affect the performance of RF. There 287 is no effective method for simultaneous hyperparameter tuning of this model to the best of 288 authors' knowledge. Therefore, grid search, a greedy search algorithm, was adopted for this 289 study. In grid search, all possible initial values of hyperparameters are tested. Table 3 presents 290 the list of hyperparameters and the search space of each one. 291 292 Insert Table 3 about here.

293

Each sample of the search space represented a possible set of hyperparameters. With each set, the dataset was randomly shuffled and the results of prediction were assessed with a 5-fold cross validation method. That is, 5 RF models were created and tested by splitting the dataset into 5 sections, and then, in 5 steps, keeping one part as the test set and the remaining as the training set. Their average was treated as the overall performance of that combination.

299 Finally, the best candidate with the highest prediction accuracy was chosen as the

300 hyperparameter set. These values are presented in Table 3. The processing time of this grid

- 301 search by using scikit-learn, a library for machine learning algorithms with python (Pedregosa
- et al. 2011), took nearly 7.3 hours on a Core i7-8700T and 8.00 GB of RAM.

303 To assess the performance of RF further, a comparative analysis was conducted with 304 SVM. SVM is commonly used in statement fraud detection, particularly in the construction 305 industry. The same training and testing data with RF were scaled and inputted into SVM. In 306 implementing SVM, two parameters were optimized, namely the penalty constant C and the 307 radial basis function (RBF) kernel parameter g. They were also determined by grid search. 308 That is, C and g were assigned a value from $\{2^{-10}, 2^{-9}, \dots, 2^9, 2^{10}\}$ with 2^1 as the exponential 309 step. These combinations were tested by 5-fold cross-validation. In this study, the optimal C 310 and g values were 64 and 0.0625, respectively.

311 Results and Discussion

312 1. Variable importance analysis

Variable importance as ranked by RF has the potential to facilitate the analysis of the role of input variables in corporate misconduct prediction. Fig. 2. depicts the following variables which are the most influential: ratio of net profits to total profits (X55), board of directors' total pay (X12), growth rate of total assets (X37), TMT total pay (X13), accounts payable turnover (X42), total pay for two boards and TMT (X11), current assets ratio (X24), net cash flow from operating activities per share (X49), ratio of total profits to EBIT (X56), and firm size (X2).

319	Among the top 10 features, 6 are associated with several categories of financial performance
320	while the others are related to corporate governance. It is apparent that not only financial
321	performance but corporate governance makes a significant difference in corporate misconduct
322	prediction.
323 324 325	Insert Figure 2 about here.
326	The most important variable is ratio of net profits to total profits (X55), indicating the
327	earnings capability of a firm. This capability is also represented by ratio of total profits to EBIT
328	(X56), which is also among the top 10 variables. This shows that violating firms may try to
329	inflate their profit or earning figures to create an impressive financial prospectus.
330	The second, fourth, and sixth important variables are board of directors' total pay (X12),
331	TMT total pay (X13), and total pay for two boards and TMT (X11). All of them are associated
332	with compensation. Regarding the designing and implementing total compensation package,
333	compensation is a tool used by management for a variety of purposes to further the existence
334	of the company. Directors with higher compensation are expected to contribute more to
335	improving board effectiveness (Zhu et al. 2016). Effective board monitoring has been
336	considered one of the most important mechanisms for preventing opportunistic managerial
337	behaviors (Fama and Jensen 1983; Lee et al. 2018), such as corporate misconduct. Similarly,
338	supervisors' compensation has been reported to be relevant to improving accounting
339	information quality (Ran et al. 2015), which could be explained by supervisors with high
340	compensation having a greater incentive to monitor directors and members of the TMT. TMT
341	compensation, however, appears to operate differently than that of directors' and supervisors'.

High compensation may provide incentives to engage in fraudulent behaviors for executives to maximize their personal profits (Harris and Bromiley 2007). The tenth important variable is firm size. A larger firm is expected to have better internal governance and thus less likely to be involved in misconduct (Shan 2013). The ranking of these variables demonstrates the importance of corporate governance in preventing corporate misconduct.

