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Abstract 

Structural damage detection inevitably entails uncertainties, such as measurement noise and 

modelling errors. The existence of uncertainties may cause incorrect damage detection results. 

In addition, varying environmental conditions, especially temperature, may have a more 

significant effect on structural responses than structural damage does. Neglecting the 

temperature effects may make reliable damage detection difficult. In this study, a new 

vibration based damage detection technique that simultaneously considers the uncertainties 

and varying temperature conditions is developed in the sparse Bayesian learning framework. 

The structural vibration properties are treated as the function of both the damage parameter 

and varying temperature. The temperature effects on the vibration properties are incorporated 

into the Bayesian model updating on the basis of the quantitative relation between 

temperature and natural frequencies. The structural damage parameter and associated 

hyper-parameters are then solved through the iterative expectation–maximization technique. 

An experimental frame is utilized to demonstrate the effectiveness of the proposed damage 

detection method. The sparse damage is located and quantified correctly by considering the 

varying temperature conditions. 
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Structural damage detection, sparse Bayesian learning, uncertainty, temperature effects, 
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1. Introduction 

Over the last decades, numerous vibration-based damage identification methods have been 

developed [1-5]. Amongst various vibration properties, frequencies [6, 7] and mode shapes [8, 

9] are most widely used for damage detection. The fast development in sensing technologies 

[10], signal processing techniques [11] and machine learning [12], has advanced 

vibration-based damage identification methods over the past decade. Huang et al. [13] 

presented a complete review of the recent development of Bayesian inference for structural 

damage detection and assessment. Gordan et al. [14] intensively reviewed the applications of 

data mining techniques in damage identification and structural health monitoring (SHM) since 

2000. Bao et al. [15] reviewed advancements in data science and engineering in SHM.  

 

The vibration-based damage detection is essentially an inverse problem and typically 

ill-posed. Furthermore, such detection is usually an underdetermined problem in mathematics 

because the number of available vibration measurements is limited. In practice, structural 

damage commonly appears in a few sections or members only. Thus, damage is spatially 

sparse compared with the numerous elements of the entire structure. In recent years, some 

researchers have developed the sparse recovery theory for structural damage identification by 

using the so-called l1 and l0 regularisation techniques [16-21]. However, this sparse recovery 

theory disregards the relative uncertainties between different variables and causes difficulties 

in the determination of the regularisation parameter. Moreover, the relationship between the 

resulting unique solution and that of the original unregularised problem is uncertain [22].  

 

Another difficulty in structural damage detection is that civil structures are generally subject 

to significant uncertainties including measurement noise and modelling errors, which may 

lead to incorrect damage identification [23, 24]. For example, the existence of measurement 

noise may mask subtle changes in the vibration properties caused by damage. Therefore, 

deterministic methods may fail when applied to real civil structures.  

 

In recent decades, many statistical damage identification techniques have been developed and 
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the uncertainties are considered as random variables [25]. The representative techniques 

include perturbation methods [23], Monte Carlo simulation [26], statistical pattern 

recognition [27] and Bayesian methods [28-31]. Amongst them, the Bayesian methods have 

attracted considerable attention since the 1990s. Apart from addressing uncertainties, the 

Bayesian methods also provide an efficient way to deal with the ill-posed inverse problem by 

specifying probability distributions over the uncertain parameters, which is equivalent to 

introducing a regularisation term to the optimisation problem [32]. 

 

For civil engineering structures, additional practical challenge is that the structural vibration 

properties may vary under the operational and environmental conditions, particularly 

temperature. Temperature variation may change the material properties [33, 34] and 

boundary conditions [35-37] of a structure and thus alter the structural modal parameters [38, 

39]. Many field studies have been conducted to investigate the effect of temperature on the 

structural modal properties since the 1970s [40-42]. Some studies modelled and quantified the 

temperature effects on natural frequencies based on the Bayesian probabilistic framework [43]. 

Previous studies demonstrated that varying temperature may cause more significant changes 

in the structural vibration properties than damage does [38, 40, 44]. Consequently, if the 

temperature effects are not considered appropriately, then reliable damage detection becomes 

difficult. Researchers [45-51] have developed various techniques to consider the effects of 

temperature on damage identification. These approaches can be divided into two categories 

depending on whether the environmental variables are measured or not. However, few has 

studied the uncertainties and varying temperature simultaneously.  

 

In this study, a new probabilistic damage detection technique considering both uncertainties 

and varying temperature is developed on the basis of sparse Bayesian learning (SBL). The 

quantitative relation between temperature and structural modal parameters is incorporated 

into the Bayesian model updating framework. The expectation–maximization (EM) technique 

is employed to calculate the structural damage parameter and hyper-parameters in an iterative 

manner. An experimental example demonstrates that the damage identification results are 

more accurate than those without considering the varying temperature conditions. 
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2. SBL Modelling Considering Varying Temperature 

The Bayesian approach provides a rigorous probabilistic framework, in which the posterior 

probability of the uncertain quantities is explicitly quantified according to prior information 

and current measurement data. The posterior probability distribution of the unknown 

parameter 𝜃𝜃  given the measurement data 𝓓𝓓  and chosen class of models ℳ , can be 

expressed as [30] 

𝑝𝑝(𝜽𝜽|𝓓𝓓,ℳ) = 𝑐𝑐−1𝑝𝑝(𝓓𝓓|𝜽𝜽,ℳ)𝑝𝑝(𝜽𝜽|ℳ) (1) 

where 𝑝𝑝(𝓓𝓓|𝜽𝜽,ℳ) is the likelihood function and can be interpreted as a measure of the 

plausibility of the measurement data 𝓓𝓓  according to the model parameterised by 𝜽𝜽 , 

𝑝𝑝(𝜽𝜽|ℳ)  is the prior probability density function (PDF), and c = 𝑝𝑝(𝓓𝓓| ℳ) is the 

normalizing constant that is referred to as the evidence. 

