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Abstract

We study a system with heterogeneous parallel servers, each with an infinite waiting
room. Upon arrival, a job is routed to the queue of one of the servers, possibly depend-
ing on the dynamic state information such as the real-time queue lengths, the arrival and
service history of jobs. The objective is to find the routing policy that best utilizes the
available state information to minimize the expected stationary queue length. In this pa-
per, we establish the diffusion limit for the round-robin policy (resp. arrival-chasing policy,
service-chasing policy), and show that with properly chosen parameters, it achieves the opti-
mal performance asymptotically within the class of admissible policies that require no state
information (resp. require arrival history, service history). Like the join-the-shortest-queue
and the balanced routing policies that use real-time queue length information, the optimal
service-chasing policy is also asymptotically optimal over all admissible policies. Further
analysis of the diffusion limits yields a number of insights into the performance of these rout-
ing policies and reveals the value of various state information. We numerically demonstrate
the effectiveness of the estimators derived from the diffusion limits for the policies being
studied and obtain interesting observations. We also address the problem of interchange of
limits under the aforementioned policies, which justifies the stationary performance of the
diffusion limit as a valid approximation to that of the original system under respective poli-
cies. Methodologically, this study contributes to the application of the BIGSTEP method for
constructing control policy to optimize stationary performance and the recipe for justifying
the interchange of limits in the heavy-traffic analysis of stochastic processing networks.

Keywords: parallel server system, routing control, round robin, arrival chasing, service
chasing, heavy traffic analysis.

1 Introduction

Routing control is an important component in many engineering and management systems, such
as allocating processing orders in a machine shop, assigning cases to a panel of judges, or a web
server routing requests to back-end servers. In this paper, we study a queueing system with
parallel servers, each with an infinite waiting room, as depicted in Figure 1. One stream of
jobs arrives at the system following a renewal process, and each job upon its arrival is routed
immediately to one of the servers. At each server, the jobs are served according to the first-in
first-out discipline, and their service times are independent and identically distributed (i.i.d.).
The servers are heterogeneous and may have different service rates and service time distributions.

Imagine that upon the arrival of each job, a controller will evaluate the available (dynamic)
state information and make a decision to dispatch the job to one of the servers. The state
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Figure 1: Network with parallel servers

information can be queue length, arrival history, service history, etc., depending on the nature
of the application. For example, it would be costly for the domain name server (the router)
to communicate intensively with the geographically distributed web servers to retrieve all the
state information. Thus, the router may use only the information about the arrival history of
requests (jobs) for routing control, or simply cyclically forwards the requests to servers. In this
study, we consider non-anticipating routing policies only; that is, future information, such as
the service time of a job before its service completion, will not be available for routing decision-
making. We aim to identify the optimal routing policy that will dynamically employ the available
state information to minimize the expected stationary (total) queue length, or equivalently, the
average waiting time an arriving job experiences in steady state.

It is well-known that the join-the-shortest-queue (JSQ) and the balanced routing (BR) poli-
cies achieve the optimal performance asymptotically when the queue length state is observable
(e.g. [16]). However, it would be useful to know what the optimal routing policy would be when
the controller cannot observe any state of the system. Furthermore, we also want to understand
the optimal policy when only a part of the system’s state information can be observed, such
as only the arrival history or service history. Answering these questions will help to reveal the
value of various state information for routing control, which is particularly valuable for modern
applications that are becoming more and more complicated and as new control mechanisms
are being examined (e.g., [3, 54]). However, the dynamic nature of the system being studied,
coupled with the complicated routing mechanism and arrival and service patterns, make it very
difficult to answer these questions through exact analysis. To overcome this difficulty we apply
the heavy-traffic analysis, which is an asymptotic approach that has been used to study a broad
range of stochastic processing network systems.

We carry out the heavy-traffic analysis in two parts. In the first part, we establish the
diffusion limit for a sequence of systems in heavy traffic, and use the limit to derive the optimal
routing policy and the performance estimation heuristically. This is done in the spirit of the
BIGSTEP method suggested by Harrison [30, 31]. For our problem, it includes formulating
the diffusion limit for admissible routing policies, proposing the routing policy that optimizes
the performance of the original system by examining the limit, and establishing diffusion limit
theorem for the proposed policy to demonstrate its optimality and analyze its performance.