347 The third important variable is growth rate of total assets (X37), reflecting a firm's 348 growth capacity. Companies that are unable to achieve a certain performance level may be 349 motivated to commit illegal activities to maintain their continuing growth (Harris 2008). The 350 other important variables include a firm's operating capacity, ratio structure, and index per share, 351 respectively. This indicates that any aspects of financial performance with an undesirable level 352 may provide an incentive for corporate misconduct. Fortunately, those identified important 353 variables serve to summarize comprehensive financial performance and thus improve the 354 effectiveness of identifying questionable firms. The above results have important implications 355 in the process of feature selection when establishing a corporate misconduct prediction model 356 for construction companies.

357 2. Comparison between RF and SVM

According to the procedure described in model development, RF were trained, tested, and then compared with SVM to assess prediction performance. Table 4 shows the prediction results of RF and SVM. Their performance is very similar across all evaluation matrices. The accuracies of RF and SVM are both above 80%, indicating their overall performance is acceptable in predicting corporate misconduct. As we mentioned before, identifying both violating

363	companies and lawful ones is meaningful. When predicting violating observations (label = 1),
364	RF performs somewhat better than SVM in terms of precision (RF, 0.6667; SVM, 0.6250). The
365	results show that RF identifies more actual violating observations than SVM among the
366	observations labeled violating by the two algorithms. When predicting lawful companies (label
367	= 0), the recall of RF (0.9931) is slightly higher than that of SVM (0.9792). This reflects that
368	among all the actual lawful companies, more are identified by RF than SVM. In terms of overall
369	performance, RF performs only a bit worse than SVM, with F1-scores and accuracy lower than
370	those of SVM. This may be related to the high dimensionality of the dataset and correlated
371	features, leading to the overfitting of SVM (Hajek and Henriques 2017; Pai et al. 2011).
372	However, such a dataset and features won't affect the performance of RF. RF is robust even
373	with high-order interactions among features, as mentioned in the literature review.
374	
374 375	Insert Table 4 about here.
374 375 376	Insert Table 4 about here.
374 375 376 377	Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the
374 375 376 377 378	Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the label is 0 than when the label is 1, showing that both perform better in identifying lawful
374 375 376 377 378 379	Insert Table 4 about here. Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the label is 0 than when the label is 1, showing that both perform better in identifying lawful observations than violating ones. This may be attributed to the fact that the number of violating
 374 375 376 377 378 379 380 	Insert Table 4 about here. Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the label is 0 than when the label is 1, showing that both perform better in identifying lawful observations than violating ones. This may be attributed to the fact that the number of violating observations is much smaller than that of lawful ones. Due to the somewhat limited sample size
 374 375 376 377 378 379 380 381 	Insert Table 4 about here. Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the label is 0 than when the label is 1, showing that both perform better in identifying lawful observations than violating ones. This may be attributed to the fact that the number of violating observations is much smaller than that of lawful ones. Due to the somewhat limited sample size of violating companies, correctly predicting a violating company is more complex than
 374 375 376 377 378 379 380 381 382 	Insert Table 4 about here. Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the label is 0 than when the label is 1, showing that both perform better in identifying lawful observations than violating ones. This may be attributed to the fact that the number of violating observations is much smaller than that of lawful ones. Due to the somewhat limited sample size of violating companies, correctly predicting a violating company is more complex than predicting a lawful company using machine learning tools. As a result, it is difficult to precisely
 374 375 376 377 378 379 380 381 382 383 	Insert Table 4 about here. Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the label is 0 than when the label is 1, showing that both perform better in identifying lawful observations than violating ones. This may be attributed to the fact that the number of violating observations is much smaller than that of lawful ones. Due to the somewhat limited sample size of violating companies, correctly predicting a violating company is more complex than predicting a lawful company using machine learning tools. As a result, it is difficult to precisely identify those violating companies. Nevertheless, accurately distinguishing lawful companies
 374 375 376 377 378 379 380 381 382 383 384 	Insert Table 4 about here. Insert Table 4 about here. Moreover, both RF and SVM have higher precision, recall, and F-1 scores when the label is 0 than when the label is 1, showing that both perform better in identifying lawful observations than violating ones. This may be attributed to the fact that the number of violating observations is much smaller than that of lawful ones. Due to the somewhat limited sample size of violating companies, correctly predicting a violating company is more complex than predicting a lawful company using machine learning tools. As a result, it is difficult to precisely identify those violating companies. Nevertheless, accurately distinguishing lawful companies from those questionable ones is still meaningful. By giving those lawful companies an analog