 

2.1 Measurement data  

Suppose that Nm modes of vibration properties of a structure have been measured and the 

natural frequencies and mode shapes are as  

𝝀𝝀� = �λ�1, λ�2,⋯ , λ�𝑁𝑁𝑚𝑚� (2) 

𝛙𝛙� = �𝝓𝝓�1,𝝓𝝓�2,⋯ ,𝝓𝝓�𝑁𝑁𝑚𝑚� (3) 

where λ𝑟𝑟 is the rth natural frequency and 𝝓𝝓�𝑟𝑟 ∈ ℝ𝑁𝑁𝑝𝑝 denotes the identified rth mode shape 

at 𝑁𝑁𝑝𝑝 measurement points. The modal data including the natural frequencies and mode 

shapes in the nth test are expressed as Υ�𝑛𝑛. The modal and temperature data from Ns tests are 

denoted as 𝓓𝓓𝑌𝑌 = �Υ�1, … ,Υ�𝑁𝑁𝑠𝑠� and 𝓓𝓓𝑇𝑇 = �𝑇𝑇�1, … ,𝑇𝑇�𝑁𝑁𝑠𝑠�, respectively. 

 

2.2 Structural model class 

The structural model class, ℳ, is based on a set of linear structural models parameterised by 

the model parameters 𝐬𝐬 ∈ ℝ𝑁𝑁. The rth natural frequency and the corresponding mode shape 
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are governed by the following eigenvalue equation 

𝐊𝐊(𝐬𝐬)𝝓𝝓𝒓𝒓 = λ𝑟𝑟2𝐌𝐌𝝓𝝓𝒓𝒓 (4) 

where 𝐌𝐌 is a known mass matrix and 𝐊𝐊 is an uncertain stiffness matrix parameterised as 

follows 

𝐊𝐊(𝐬𝐬) = �𝑠𝑠𝑖𝑖

𝑁𝑁𝑒𝑒

𝑖𝑖=1

𝐊𝐊𝑖𝑖 (5) 

where 𝐊𝐊𝑖𝑖 is the ith element stiffness matrix, which can be obtained through finite element 

(FE) analysis of the structure, si is the ith element stiffness parameter to be updated according 

to the observations, and 𝑁𝑁𝑒𝑒 is the number of structural elements.  

 

The change in the mass is assumed to be negligible when damage occurs. Therefore, the 

structural stiffness matrix in the damaged state takes the following form [19] 

𝐊𝐊�(𝐬𝐬) = �𝑠̅𝑠𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝐊𝐊𝑖𝑖 (6) 

where 𝑠̅𝑠𝑖𝑖 is the ith element stiffness parameter in the damaged state. The stiffness reduction 

factor (SRF), defined as the damage parameter, is calculated as  

𝜃𝜃𝑖𝑖 =
𝑠̅𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

 (7) 

The values of SRF indicate both damage location and damage severity. Since structural 

damage usually occurs in a few sections or members only, 𝜽𝜽 ∈ ℝ𝑁𝑁 is a sparse vector with 

several non-zero items at the damaged locations and zeros at most of others.  

 

2.3 Likelihood function for structural damage parameters and temperatures 

To consider the continuous accumulation of data, the probabilistic distribution of the model 

prediction of the current data is assumed unaffected by the previous predicted ones. Hence 

the likelihood function is constructed as  

𝑝𝑝(𝓓𝓓𝑌𝑌|𝜽𝜽) = �𝑝𝑝�Υ�𝑛𝑛�𝜽𝜽�
𝑁𝑁𝑠𝑠

𝑛𝑛=1

 (8) 

Given the structural damage parameter 𝜽𝜽, the new measurement data can be incorporated 

into the likelihood function in a systematic and continuous manner by simply augmenting the 
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product with one term [30]. Consequently, the probability of damage for each element or 

substructure can be continuously updated, which well fulfils the requirement of online 

structural health monitoring. 

 

In the present study, temperature is treated as a variable of the modal data. Consequently, the 

modal data are a function of both the structural damage parameter and temperature. Eq. (8) is 

thus expanded to include temperature as 

𝑝𝑝(𝓓𝓓𝑌𝑌,𝓓𝓓𝑇𝑇|𝜽𝜽,𝑻𝑻) = �𝑝𝑝�Υ�𝑛𝑛,𝑇𝑇�𝑛𝑛�𝜽𝜽,𝑇𝑇𝑛𝑛�
𝑁𝑁𝑠𝑠

𝑛𝑛=1

 (9) 

The modal data are assumed independent mode by mode. It has 

𝑝𝑝(𝓓𝓓𝑌𝑌 ,𝓓𝓓𝑇𝑇|𝜽𝜽,𝑻𝑻) = ��𝑝𝑝�λ�𝑟𝑟,𝑛𝑛�𝜽𝜽,𝑇𝑇𝑛𝑛�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

𝑁𝑁𝑠𝑠

𝑛𝑛=1

�𝑝𝑝�𝝓𝝓�𝒓𝒓�𝜽𝜽�
𝑁𝑁𝑚𝑚

𝑟𝑟=1

�𝑝𝑝�𝑇𝑇�𝑛𝑛�𝑇𝑇𝑛𝑛�
𝑁𝑁𝑠𝑠

𝑛𝑛=1

 (10) 

 

Most previous studies have demonstrated that natural frequencies of a structure decrease with 

an increase in temperature. This decrease is due to that the increase in temperature will cause 

the decrease in the Young’s modulus and shear modulus for most construction materials [33, 