To illustrate the idea more formally, let Q(t), a vector process, denote the queue length at
time t in the original parallel server system. For technical and conceptual reasons, we consider an
infinite sequence of copies or variations of the original system, indexed by n. Hence, let Qn(t)
denote the queue length associated with the n-th system in the sequence; and let Q̂n(t) :=
Qn(n2t)/n denote its diffusion-scaled version.

First, with the mindset that a practical routing policy must drive the system to certain
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stationarity, we identify a class of admissible policies that are non-anticipating and will induce
a diffusion limit for the sequence of systems in heavy traffic (class D and Proposition 1). We
will see that the admissible class contains a wide range of policies of interest, such as the JSQ
and BR policies, and yet are amenable to analysis. Focusing on this class, we study the routing
control when certain state information is available for making routing control decisions.

Take the case that there is no dynamic state information available for routing upon each
job arrival as an example (mainly, Section 4). We then identify the best possible limit Q̂(t)
that involves no state information in routing. This is done through investigating the stationary
performance of the general diffusion limit (for class D) with the condition on that there is no
relationship between the routing component and the arrival and service processes. It turns out
that we interpret a blind routing policy, which is indeed a generalized round-robin (RR) policy,
from the limit. Next, we justify the interpretation by establishing the diffusion limit theorem
(Theorem 3). That is, under the RR policy, the sequence of systems does converge to the
limit we identify, or Q̂n(t) ⇒ Q̂(t). Finally, the stationary performance of the limit, Q̂(∞), is
taken as an approximation of the stationary performance of the (original, discrete) system of
interest, Q̂n(∞), which yields an approximation of the performance objective, i.e., the expected
stationary queue length, immediately (cf. the estimator derived in (106)). Using the diffusion
limit, we are able to gain useful insights into the RR policy too (cf. Subsection 4.1).

In a similar way, we establish and analyze an arrival-chasing (AC) policy and a service-
chasing (SC) policy, which are asymptotically optimal when the controller can use the arrival
history and service history information, respectively.

So far, we have followed a conventional approach to approximate the stationary performance
Q̂n(∞) using Q̂(∞), based on the pathwise diffusion limit (Q̂n(t) ⇒ Q̂(t)) heuristically. Thus,
in the second part of our heavy-traffic analysis, we provide a more rigorous justification for
such a heuristics by establishing the convergence of stationary performance, Q̂n(∞) ⇒ Q̂(∞).
This leads to the study of the famous interchange-of-limits problem, and we apply the recipe
developed in Ye and Yao [66,67] to address the problem.

The crucial step in such a recipe is to bound the p-th moment of the state process (p > m+1,
when the convergence of the m-th moment of the queue length is required). To do so, we establish
a pathwise bound for the queue length process, known as the bounded workload condition in [66],
under the RR, AC, SC and JSQ policies, respectively. It is a condition that the queue length
can be bounded by a “free process” plus the initial queue length. Whereas for the BR policy,
we do so by requiring a higher moment (p∗-th moment, with p∗ > 2(p + 2)) condition on the
primitive arrival and service processes, as in [67]. Once the p-th moment is established, along
with the uniform stability property, we can establish all other required properties leading to the
convergence of stationary distribution and performance (cf. Theorems 8 and 9).

The contribution of this study is two-fold. First, in modeling analysis, we have formulated
asymptotic optimal routing policies that utilize various kinds of state information. Using diffu-
sion limits, we also analyze their performances and reveal the value of various state information
as follows:

1. When there is no state information available for routing control, we establish that an RR
policy is asymptotically optimal and derive its performance (Theorem 3). In the optimal RR
policy, the routing rate (the portion of jobs dispatched to each server in the long run) exhibits
a certain form of the square-root rule.

Examining the performance of the diffusion limit under the RR policy reveals interesting
insights. The optimal RR policy can attain the performance of the JSQ policy (the globally
optimal policy under heavy traffic) if and only if all service times are deterministic, and in this
case, jobs are routed to each server proportional to the service rate. On the other hand, it could
perform arbitrarily worse than the JSQ policy, say, when there are many servers in the system.