effectiveness of recognizing corporate misconduct may be subsequently improved.
Simultaneously, investors could have greater confidence in their decision-making when
selecting companies for investment.

389 Conclusion

390 Corporate misconduct can result in severe consequences, especially in the construction industry. 391 Though previous studies have identified a great number of factors associated with corporate 392 misconduct, ranking their importance and using them to predict corporate misconduct in the 393 construction industry has been previously overlooked. To identify the most influential factors, 394 this study developed an RF-based model employing a dataset about 873 observations from 97 395 China construction companies in 2000-2017. Among the 61 used variables, this study identified 396 10 variables, which represent several aspects of corporate governance and financial 397 performance, with the greatest association with corporate misconduct. Then, based on the same 398 dataset and inputs, the performance of RF was compared with that of SVM. The results show 399 both are effective in predicting corporate misconduct of construction firms.

This study is expected to contribute to the field of corporate misconduct prediction. Using variable importance ranking of RF to explore the most influential factors, this study presents a method for locating key factors of corporate misconduct and for facilitating greater understanding of corporate misbehavior. In particular, the role of corporate governance deserves more attention in alleviating corporate misconduct. By employing RF and comparing it with SVM, this research demonstrates the feasibility of RF in predicting corporate misconduct in the Chinese construction industry. RF may provide a new option for researchers to more 407 effectively identify questionable construction companies. This study also has practical 408 implications. By exploring the most important factors, regulators and investors can be better 409 equipped to more efficiently assess a firm's governance and financial condition and foresee the 410 firm's possible behaviors. RF could be an effective tool for regulators and investors to identify 411 both law-abiding and violating firms.

412 Though this research has included dozens of variables about corporate governance and 413 financial performance, adding more features about projects, the firm itself, and its external 414 environment may enhance the accuracy of corporate misconduct prediction in the construction 415 industry. The variables used in this study were mainly extracted from a firm's annual reports, 416 which also contain a textual description of a firm. Thus, combing for sentiment analysis with 417 text mining tools could be helpful for identifying violating construction firms. The 418 unsatisfactory performance of RF and SVM in predicting violating observations may be 419 attributed to the imbalance in the data. The number of violating observations is far less than 420 that of lawful observations. Supplementation with techniques addressing imbalance data issues 421 would be beneficial. The RF model developed in this study uses data on Chinese construction 422 firms only. Additional, similar research covering other industries and contexts is encouraged. 423 **Data Availability Statement** 424 All data and models used during the study are available from the corresponding author

425 by request.

426 **References**

Alutu, O. E., and Udhawuve, M. L. (2009). "Unethical Practices in Nigerian Engineering
Industries: Complications for Project Management." *Journal of Management in Engineering*, 25(1), 40–43.