38]. Moreover, it has been widely accepted that the effect of temperature on mode shapes is 

negligible [38, 52]. Therefore, the temperature influence on the natural frequencies should be 

characterised prior to conducting damage identification. Most studies have demonstrated that 

the natural frequencies have a linear relation with temperature [38, 53]. In this regard, the 

natural frequency is expressed as  

λ�𝑟𝑟(𝜽𝜽,𝑇𝑇)�1 + 𝜀𝜀𝜆𝜆𝑟𝑟� = 𝜆𝜆𝑟𝑟(𝜽𝜽,𝑇𝑇0) + ∆𝜆𝜆𝑟𝑟(𝜽𝜽,∆𝑇𝑇) = 𝜆𝜆𝑟𝑟(𝜽𝜽,𝑇𝑇0) + 𝑏𝑏𝑟𝑟(𝑇𝑇 − 𝑇𝑇0) (11) 

𝜀𝜀𝜆𝜆𝑟𝑟~𝑁𝑁(0,𝛽𝛽−1) (12) 

where 𝜆𝜆𝑟𝑟(𝜽𝜽,𝑇𝑇0) is the rth natural frequency at a reference temperature 𝑇𝑇0, ∆𝜆𝜆𝑟𝑟(𝜽𝜽,∆𝑇𝑇) is 

the frequency change caused by the temperature variation ∆𝑇𝑇 = 𝑇𝑇 − 𝑇𝑇0, and 𝑏𝑏𝑟𝑟  is the 

coefficient for the rth natural frequency. The hyper-parameter  𝛽𝛽, which is equal to the 

reciprocal of the variance of the variable, reflects the precision of the identified natural 

frequency. To simplify the notation, the dependence of the natural frequency on the 

temperature is dropped hereafter, expressed as 𝜆𝜆𝑟𝑟(𝜽𝜽).  
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The measured mode shape is expressed as 

𝝓𝝓𝑟𝑟(𝜽𝜽) = 𝝓𝝓�𝑟𝑟 + 𝜺𝜺𝝓𝝓𝑟𝑟 (13) 

𝜺𝜺𝝓𝝓𝑟𝑟~𝑁𝑁(0,  𝛾𝛾−1𝑰𝑰) (14) 

The measurement error of temperature is also considered and modelled as a Gaussian random 

variable, that is, 

𝑇𝑇 = 𝑇𝑇� + 𝜀𝜀𝑇𝑇 (15) 

𝜀𝜀𝑇𝑇~𝑁𝑁(0,  𝜌𝜌−1) (16) 

where hyper-parameters 𝛾𝛾 and 𝜌𝜌 reflect the precision of the measured mode shapes 𝝓𝝓�  and 

temperature 𝑇𝑇� , respectively.  

 

The resulting likelihood functions of 𝜽𝜽 and 𝑻𝑻 based on 𝓓𝓓𝑌𝑌 and 𝓓𝓓𝑇𝑇 are expressed as  

𝑝𝑝�𝝀𝝀��𝜽𝜽,𝑻𝑻,𝛽𝛽,𝒃𝒃� = �
𝛽𝛽

2𝜋𝜋
�
𝑁𝑁𝑚𝑚∙𝑁𝑁𝑠𝑠
2

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛽𝛽
2
���

𝜆𝜆𝑟𝑟,𝑛𝑛(𝜽𝜽) + 𝑏𝑏𝑟𝑟(𝑇𝑇𝑛𝑛 − 𝑇𝑇0) − λ�𝑟𝑟,𝑛𝑛

λ�𝑟𝑟,𝑛𝑛
�
2𝑁𝑁𝑚𝑚

𝑟𝑟=1

𝑁𝑁𝑠𝑠

𝑛𝑛=1

� (17) 

𝑝𝑝�𝝓𝝓��𝜽𝜽, 𝛾𝛾� = �
 𝛾𝛾
2𝜋𝜋
�
𝑁𝑁𝑝𝑝∙𝑁𝑁𝑚𝑚

2 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛾𝛾
2
���𝜙𝜙�𝑗𝑗,𝑟𝑟 − 𝜙𝜙𝑗𝑗,𝑟𝑟(𝜽𝜽)�

2
𝑁𝑁𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑚𝑚

𝑟𝑟=1

� (18) 

𝑝𝑝�𝑻𝑻��𝑻𝑻,𝜌𝜌� = �
 𝜌𝜌
2𝜋𝜋
�
𝑁𝑁𝑠𝑠
2 𝑒𝑒𝑒𝑒𝑒𝑒 �−

 𝜌𝜌
2
��𝑇𝑇�𝑛𝑛 − 𝑇𝑇𝑛𝑛�

2
𝑁𝑁𝑠𝑠

𝑛𝑛=1

� (19) 

where λ�𝑟𝑟,𝑛𝑛 denotes the rth identified natural frequency under temperature 𝑇𝑇�𝑛𝑛.  

 

2.4 Prior distribution of damage parameter  

In the Bayesian framework, the prior distribution is independent of current measurement and 

is chosen on the basis of engineering and modelling judgement. As introduced previously, the 

structural damage parameter 𝜽𝜽 is a sparse vector with a few non-zero items at the damaged 

locations and many zeros at the others. According to the SBL framework, the automatic 

relevance determination (ARD) prior is adopted to promote sparsity in the damage parameter 

[54-56]. The damage parameter 𝜽𝜽  is assumed to be in Gaussian distribution and an 
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individual hyper-parameter is assigned to each damage parameter, namely, 

𝑝𝑝(𝜽𝜽|𝜶𝜶) = �𝑝𝑝(𝜃𝜃𝑖𝑖|𝛼𝛼𝑖𝑖)
𝑁𝑁𝑒𝑒

𝑖𝑖=1

= �
1

2𝜋𝜋
�
𝑁𝑁𝑒𝑒
2
��𝛼𝛼𝑖𝑖

1
2 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
𝛼𝛼𝑖𝑖𝜃𝜃𝑖𝑖2��

𝑁𝑁𝑒𝑒

𝑖𝑖=1

 (20) 

where the hyper-parameter 𝛼𝛼𝑖𝑖  represents the precision of 𝜃𝜃𝑖𝑖 . The ARD prior closely 

resembles the l0 regularization introduced to the ill-posed inverse damage detection problem 

[57, 58]. Recently, some researchers studied the prediction-error variance model. To analyse 

the general heterogeneous cases, Mu and Yuen (2016) relaxed the homogeneity assumption 

on the errors by embedding the derived closed-form expression of the error variance 

parameter optimization component into the hyper-parameter optimization of ARD prior [59]. 