A conventional option in the class of RR policies, the proportional RR policy, is generally
suboptimal within the class of RR policies, and can be arbitrarily worse than the optimal RR
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policy. It coincides with the optimal RR policy if and only if variance-to-mean ratios of service
times for all servers are the same.

2. When there is no state information and in addition the control is restricted to the class
of probabilistic proportional (PP) routing policies, we identify and characterize the optimal one
over this class (Theorem 4). In this optimal PP policy, the routing rate also exhibits certain
form of square-root rule. The optimal PP policy performs strictly, and can even be arbitrarily,
worse than the optimal RR policy.

3. When the arrival history information is available, we formulate a class of AC policies and
show that an AC policy, with properly chosen parameters, is asymptotically optimal over all
policies that utilize arrival history only (Theorem 5). In the optimal AC policy, the routing rate
exhibits certain form of square-root rule once again.

Compared with the JSQ policy, the optimal AC policy, using only arrival history information,
can achieve the JSQ performance when all servers, except at most one, have deterministic service
times.

Comparing the optimal AC policy and the optimal RR policy, we find that when the variance-
to-mean ratio of service times at all servers are equal, both policies yield the same expected
stationary queue length, and thus using the arrival information does not help to minimize the
queue length. Nevertheless, compared with the optimal RR policy, the optimal AC policy
performs better in general, and can reduce up to 50% of the expected stationary queue length
by utilizing the arrival history information.

4. When the service history information is available, we formulate a class of SC policies and
show that an SC policy, with properly chosen parameters, is asymptotically optimal over all
admissible policies (Theorem 6). Hence, the optimal SC policy achieves the JSQ performance.
Interestingly, the diffusion limit under the optimal SC policy presents a postponed state-space
collapse property; that is, the queue lengths, starting with any value, will evolve simultaneously
and proportional to the service rates after some finite time.

5. We derive the heavy-traffic estimators of the system performance under the RR, AC
and SC policies from the corresponding diffusion limits, and demonstrate through numerical
studies that the estimators approximate the simulated performance (the proxy of the theoretical
performance) of the original discrete system closely as the traffic intensity gets close to one
(Section 8).

6. We address the problem of interchange of limits under the RR, AC, SC, JSQ and BR
policies (Theorems 8 and 9), which justifies the stationary performance of the diffusion limit as
a valid approximation to that of the original (diffusion-scaled) system under respective policies.

Second, in methodology, we have generated new ideas to execute the BIGSTEP method, and
enriched the recipe in [66,67] for justifying the interchange of limits in heavy-traffic analysis:

1. We have presented a comprehensive example of applying the framework of the BIGSETP
method for constructing control policy to optimize stationary performance. Furthermore, we
provide a rigorous justification of (stationary) diffusion approximation via the study of the
interchange-of-limits problem. We believe these extensions to the method can be carried over
to similar studies.

2. In [66,67] we have developed a recipe for justifying the (steady-state) diffusion approxima-
tion for a wide range of stochastic processing networks, such as the multiclass queueing network
and the resource-sharing network. In the current study, we demonstrate that an additional
routing mechanism feature can be incorporated and handled using the recipe straightforwardly,
by enclosing a chasing process that captures the routing information in the Markovian state
descriptor. In addition, we have refined the approach to establishing a uniform continuity prop-
erty (Lemma 29), an important step in the recipe. This refinement of the recipe is transferable
to the study of the interchange-of-limits problem for other models.

A brief review of the related literature is in order. On the optimal routing for the paral-
lel server system, most of the earlier works assume that the controller can observe the queue
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lengths of all (or some) of the servers. With the assumption of Poisson arrival and homogeneous
exponential service, Winston [61] established the optimality of the JSQ policy in minimizing the
long-run average delay for customers. This result was then extended in Weber [56] to allow more
general arrival and service processes, with the service time having a non-decreasing failure rate.
Readers are referred to Whitt [57] and Gupta et al. [26] for the literature review on the earlier
work of the optimal routing control. Reiman [47] and Zhang [68] proved the heavy-traffic limit
theorem for the system with the JSQ policy, and Chen and Ye [16] obtained a similar result for
the BR policy. These results imply the asymptotic optimality of the JSQ and BR policies.