430 Ameyaw, E. E., Pärn, E., Chan, A. P. C., Owusu-Manu, D.-G., Edwards, D. J., and Darko, A. 431 (2017). "Corrupt Practices in the Construction Industry: Survey of Ghanaian 432 Experience." Journal of Management in Engineering, 33(6), 05017006. 433 Bhattacharyya, S., Jha, S., Tharakunnel, K., and Westland, J. C. (2011). "Data mining for credit 434 card fraud: A comparative study." Decision Support Systems, 50(3), 602-613. 435 Biau, G. (2012). "Analysis of a Random Forests Model." Journal of Machine Learning 436 Research, 13(4), 1063–1095. 437 Breiman, L. (1996). "Bagging predictors." Machine Learning, 24(2), 123-140. 438 Breiman, L. (2001). "Random forests." Machine learning, 45(1), 5-32. 439 Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and Regression 440 Trees. CRC Press. 441 Brown, J., and Loosemore, M. (2015). "Behavioural factors influencing corrupt action in the 442 Australian construction industry." Engineering, Construction and Architectural 443 Management, 22(4), 372-389. 444 Cao, M.-T., Cheng, M.-Y., and Wu, Y.-W. (2014). "Hybrid computational model for 445 forecasting Taiwan construction cost index." Journal of Construction Engineering and 446 Management, 141(4), 04014089. 447 Chan, A. P. C., and Owusu, E. K. (2017). "Corruption Forms in the Construction Industry: 448 Literature Review." Journal of Construction Engineering and Management, 143(8), 449 04017057. 450 Chen, G., Firth, M., Gao, D. N., and Rui, O. M. (2006). "Ownership structure, corporate 451 governance, and fraud: Evidence from China." Journal of Corporate Finance, 12(3), 452 424-448. 453 Dechow, P. M., Sloan, R. G., and Sweeney, A. P. (1996). "Causes and Consequences of 454 Earnings Manipulation: An Analysis of Firms Subject to Enforcement Actions by the 455 SEC." Contemporary Accounting Research, 13(1), 1–36. 456 Dong, W., Liao, S., and Zhang, Z. (2018). "Leveraging Financial Social Media Data for 457 Corporate Fraud Detection." Journal of Management Information Systems, 35(2), 461-458 487. 459 Dorée, A. G. (2004). "Collusion in the Dutch construction industry: An industrial organization 460 perspective." Building Research & Information, 32(2), 146–156. 461 Dutta, I., Dutta, S., and Raahemi, B. (2017). "Detecting financial restatements using data 462 mining techniques." Expert Systems with Applications, 90, 374–393. 463 Fama, E. F., and Jensen, M. C. (1983). "Separation of ownership and control." The Journal of 464 Law & Economics, 26(2), 301-325. 465 Fan, L. C., and Fox, P. W. (2009). "Exploring factors for ethical decision making: Views from 466 construction professionals." Journal of Professional Issues in Engineering Education 467 and Practice, 135(2), 60-69. 468 Hajek, P., and Henriques, R. (2017). "Mining corporate annual reports for intelligent detection 469 of financial statement fraud - A comparative study of machine learning methods." 470 Knowledge-Based Systems, 128, 139–152. 471 Hambrick, D. C., and Mason, P. A. (1984). "Upper echelons: The organization as a reflection