 

2.5 Posterior distribution for damage parameter and temperature 

According to Eqs. (1) and (10), the joint posterior PDF of the damage parameter 𝜽𝜽 and 

temperature 𝑻𝑻 is then calculated as  

𝑝𝑝�𝜽𝜽,𝑻𝑻�𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻�,𝛽𝛽,𝒃𝒃, 𝛾𝛾,𝜌𝜌,𝜶𝜶� ∝ 𝑝𝑝�𝝀𝝀��𝜽𝜽,𝑻𝑻,𝛽𝛽,𝒃𝒃�𝑝𝑝�𝛙𝛙� �𝜽𝜽, 𝛾𝛾�𝑝𝑝�𝑻𝑻��𝑻𝑻,𝜌𝜌�𝑝𝑝(𝜽𝜽|𝜶𝜶) (21) 

with the distributions on the right-hand side as defined by Eqs. (17)-(20). The product of the 

prior PDFs 𝑝𝑝(𝛽𝛽)𝑝𝑝(𝒃𝒃)𝑝𝑝(𝛾𝛾)𝑝𝑝(𝜌𝜌)𝑝𝑝(𝜶𝜶)𝑝𝑝(𝑻𝑻) is omitted for convenience, since they are all 

chosen as broad uniform distributions.  

 

3. Bayesian Inference 

For structural damage identification, the damage parameter 𝜽𝜽 is of key interest. Therefore, 

temperature 𝑻𝑻 is treated as a “nuisance” parameter and integrated out to get the posterior 

distribution of 𝜽𝜽 

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻�,𝛽𝛽,𝒃𝒃, 𝛾𝛾,𝜌𝜌,𝜶𝜶� = �𝑝𝑝�𝜽𝜽,𝑻𝑻�𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻�,𝛽𝛽,𝒃𝒃,𝛾𝛾,𝜌𝜌,𝜶𝜶�𝑑𝑑𝑻𝑻 

                         = ∫ 𝑝𝑝�𝜽𝜽� 𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻,𝛽𝛽,𝒃𝒃, 𝛾𝛾,𝜶𝜶�𝑝𝑝�𝑻𝑻�𝑻𝑻�,𝜌𝜌�𝑑𝑑𝑻𝑻 
(22) 

Under the assumption that the posterior PDF 𝑝𝑝�𝑻𝑻�𝑻𝑻�,𝜌𝜌� has a unique maximum at the 

maximum a posterior (MAP) value 𝑻𝑻�, the posterior distribution of 𝜽𝜽 can be approximated 
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as [29, 60] 

𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻�,𝛽𝛽,𝒃𝒃, 𝛾𝛾, 𝜌𝜌,𝜶𝜶� ≈ 𝑝𝑝�𝜽𝜽� 𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻�,𝛽𝛽,𝒃𝒃, 𝛾𝛾,𝜌𝜌,𝜶𝜶� 

                          ∝ 𝑝𝑝�𝝀𝝀��𝜽𝜽,𝑻𝑻�,𝛽𝛽,𝒃𝒃�𝑝𝑝�𝛙𝛙� �𝜽𝜽, 𝛾𝛾�𝑝𝑝(𝜽𝜽|𝜶𝜶) 
(23) 

where 𝑻𝑻� = arg max 𝑝𝑝�𝑻𝑻�𝑻𝑻�, 𝜌𝜌�.  

 

As shown in Eq. (23), the posterior PDF of 𝜽𝜽  depends on the estimates of the 

hyper-parameters 𝛅𝛅 = [𝛽𝛽, 𝛾𝛾,𝜶𝜶] and coefficient 𝒃𝒃. Given 𝒃𝒃, the most probable value of 𝛅𝛅 

can be obtained by maximizing 𝑝𝑝�𝛅𝛅�𝝀𝝀� ,𝝍𝝍� ,𝑻𝑻��. Assuming that the prior 𝑝𝑝(𝛅𝛅) are uniformly 

distributed,  

𝑝𝑝�𝛅𝛅�𝝀𝝀� ,𝝍𝝍� ,𝑻𝑻�� =
𝑝𝑝�𝝀𝝀� ,𝝍𝝍� ,𝑻𝑻��𝛅𝛅�𝑝𝑝(𝛅𝛅)

𝑝𝑝�𝝀𝝀� ,𝝍𝝍� ,𝑻𝑻��
∝ 𝑝𝑝�𝝀𝝀� ,𝝍𝝍� ,𝑻𝑻��𝛅𝛅� (24) 

Consequently, 𝛅𝛅 can be estimated by maximizing the evidence 𝑝𝑝�𝝀𝝀� ,𝝍𝝍� ,𝑻𝑻��𝛅𝛅�, which can be 

calculated by integrating over the damage parameter as 

𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻��𝛅𝛅� = �𝑝𝑝�𝜽𝜽, 𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻��𝛅𝛅�𝑑𝑑𝜽𝜽 = �𝑝𝑝�𝝀𝝀��𝜽𝜽,𝑻𝑻�,𝛽𝛽�𝑝𝑝�𝛙𝛙� �𝜽𝜽, 𝛾𝛾�𝑝𝑝(𝜽𝜽|𝜶𝜶)𝑑𝑑𝜽𝜽 (25) 

However, since the modal data are a nonlinear function of the structural damage parameter, the 

integral in Eq. (25) cannot be calculated directly.  