Closely related to optimal control, the stability of the JSQ and BR policies is also well
understood in the literature (cf. [10, 16, 38]). We also provide a proof of the stability of the
parallel system under various routing policies using the fluid model approach. Note that these
stability results are established with all model parameters estimated accurately and the rout-
ing policy executed correctly; otherwise, refer to [46] for a recent study on systems involving
“routing errors.” These stability results ensure the existence of the stationary distribution and
the stationary moments of the system, according to Dai and Meyn [17,19]. Hurtado-Lange and
Maguluri [34] established the convergence of stationary distributions for the JSQ systems in
heavy traffic (interchange of limits) using a transformation method. Their result is a special
case of the one here (Theorem 8) since in their model the interarrival times have all moments
and the service times are bounded.

Another line of research related to the JSQ policy (and its variants) is concerned with large-
scale systems where the number of servers and the associated queues increases to infinity along
the sequence of systems. And, to analyze such systems, it would be natural to adopt the many-
servers’ assymptotic regime; refer to, e.g., [6, 22,23,29,45,54].

In most parts of the paper (except the numerical studies), we take the JSQ policy as the
“benchmark.” Nevertheless, some other policies, for example, the shortest-expected-delay (SED)
policy and the MinDrift policy, are also globally asymptotic optimal for our model under heavy
traffic and thus closely related to our study. The SED policy, which routes an arriving job
to the queue that has the shortest expected delay, is a generalization of the JSQ policy. As
pointed out by Selen et al. [49], if in addition to the real-time queue length information, we
can estimate the expected service times, then the natural choice is to route the jobs according
to SED, rather than JSQ. Stolyar [53] introduced the MinDrift routing rule in a multi-class
output-queued system where the customer service time depends on both the customer class and
server, and showed that the rule is asymptotically optimal under a complete resource pooling
condition. The JSQ and SED policies for our model, a single-class system, are actually a special
case of such a MinDrift policy. Indeed, it would be interesting to extend some of our studies
(e.g., the optimal round-robin control) to such a multi-class system.

When the controller cannot observe any state information, the JSQ policy or its variations
is not applicable. In the case of identical servers, the conventional RR routing policy is widely
used, which in its simplest form assigns the incoming jobs to each server equally in a rotating
fashion. It is shown that such an RR routing policy minimizes the long-run average total queue
length in the system over all blind routing policies (Hajek [28] and Altman et al. [1]). Refer
to, e.g., [35, 41, 42, 55, 63] for more related studies. Using heavy-traffic analysis, Tsoukatos and
Makowski [55] established asymptotic optimality of the RR policy for the identical parallel server
system. In their paper, the class of admissible policies that require no state information and
admit a certain diffusion limit is introduced to demonstrate the optimality of the RR policy
over all blind routing policies. In our study, we focus on a similar class of admissible policies,
which may depend on certain state information, in the framework of the BIGSTEP method. We
not only extend the asymptotic optimality of the RR policy to the case of heterogeneous server
system, but can also identify the asymptotically optimal policies when the information about
the arrival or service history is available for routing control.

In the situation that the controller can enclose the arrival or service history for routing
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control, to the best of our knowledge the optimal control problem is not addressed in the
literature. As mentioned above, we have formulated the AC and SC policies and characterized
their optimality in such a situation, which also reveals the value of arrival and service history
information for routing control. These results fill a gap in the literature, and have the potential
for real-life applications.

There has been a vast volume of literature on heavy traffic analysis for queueing systems,
which is the major tool for the theoretical analysis in this paper. Readers may refer to Chen and
Yao [15] for earlier literature on heavy-traffic analysis. Here we briefly highlight a few methods
that play key roles in our paper.