472	of its top managers." Academy of Management Review, 9(2), 193-206.
473	Harris, J., and Bromiley, P. (2007). "Incentives to cheat: The influence of executive
474	compensation and firm performance on financial misrepresentation." Organization
475	Science, 18(3), 350–367.
476	Harris, J. D. (2008). "Financial Misrepresentation: Antecedents and Performance Effects."
477	Business & Society, 47(3), 390–401.
478	Jia, C., Ding, S., Li, Y., and Wu, Z. (2009). "Fraud, enforcement action, and the role of
479	corporate governance: Evidence from China." Journal of Business Ethics, 90(4), 561-
480	576.
481	Kesner, I. F., Victor, B., and Lamont, B. T. (1986). "Board Composition and the Commission
482	of Illegal Acts: An Investigation of Fortune 500 Companies." Academy of Management
483	Journal, 29(4), 789–799.
484	Kim, Y. J., Baik, B., and Cho, S. (2016). "Detecting financial misstatements with fraud
485	intention using multi-class cost-sensitive learning." Expert Systems with Applications,
486	62, 32–43.
487	Kirkos, E., Spathis, C., and Manolopoulos, Y. (2007). "Data Mining techniques for the
488	detection of fraudulent financial statements." Expert Systems with Applications, 32(4),
489	995–1003.
490	Le, Y., Shan, M., Chan, A. P., and Hu, Y. (2014). "Investigating the causal relationships
491	between causes of and vulnerabilities to corruption in the Chinese public construction
492	sector." Journal of Construction Engineering and Management, 140(9), 05014007.
493	Lee, C. J., Wang, R., Lee, C. Y., Hung, C. C. W., and Hsu, S. C. (2018). "Board structure and
494	directors' role in preventing corporate misconduct in the construction industry."
495	Journal of Management in Engineering, 34(2), 04017067.
496	Lin, CC., Chiu, AA., Huang, S. Y., and Yen, D. C. (2015). "Detecting the financial statement
497	fraud: The analysis of the differences between data mining techniques and experts'
498	judgments." Knowledge-Based Systems, 89, 459-470.
499	Liu, J., Zhao, X., and Li, Y. (2017). "Exploring the Factors Inducing Contractors' Unethical
500	Behavior: Case of China." Journal of Professional Issues in Engineering Education
501	and Practice, 143(3), 04016023.
502	Liu, X., Song, Y., Yi, W., Wang, X., and Zhu, J. (2018). "Comparing the Random Forest with
503	the Generalized Additive Model to Evaluate the Impacts of Outdoor Ambient
504	Environmental Factors on Scaffolding Construction Productivity." Journal of
505	Construction Engineering and Management, 144(6), 04018037.
506	Ma, J., and Cheng, J. C. P. (2016). "Identifying the influential features on the regional energy
507	use intensity of residential buildings based on Random Forests." Applied Energy, 183,
508	193–201.
509	May, D., Wilson, O., and Skitmore, M. (2001). "Bid cutting: an empirical study of practice in
510	South-East Queensland." Engineering, Construction and Architectural Management,
511	8(4), 250–256.
512	Mishina, Y., Dykes, B. J., Block, E. S., and Pollock, T. G. (2010). "Why 'good' firms do bad
513	things: The effects of high aspirations, high expectations, and prominence on the

514	incidence of corporate illegality." Academy of Management Journal, 53(4), 701-722.
515	Movahedian Attar, A., Khanzadi, M., Dabirian, S., and Kalhor, E. (2013). "Forecasting
516	contractor's deviation from the client objectives in prequalification model using
517	support vector regression." International Journal of Project Management, 31(6), 924-
518	936.
519	Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., and Sun, X. (2011). "The application of data
520	mining techniques in financial fraud detection: A classification framework and an
521	academic review of literature." Decision Support Systems, 50(3), 559-569.
522	Owusu, E. K., Chan, A. P. C., and Shan, M. (2019). "Causal Factors of Corruption in
523	Construction Project Management: An Overview." Science and Engineering Ethics,
524	25(1), 1–31.
525	Pai, P. F., Hsu, M. F., and Wang, M. C. (2011). "A support vector machine-based model for
526	detecting top management fraud." Knowledge-Based Systems, 24(2), 314-321.
527	Paruchuri, S., and Misangyi, V. F. (2015). "Investor perceptions of financial misconduct: The
528	heterogeneous contamination of bystander firms." Academy of Management Journal,
529	58(1), 169–194.
530	Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
531	Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
532	Brucher, M., Perrot, M., and Duchesnay, É. (2011). "Scikit-learn: Machine Learning
533	in Python." Journal of Machine Learning Research, 12(Oct), 2825-2830.
534	Perols, J. (2011). "Financial Statement Fraud Detection: An Analysis of Statistical and Machine
535	Learning Algorithms." AUDITING: A Journal of Practice & Theory, 30(2), 19-50.
536	Poh, C. Q. X., Ubeynarayana, C. U., and Goh, Y. M. (2018). "Safety leading indicators for
537	construction sites: A machine learning approach." Automation in Construction, 93,
538	375–386.
539	Prinzie, A., and Van den Poel, D. (2008). "Random Forests for multiclass classification:
540	Random MultiNomial Logit." Expert Systems with Applications, 34(3), 1721–1732.
541	Raheja, C. G. (2005). "Determinants of Board Size and Composition: A Theory of Corporate
542	Boards." Journal of Financial and Quantitative Analysis, 40(2), 283–306.
543	Ran, G., Fang, Q., Luo, S., and Chan, K. C. (2015). "Supervisory board characteristics and
544	accounting information quality: Evidence from China." International Review of
545	Economics & Finance, 37(Supplement C), 18-32.
546	Ravisankar, P., Ravi, V., Raghava Rao, G., and Bose, I. (2011). "Detection of financial
547	statement fraud and feature selection using data mining techniques." Decision Support
548	Systems, 50(2), 491–500.
549	Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P.
550	(2012). "An assessment of the effectiveness of a random forest classifier for land-cover
551	classification." ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.
552	Schnatterly, K., Gangloff, K. A., and Tuschke, A. (2018). "CEO wrongdoing: A review of
553	pressure, opportunity, and rationalization." Journal of Management, 44(6), 2405-2432.
554	Sen, P. K. (2007). "Ownership Incentives and Management Fraud." Journal of Business
555	Finance & Accounting, 34(7–8), 1123–1140.