 

In this study, the EM algorithm is employed to calculate the damage parameter and 

hyper-parameters through performing an expectation (E) step and a maximization (M) step 

iteratively [58, 61, 62]. 𝜽𝜽 is regarded as the latent variable and the complete data set is 

denoted as �𝜽𝜽,𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻��. As the direct maximization of 𝑝𝑝�𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻��𝛅𝛅� is difficult, the EM 

algorithm proposes to maximize the expectation of the complete-data natural log likelihood 

function instead, that is 

𝐸𝐸�ln𝑝𝑝�𝜽𝜽,𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻��𝛅𝛅�� = 𝐸𝐸�ln 𝑝𝑝�𝝀𝝀��𝜽𝜽,𝑻𝑻�,𝛽𝛽� + ln 𝑝𝑝�𝛙𝛙��𝜽𝜽, 𝛾𝛾� + ln 𝑝𝑝(𝜽𝜽|𝜶𝜶) � 

=
𝑁𝑁𝑚𝑚 ∙ 𝑁𝑁𝑒𝑒

2
ln �

𝛽𝛽
2𝜋𝜋
� −

𝛽𝛽
2
𝐸𝐸 ����

𝜆𝜆𝑟𝑟,𝑛𝑛(𝜽𝜽) + 𝑏𝑏𝑟𝑟�𝑇𝑇�𝑛𝑛 − 𝑇𝑇0� − λ�𝑟𝑟,𝑛𝑛

λ�𝑟𝑟,𝑛𝑛
�
2𝑁𝑁𝑚𝑚

𝑟𝑟=1

𝑁𝑁𝑠𝑠

𝑛𝑛=1

� 
(26) 
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+
𝑁𝑁𝑝𝑝 ∙ 𝑁𝑁𝑚𝑚

2
ln �

𝛾𝛾
2𝜋𝜋
� −

 𝛾𝛾
2
𝐸𝐸 ����𝜙𝜙�𝑗𝑗,𝑟𝑟 − 𝜙𝜙𝑗𝑗,𝑟𝑟(𝜽𝜽)�

2
𝑁𝑁𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑚𝑚

𝑟𝑟=1

� +
𝑁𝑁𝑒𝑒
2

ln �
1

2𝜋𝜋
� +

1
2
� ln𝛼𝛼𝑖𝑖

𝑁𝑁𝑒𝑒

𝑖𝑖=1

 

−
1
2
�𝛼𝛼𝑖𝑖𝐸𝐸(𝜃𝜃𝑖𝑖2)
𝑁𝑁𝑒𝑒

𝑖𝑖=1

 

 

Since the complete data set is not available, in the E step, the expectation of the complete 

data in Eq. (26) is performed with respect to the posterior distribution 𝑝𝑝�𝜽𝜽�𝝀𝝀� ,𝛙𝛙� ,𝑻𝑻�,𝛅𝛅� given 

the current hyper-parameters 𝛅𝛅𝑜𝑜𝑜𝑜𝑜𝑜 . In the subsequent M step, the hyper-parameters are 

updated by maximizing the expectation with respect to 𝛽𝛽, 𝛾𝛾, and 𝜶𝜶, respectively. The 

hyper-parameters are then obtained by setting the derivatives to zero, such that  

𝛽𝛽 =
𝑁𝑁𝑚𝑚 ∙ 𝑁𝑁𝑠𝑠

𝐸𝐸 �∑ ∑ �
𝜆𝜆𝑟𝑟,𝑛𝑛(𝜽𝜽) + 𝑏𝑏𝑟𝑟�𝑇𝑇�𝑛𝑛 − 𝑇𝑇0� − λ�𝑟𝑟,𝑛𝑛

λ�𝑟𝑟,𝑛𝑛
�
2

𝑁𝑁𝑚𝑚
𝑟𝑟=1

𝑁𝑁𝑠𝑠
𝑛𝑛=1 �

 
(27) 

𝛾𝛾 =
𝑁𝑁𝑝𝑝 ∙ 𝑁𝑁𝑚𝑚

𝐸𝐸 �∑ ∑ �𝜙𝜙�𝑗𝑗,𝑟𝑟 − 𝜙𝜙𝑗𝑗,𝑟𝑟(𝜽𝜽)�
2𝑁𝑁𝑝𝑝

𝑗𝑗=1
𝑁𝑁𝑚𝑚
𝑟𝑟=1 �

 (28) 

𝛼𝛼𝑖𝑖 =
1

𝐸𝐸(𝜃𝜃𝑖𝑖2) (29) 

 

With the obtained hyper-parameters 𝛅𝛅 = {𝛽𝛽, 𝛾𝛾,𝜶𝜶}, the MAP estimate 𝜽𝜽� is calculated by 

maximising the posterior PDF given by Eq. (23), or equivalently minimising the following 

objective function 

𝐽𝐽(𝜽𝜽) = 𝛽𝛽���
𝜆𝜆𝑟𝑟,𝑛𝑛(𝜽𝜽) + 𝑏𝑏𝑟𝑟�𝑇𝑇�𝑛𝑛 − 𝑇𝑇0� − λ�𝑟𝑟,𝑛𝑛

λ�𝑟𝑟,𝑛𝑛
�
2𝑁𝑁𝑚𝑚

𝑟𝑟=1

𝑁𝑁𝑠𝑠

𝑛𝑛=1

+ 𝛾𝛾���𝜙𝜙�𝑗𝑗,𝑟𝑟 − 𝜙𝜙𝑗𝑗,𝑟𝑟(𝜽𝜽)�
2

𝑁𝑁𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑚𝑚

𝑟𝑟=1

+ �(𝛼𝛼𝑖𝑖𝜃𝜃𝑖𝑖2)
𝑁𝑁𝑒𝑒

𝑖𝑖=1

 

(30) 

With the value of 𝜽𝜽 fixed at the MAP value, the optimal value of the regression coefficient 

can be calculated by solving 𝜕𝜕𝜕𝜕(𝜽𝜽) 𝜕𝜕𝒃𝒃⁄ = 0, which gives the following equation  