556	Shadnam, M., and Lawrence, T. B. (2011). "Understanding Widespread Misconduct in
557	Organizations: An Institutional Theory of Moral Collapse." Business Ethics Quarterly,
558	21(03), 379–407.
559	Shan, Y. G. (2013). "Can Internal Governance Mechanisms Prevent Asset Appropriation?
560	Examination of Type I Tunneling in China." Corporate Governance: An International
561	<i>Review</i> , 21(3), 225–241.
562	Shi, W., Connelly, B. L., and Sanders, W. G. (2016). "Buying bad behavior: Tournament
563	incentives and securities class action lawsuits." Strategic Management Journal, 37(7),
564	1354–1378.
565	Strobl, C., Malley, J., and Tutz, G. (2009). "An introduction to recursive partitioning: Rationale,
566	application, and characteristics of classification and regression trees, bagging, and
567	random forests." Psychological Methods, 14(4), 323-348.
568	Sutton, C. D. (2005). "Classification and Regression Trees, Bagging, and Boosting." Handbook
569	of Statistics, Data Mining and Data Visualization, C. R. Rao, E. J. Wegman, and J. L.
570	Solka, eds., Elsevier, 303–329.
571	Tixier, A. JP., Hallowell, M. R., Rajagopalan, B., and Bowman, D. (2016). "Application of
572	machine learning to construction injury prediction." Automation in Construction, 69,
573	102–114.
574	Troy, C., Smith, K. G., and Domino, M. A. (2011). "CEO demographics and accounting fraud:
575	Who is more likely to rationalize illegal acts?" Strategic Organization, 9(4), 259–282.
576	Tsanas, A., and Xifara, A. (2012). "Accurate quantitative estimation of energy performance of
577	residential buildings using statistical machine learning tools." Energy and Buildings,
578	49, 560–567.
579	Tserng, H. P., Lin, GF., Tsai, L. K., and Chen, PC. (2011). "An enforced support vector
580	machine model for construction contractor default prediction." Automation in
581	Construction, 20(8), 1242–1249.
582	Wang, R., Lee, C. J., Hsu, S. C., and Lee, C. Y. (2018). "Corporate misconduct prediction with
583	support vector machine in the construction industry." Journal of Management in
584	Engineering, 34(4), 04018021.
585	West, J., and Bhattacharya, M. (2016). "Intelligent financial fraud detection: A comprehensive
586	review." Computers & Security, 57, 47-66.
587	Wowak, A. J., Mannor, M. J., and Wowak, K. D. (2015). "Throwing caution to the wind: The
588	effect of CEO stock option pay on the incidence of product safety problems." Strategic
589	Management Journal, 36(7), 1082–1092.
590	Xinhua. (2019). "11 killed, 2 injured in China construction site accident." Accessed on May 21,
591	2019. http://www.xinhuanet.com/english/2019-04/26/c_138009873.htm.
592	Zahra, S. A., Priem, R. L., and Rasheed, A. A. (2005). "The antecedents and consequences of
593	top management fraud." Journal of Management, 31(6), 803-828.
594	Zarkada-Fraser, A., and Skitmore, M. (2000). "Decisions with moral content: collusion."
595	Construction Management and Economics, 18(1), 101–111.
596	Zhu, J., Ye, K., Tucker, J. W., and Chan, K. (Johnny) C. (2016). "Board hierarchy, independent
597	directors, and firm value: Evidence from China." Journal of Corporate Finance, 41,

598	262–279.
599	
600	
601	Fig. 1. Confusion matrix
602	Fig. 2. Importance ranking of variables
603	
604	
605	Table 1 Summary of input variables.