𝑏𝑏𝑟𝑟 =

∑ �𝑇𝑇�𝑛𝑛 − 𝑇𝑇0��λ�𝑟𝑟,𝑛𝑛 − 𝜆𝜆𝑟𝑟,𝑛𝑛(𝜽𝜽)�
λ�𝑟𝑟,𝑛𝑛

2
𝑁𝑁𝑠𝑠
𝑛𝑛=1

∑ �𝑇𝑇�𝑛𝑛 − 𝑇𝑇0�
2

λ�𝑟𝑟,𝑛𝑛
2

𝑁𝑁𝑠𝑠
𝑛𝑛=1

 (31) 
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Given the MAP value 𝜽𝜽�, 𝒃𝒃, and 𝛅𝛅, the posterior PDF of 𝑻𝑻 can be expressed as  

𝑝𝑝�𝑇𝑇�𝝀𝝀� ,𝑇𝑇� ,𝜽𝜽�,𝛽𝛽,𝒃𝒃,𝜌𝜌� ∝ 𝑝𝑝�𝝀𝝀��𝜽𝜽�,𝑇𝑇,𝛽𝛽,𝒃𝒃�𝑝𝑝�𝑇𝑇��𝑇𝑇,𝜌𝜌� 

= �
𝛽𝛽

2𝜋𝜋
�
𝑁𝑁𝑚𝑚∙𝑁𝑁𝑠𝑠
2

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛽𝛽
2
���

𝜆𝜆𝑟𝑟,𝑛𝑛�𝜽𝜽�� + 𝑏𝑏𝑟𝑟(𝑇𝑇𝑛𝑛 − 𝑇𝑇0) − λ�𝑟𝑟,𝑛𝑛

λ�𝑟𝑟,𝑛𝑛
�
2𝑁𝑁𝑚𝑚

𝑟𝑟=1

𝑁𝑁𝑠𝑠

𝑛𝑛=1

� 

�
 𝜌𝜌
2𝜋𝜋
�
𝑁𝑁𝑠𝑠
2 𝑒𝑒𝑒𝑒𝑒𝑒 �−

 𝜌𝜌
2
��𝑇𝑇�𝑛𝑛 − 𝑇𝑇𝑛𝑛�

2
𝑁𝑁𝑠𝑠

𝑛𝑛=1

� 

(32) 

The MAP values of 𝑻𝑻 can be found by minimizing the negative logarithm of the posterior 

PDF as 

𝐽𝐽(𝑻𝑻, 𝛾𝛾) = 𝛽𝛽���
𝜆𝜆𝑟𝑟,𝑛𝑛�𝜽𝜽�� + 𝑏𝑏𝑟𝑟(𝑇𝑇𝑛𝑛 − 𝑇𝑇0) − λ�𝑟𝑟,𝑛𝑛

λ�𝑟𝑟,𝑛𝑛
�
2𝑁𝑁𝑚𝑚

𝑟𝑟=1

𝑁𝑁𝑠𝑠

𝑛𝑛=1

− 𝑁𝑁𝑠𝑠 ln �
 𝜌𝜌
2𝜋𝜋
� + 𝜌𝜌��𝑇𝑇�𝑛𝑛 − 𝑇𝑇𝑛𝑛�

2
𝑁𝑁𝑠𝑠

𝑛𝑛=1

 

(33) 

Since 𝑻𝑻 and the associated hyper-parameter 𝜌𝜌 are coupled, they are determined through the 

iterative minimization of the objective function in Eq. (33). The optimal value of 𝑻𝑻 can be 

obtained by solving 𝐽𝐽(𝑻𝑻,𝜌𝜌) 𝜕𝜕𝑇𝑇𝑛𝑛⁄ = 0, that is 

𝑇𝑇𝑛𝑛 =

𝜌𝜌𝑇𝑇�𝑛𝑛 − 𝛽𝛽 ∑ 𝑏𝑏𝑟𝑟
λ�𝑟𝑟,𝑛𝑛

2 �𝜆𝜆𝑟𝑟�𝜽𝜽�� − 𝑏𝑏𝑟𝑟𝑇𝑇0 − λ�𝑟𝑟,𝑛𝑛�
𝑁𝑁𝑚𝑚
𝑟𝑟=1

𝛽𝛽 ∑ � 𝑏𝑏𝑟𝑟
λ�𝑟𝑟,𝑛𝑛

�
2

𝑁𝑁𝑚𝑚
𝑟𝑟=1 + 𝜌𝜌

 (34) 

Given 𝑻𝑻, 𝜌𝜌 can be obtained by solving 𝐽𝐽(𝑻𝑻,𝜌𝜌) 𝜕𝜕𝜕𝜕⁄ = 0, that is 

𝜌𝜌 =
𝑁𝑁𝑠𝑠

∑ �𝑇𝑇�𝑛𝑛 − 𝑇𝑇𝑛𝑛�
2𝑁𝑁𝑠𝑠

𝑛𝑛=1

    (35) 

 

The above formulations can be summarized as the following procedures: 

1. Initialize 𝛽𝛽(0), 𝛾𝛾(0), 𝛼𝛼𝑖𝑖
(0) (𝑖𝑖 = 1, 2, … , N) , 𝒃𝒃(0), 𝜌𝜌(0), and 𝑇𝑇𝑛𝑛

(0); 

2. At the jth iteration, 

(1) Given 𝛽𝛽(𝑗𝑗−1), 𝛾𝛾(𝑗𝑗−1), 𝜶𝜶(𝑗𝑗−1), 𝒃𝒃(0), and 𝑇𝑇(𝑗𝑗−1):  

Compute the MAP estimate of 𝜽𝜽�(𝑗𝑗) through minimising 𝐽𝐽(𝜽𝜽) in Eq. (30); 

Update 𝛽𝛽(𝑗𝑗), 𝛾𝛾(𝑗𝑗), and 𝜶𝜶(𝑗𝑗) using Eqs. (27), (28), and (29); 
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Update 𝒃𝒃(𝑗𝑗) using Eq. (31) 

(2) Given 𝜽𝜽�(𝑗𝑗), 𝛽𝛽(𝑗𝑗), 𝒃𝒃(𝑗𝑗), and 𝜌𝜌(𝑗𝑗−1): 

Update 𝑇𝑇(𝑗𝑗) using Eq. (34);  

Update 𝜌𝜌(𝑗𝑗) using Eq. (35). 