Variable	Description
X0: Capital structure change	Whether there is any change in the company's equity
	structure during the reporting period. $1 =$ unchanged,
	2 = changed
	Three dummy variables representing whether top 10
X1: Relationship of top 10 shareholders	shareholders are unrelated, related, or unconfirmed
X2: Firm size	Number of employees
	Whether the board chairman holds the managerial
X3: CEO duality	position CEO or president: $1 = yes$, $2 = no$
X4: Board of directors' size	Number of directors
X5: Board independence	Number of independent directors
X6: Board of supervisors' size	Number of supervisors
X7: TMT size	Number of executives
X8: Board of directors' ownership	Number of shares held by board of directors
X9: Board of supervisors' ownership	Number of shares held by board of supervisors
X10: TMT ownership Number of shares held by executives	
	Total annual emolument of directors, supervisors, and
X11: Total pay for two boards and TMT	executives
X12: Board of directors' total pay	Total emolument of top 3 directors
X13: TMT total pay	Total annual emolument of top 3 executives
X14: Directors, supervisors, and executives	Number of directors, supervisors, and executives not
with no salary	receiving emolument
X15: Directors with no salary	Number of directors not receiving emolument
X16: Supervisors with no salary	Number of supervisors not receiving emolument
X17: Board committees	Total number of committees established
	Number of audit commission, strategic commission,
	nomination commission, and remuneration and
X18: The four board committees	evaluation commission established
X19: Other board committees	Number of other commissions established
	Three dummy variables representing whether
	independent directors work in the same, different or
	unconfirmed place with the firm. When the number of
X20: Working places consistency	independent directors is zero, the value is null
X21: Directors' meetings	Number of board of directors meetings

X22: Supervisors' meetings	Number of board of supervisors meetings
X23: Shareholders' meetings	Number of shareholder meetings
X24: Current assets ratio	Total current assets / total assets
X25: Ratio of working capital	(Current assets - current liabilities) / current assets
X26: Fixed assets ratio	Net fixed assets / total assets
X27: Ratio of shareholders' equity to fixed	Shareholders' equity/net fixed assets
assets	
X28: Current liabilities ratio	Total current liabilities / total liabilities
X29: Current ratio	Current assets / current liabilities
X30: Quick ratio	(Current assets - inventories) / current liabilities
	(Net profits + income tax + financial expenses) /
X31: Times interest earned	financial expenses
X32: Net cash flow from operating activities	Net cash flow from operating activities / total current
/ current liabilities	liabilities
X33: Ratio of debt to assets	Total liabilities / total assets
X34: Ratio of long-term borrowings to total	Fixed assets / operating income
assets	
	(Total liabilities) / (total assets - net intangible assets
X35: Ratio of liabilities to tangible assets	- net goodwill)
X36: Ratio of equity to debt	Total owners' equity / total liabilities
	(Ending total assets - beginning total assets) /
X37: Growth rate of total assets	beginning total assets
X38: Ratio of accounts receivable to income	Accounts receivable / operating income
X39: Accounts receivable turnover	Operating income / ending accounts receivable
X40: Ratio of inventories to income	Inventories / operating income
X41: Inventories turnover	Operating costs / ending inventories
X42: Accounts payable turnover	Operating costs / ending accounts payable
X43: Current asset turnover	Operating income / ending balance of current assets
X44: Ratio of fixed assets to income	Fixed assets / operating income
X45: Fixed asset turnover	Operating income / ending balance of net fixed assets
X46: Total assets turnover	Operating income / ending balance of total assets
X47: Earnings per share	Net profits / ending paid-in capital
	Ending owners' equity at period-end / ending paid-in
X48: Net assets per share	capital
X49: Net cash flow from operating activities	Net cash flow from operating activities / ending paid-
per share	in capital
X50: Return on assets	Net profits / balance of total assets
X51: Net profits margin of current assets	Net profits / balance of current assets
X52: Net profits margin of fixed assets	Net profits / balance of fixed assets
X53: Return on equity	Net profits / balance of shareholders' equity
X54: Earnings before interest and tax (EBIT)	Net profits + income tax expense + financial expenses
X55: Ratio of net profits to total profits	Net profits / total profits