3. Repeat Step 2 until the convergence criterion is satisfied: 

� 𝜽𝜽�(𝑗𝑗) −  𝜽𝜽�(𝑗𝑗−1)�
2
� 𝜽𝜽�(𝑗𝑗)�

2
� ≤ 𝑇𝑇𝑇𝑇𝑇𝑇 

 

4. An Experimental Example 

4.1 Description of the experiment 

The experimental two-storey steel frame presented in Bao et al. [53] is used here to 

demonstrate the effectiveness of the proposed technique. The geometric dimensions of the 

frame are shown in Fig. 1. The mass density and Young's modulus are estimated as 

7.67×103 kg/m3 and 2.0×1011 N/m2, respectively.  
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Fig. 1. Geometric configuration of the frame structure (unit: mm) 

 

The temperature of the frame was measured using 8 thermocouples, denoted as T1–T8 in Fig. 

1. 12 accelerometers were equidistantly mounted on the columns and 2 at the midpoints of 

the beams to measure the acceleration signals. An instrumented hammer was used to excite 

the experimental model.  

 

The modal testing was first conducted on the intact frame with the sampling frequency of 

2048 Hz. The vibration tests were performed every 20 minutes from morning to afternoon, 

resulting in 28 sets (𝑁𝑁𝑠𝑠 = 28) of vibration data throughout the day. After each test, the natural 

frequencies and mode shapes were extracted using the modal analysis. The temperature of the 

frame was also measured during the test.  

 

Damage was then subsequently introduced to the frame model as shown in Fig. 1. The saw 

cut has the length of 20 mm and depths of d = 5, 10, and 15 mm corresponding to three 

damage scenarios (DSs). The moment of inertia of the cut sections were then reduced by 20%, 
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40%, and 60%. For each DS, the aforementioned modal testing was repeated from morning to 

afternoon and temperature was also recorded.  

 

The first five natural frequencies and modal assurance criterion (MAC) (𝑁𝑁𝑚𝑚 = 5, 𝑁𝑁𝑝𝑝 = 14) 

of the frame model in the undamaged and three damaged states are compared in Table 1. The 

frequencies and MAC displayed are the average values extracted from the total 28 sets of 

vibration data. The variations in the natural frequencies caused by damage are very small 

with a maximum average change of 0.65%. The temperature data of the frame in the 

undamaged and damaged states are shown in Fig. 2, in which the mean value of the eight 

thermocouples was plotted. During the test period, the temperature varied between 29.5℃ 

and 52.2℃.  

 

Table 1 Frequencies and MAC of the frame in the undamaged and damaged states 

Mode 

No. 

Undamaged DS1: d=5 mm DS2: d=10 mm DS3: d=15 mm 

Freq. (Hz) Freq. (Hz) MAC Freq. (Hz) MAC Freq. (Hz) MAC 

1   6.20   6.19 (–0.19) 99.99   6.17 (–0.43) 99.79 6.19 (–0.13) 99.78 

2  17.57  17.49 (–0.49) 99.82  17.48 (–0.52) 99.80 17.45 (–0.72) 99.80 

3  61.07 60.97 (–0.17) 99.72 60.83 (–0.39) 99.98 60.74 (–0.55) 99.98 

4  77.01 76.97 (–0.05) 99.18 76.65 (–0.47) 98.56 76.32 (–0.89) 98.56 

5  80.83 80.73 (–0.13) 99.16 80.16 (–0.83) 86.95 80.05 (–0.97) 86.93 

Average       (–0.21) 99.56      (–0.53) 98.81      (–0.65) 96.09 

Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states.  
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Fig. 2. Measured temperature of the frame in different states 

 

The relation between the natural frequencies and temperature in each state is shown in Fig. 3. 

In general, all five natural frequencies decrease with the increase of temperature and damage 

severity. However, the temperature may cause more significant change in the frequencies than 

damage does. For example, in Fig. 3(c), the third natural frequency of the frame in DS1 at 

32℃ is larger than that in the undamaged state at 50℃. Other modes and other damage states 

have similar phenomenon. Therefore, the temperature effects should be considered in order to 

achieve an accurate damage identification. The first five mode shapes do not show the 

correlation with temperature, as observed in other studies [38]. The details are not shown here 

for brevity and can be referred to Reference [53].  

 

  

07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30
25

30

35

40

45

50

55

Time (hh:mm)

Te
m

pe
ra

tu
re

 (℃
)

 

 
Undamaged
DS1
DS2
DS3

25 30 35 40 45 50 55
6.14

6.16

6.18

6.2

6.22

6.24

6.26

Temperature (℃)

Fr
eq

. (
H

z)

 

 
Undamaged
DS1
DS2
DS3

25 30 35 40 45 50 55
17.35

17.4

17.45

17.5

17.55

17.6

17.65

17.7

Temperature (℃)

Fr
eq

. (
H

z)

 

 
Undamaged
DS1
DS2
DS3



17 
 

(a) First mode (b) Second mode 

  
(c) Third mode (d) Fourth mode 

 
(e) Fifth mode 

Fig. 3. Relation of frequencies to temperature 

 

The frame is modelled using 20 Euler–Bernoulli beam elements as presented in Bao et al. 

[53]. Each column is equidistantly divided into 6 elements and each beam into 4 elements. 

The saw cut is located at element 2. The equivalent stiffness reductions of the damaged 

element for the three DSs are about 3%, 7%, and 15%, respectively [53].  

 

4.2 Damage detection 

The first five natural frequencies and mode shapes are used for damage identification. The 

hyper-parameters need to be initialized first. The uncertainty of the modal data can be 
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quantified by Bayesian modal identification [63] or Monte Carlo analysis [64]. In this study, 

they are estimated empirically. In practical vibration tests, natural frequencies may typically 

contain 1% noise and are generally measured more accurately than mode shapes [65]. In this 

regard, the uncertainty levels of 1% and 5% are adopted for natural frequencies and mode 

shapes, respectively. Therefore, the initial values 𝛽𝛽(0)=1/(0.01)2=1×104  and 

𝛾𝛾(0)=1/(0.05)2= 400. The uncertainty level of the damage parameter is assumed as 10% of the 

exact value, namely 𝛼𝛼𝑖𝑖
(0)= 1 (10%)2⁄ =100 (i=1, 2,…, N). The uncertain level of 0.1% is 

assigned to temperature, that is 𝜌𝜌(0)=1/(0.001)2= 1×106. The initial damage parameter is 

assumed as  𝜽𝜽(0)= {0, …, 0}T, indicating that no damage is present. According to Eq. (23), 

the initial values of temperature are chosen as the measured ones 𝑇𝑇𝑛𝑛
(0) = 𝑇𝑇�𝑛𝑛 (𝑛𝑛 = 1, 2, … ,𝑁𝑁𝑠𝑠). 

The regression coefficient is initialized as the one obtained using least-squares fitting. The 

reference temperature is set to 40℃ as in Bao et al. [53].  

 

For the current experimental frame, 28 sets of measured modal data are available, i.e., 𝓓𝓓𝑌𝑌 =

�𝛌𝛌�𝑛𝑛,𝝍𝝍�𝑛𝑛� (𝑛𝑛 = 1, 2, … , 28). Within EM, each set of modal data results in one set of MAP 

values of the damage parameter, from which the expectations are calculated according to Eqs. 

(27)-(29). For DS1, the mean of the MAP values of 𝜽𝜽 in each iteration are shown in Fig. 4. 

In the first iteration, several elements have nonzero SRFs. After 4 iterations only, the actual 

damage at element No. 2, although very slight (–3%), is successfully located and quantified. 

In DS2 and DS3, the convergences are achieved after five and nine iterations, respectively. 

The iterative identification results are shown in Figs. 5 and 6. For brevity, only the results in 

the first two and the last two iterations are shown. Upon convergence, the actual damaged 

element is correctly located and quantified. 
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(a) Iteration No. 1 (b) Iteration No. 2 

  

(c) Iteration No. 3 (d) Iteration No. 4 

Fig. 4. Damage identification results in DS1 during the iterative process 
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(c) Iteration No. 4 (d) Iteration No. 5 

Fig. 5. Damage identification results in DS2 during the iterative process 

 

  

(a) Iteration No. 1 (b) Iteration No. 2 

   

(c) Iteration No. 8 (d) Iteration No. 9 

Fig. 6. Damage identification results in DS3 during the iterative process 
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During the iteration process, the hyper-parameters also change continuously. 𝛼𝛼2 corresponds 

to the damaged element while 𝛼𝛼19 to the undamaged one. 𝛼𝛼2 and 𝛼𝛼19 in the three damage 

scenarios are shown in Fig. 7. As the iteration proceeds, 𝛼𝛼2 converges after a few iterations 

while 𝛼𝛼19 increases quickly to a sizeable number (a logarithmic coordinate is used). This 

phenomenon explains the sparse mechanism of the SBL. Within SBL, each damage 

parameter is assigned an individual hyper-parameter 𝛼𝛼𝑖𝑖 . The hyper-parameters of the 

undamaged parameters increase significantly larger than that of the damaged ones. 

Minimisation of the objective function in Eq. (30) enforces the undamaged 𝜃𝜃𝑖𝑖 to be close to 

zero, thereby achieving sparsity of the damage parameter.  
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(c) DS3 

Fig. 7. Variation of hyper-parameters (𝛼𝛼𝑖𝑖) during the iterative process 

 

4.3 Results Comparison  

For the comparison purpose, damage identification is also conducted without considering 

varying temperature. In the case, the frequencies measured at different temperature are 

averaged and then used for damage detection, which is similar to the study in Hou et al. [58]. 

The results with and without considering temperature effects are compared in Fig. 8. For all 3 

DSs, the damaged element is determined correctly, and the identified SRFs are very close to 

the true values when the temperature effects are taken into account. However, if the 

frequency change caused by the temperature variation is not considered, although the true 

damage is located, the identified damage severities are far from the actual values.  
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(b) DS2: SRF2= –0.07 

 

(c) DS3: SRF2= –0.15 

Fig. 8. Damage identification results with and without considering temperature effects 

 

5. Conclusions and Discussions 

An SBL technique for damage detection under varying temperature conditions is developed 

in this study. A new Bayesian model updating framework is proposed, which simultaneously 

considers the uncertainties in the measured modal data and FE model and varying 

temperature. The correlation between temperature and natural frequencies is incorporated into 

the SBL framework. The damage parameter is identified through the iterative EM technique.  

 

Compared with the technique proposed in Bao et al. [53] which can only determine the 

damage location, the presented method cannot only identify damage location but also 

quantify damage severity. The experimental example demonstrates that the proposed method 

is effective in locating and quantifying structural damage, even when the variation of the 
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improved significantly, compared with those without considering the temperature effects.  

 

A linear model between the natural frequencies and temperature is used in this study. The 

proposed Bayesian framework is still feasible when a high-order polynomial model is 

employed. In this case, the most plausible temperature model, which is able to successfully 

characterize the temperature effects on the natural frequencies, can be determined based on 

the Bayesian model class selection [63]. 
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