X56: Ratio of total profits to EBIT	Total profits / EBIT		
X57: Ratio of EBIT to total assets	EBIT / total assets		
	(Operating income - operating costs) / operating		
X58: Gross operating margin	income		
X59: Selling expense ratio	Selling expenses / operating income		
X60: Operating margin before interest and	(Net profits + income tax expense + financial		
taxes	expenses) / operating income		

Table 2. Descriptive statistics (Mean \pm St. Dev.) on financial variables

Variable	Mean ± St. Dev.	Variable	Mean ± St. Dev.
X0	1.6 ± 0.49	X31	5.15±90.72
X1	2.38 ± 0.61	X32	0.01 ± 0.39
X2	14012.61 ± 46830.75	X33	0.61 ± 0.21
X3	1.82 ± 0.38	X34	0.06 ± 0.09
X4	9.03 ± 2.02	X35	0.64 ± 0.24
X5	3.16 ± 0.97	X36	1.15 ± 2.5
X6	3.86 ± 1.23	X37	0.26 ± 0.64
X7	7.41 ± 3.3	X38	0.37 ± 0.81
X8	$45083015.2 \pm 129657700.54$	X39	10 ± 46.31
X9	758886.74 ± 2416806.31	X40	0.56 ± 1.55
X10	13762504.74±51422956.64	X41	11.63±53.33
X11	$4382752.79 \pm 3968282.48$	X42	4.29±5.28
X12	$1295546.33 \pm 1068322.87$	X43	0.95 ± 0.54
X13	$1361851.89 \pm 1096064.19$	X44	0.43 ± 1.13
X14	3.67 ± 3.38	X45	24.83 ± 277.42
X15	2.26±2.32	X46	0.61 ± 0.33
X16	1.31 ± 1.36	X47	0.31 ± 0.5
X17	3.34 ± 1.43	X48	3.9±2.63
X18	3.3 ± 1.42	X49	0.21 ± 1.36
X19	0.04 ± 0.2	X50	0.02 ± 0.18
X20	1.41 ± 0.77	X51	0±0.5
X21	9.59 ± 3.96	X52	-13.53 ± 630.38
X22	5.26 ± 2.33	X53	0.06 ± 0.7
X23	2.99 ± 1.63	X54	$1250994070.05 \pm 5006172964.32$
X24	0.67 ± 0.21	X55	0.8 ± 0.4
X25	0.15 ± 0.24	X56	0.87 ± 1.22
X26	0.14 ± 0.14	X57	0.04 ± 0.19
X27	87.55±1586.87	X58	0.17 ± 0.14
X28	0.87 ± 0.15	X59	0.02 ± 0.03
X29	1.59 ± 1.78	X60	0.06 ± 0.82
X30	1.13 ± 1.67		

Hyperparameter	Value	Search Space			
n_{tree}	100	[50, 100, 150, 200, 250, 300,,1000]			
d	5	[3, 5, 7,, 21] + [None]			
S_n	2	[1, 3, 5, 7, 10]			
S_l	1	[1, 3, 5, 7, 10],			
mtry	All features	[Sqrt (features), Log ₂ (features), All features]			
Sampling Mathad	Dootstron	With/Without Bootstrap (sampling with			
Sampning Method	Bootstrap	replacement)			

609 Table 3. Results of hyperparameters tuning

Table 4. Summary of prediction performance of RF and SVM

	RF		SVM	
Label	1	0	1	0
Precision	0.6667	0.8314	0.6250	0.8443
Recall	0.0645	0.9931	0.1613	0.9792
F1-Score	0.1176	0.9051	0.2564	0.9068
Accuracy	82.85	571%	83.42	286%