In establishing the diffusion limit theorems (Theorems 5 and 6) and the convergence of sta-
tionary performance (Theorem 9), we have adopted the hydrodynamic approach of Bramson [9]
and its variations (e.g., [43,52,53,64–67]). By this technique, the order O(n2)-long time interval
of the diffusion-scaled process is broken down into O(n) pieces of O(n)-long time intervals, and
thereafter the diffusion-scaled process is converted to O(n) pieces of fluid-scaled “magnifiers” of
the corresponding processes. Then the properties developed for the fluid-scaled process can be
applied to establish the key properties of the diffusion-scaled process. This approach has been
applied for establishing diffusion limit for many complex stochastic processing network systems;
refer to the references just mentioned.

The BIGSTEP method we follow to identify the optimal policies was first suggested by
Harrison [30, 31]. A distinct example for this method is presented in Bell and Williams [5] for
the optimal scheduling of a two-server system in heavy traffic, where the optimality is justified
via a diffusion limit theorem. More examples of using this method to study the optimal control
of queueing networks can be found in, e.g., [2, 18, 33, 37, 44]. These studies are based on the
pathwise minimality of the diffusion limit under the proposed control policy, whereas in this
paper, we demonstrate a comprehensive example of studying the optimal control for stationary
performance following the method.

Justifying the diffusion limit as the valid approximation of the stationary performance of the
original system leads to the problem of interchange of limits. Refer to [66,67] and the references
there for a detailed account on this subject. Recent studies on this problem have been initiated
by Gamarnik and Zeevi [24] and Budhiraja and Lee [11] for the generalized Jackson network.
These works take advantage of the Lipschitz continuity property of the Skorohod (reflection)
mapping associated with the network system concerned, so as to convert the uniform moment
bound of arrival and service processes to that of the key performance measures such as the
queue length processes. The latter turns out to be the key property for addressing the problem.
However, the Lipschitz continuity property is often difficult to establish or is even not available
for many other models, and subsequent works (e.g., [25,66,67]) attempt to relax this requirement.
Particular, the recipe we developed in [66,67] will be used to address the problem of interchange
of limits for the parallel server system being studied. As mentioned above, the key is to verify
the bounded queue length (or workload) condition or the p∗-th moment condition. These two
conditions do not imply each other. To verify the bounded queue length condition requires
effort, but once it is verified, the interchange is justified without requiring any higher order
moments on the primitives. In contrast, the p∗-th moment condition is trivial to verify, and
indeed automatically holds in networks where the primitives have moments of all orders (e.g.,
renewal arrivals with phase-type interarrival times and i.i.d. phase-type service times). The
approach is applied to address the interchange-of-limits problem for a queueing system with
customer abandonment recently (cf. [39, 40]) and for the parallel server system being studied.

The paper is organized as follows. The parallel server system is described in the next section.
In Section 3, we introduce the class of admissible policies within which we will study the optimal
routing policies. We establish the lower-bound performance of the admissible policy and show
that the JSQ and BR policies are admissible and achieve the lower bound. In the next four
sections, we formulate and characterize the asymptotically optimal routing policies. Specifically,
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in Section 4, we identify the optimal RR policy when there is no state information available for
routing control decision-making. We demonstrate its optimality by establishing a (process-wise)
diffusion limit theorem, and use the diffusion limit to understand the performance of the RR
policy. The PP policy, another class of policies that require no state information, are studied in
Section 5. Following the similar approach, in Section 6 and 7, we study the optimal AC and SC
policies that utilize the arrival history and service history respectively. Numerical studies for
evaluating the heavy-traffic estimators are presented in Section 8, where preliminary observations
about the performance of various policies for a non-heavily loaded system is also illustrated via a
simulation study. While in the above the analysis of the stationary performance and optimality
of various policies are built on process-wise diffusion limit theorems, Section 9 is devoted to
the study of the interchange-of-limits problems. It justifies the stationary performance of the
diffusion limit as a valid approximation of the stationary performance of the pre-limit systems.
Some preliminaries about the Skorohod mapping and all proofs for main results are presented
in the Appendix. (Section 9 and the Appendix are available in the Electronic Companion.)

2 Model and Preliminary

We consider a queueing system with K(≥ 2) servers, indexed by k ∈ K = {1, · · · ,K}, following
[16]. Each server has an infinite waiting room. Jobs arrive at the system following a renewal
process with arrival rate λ. Upon arrival, each job is routed to one of the queues to attain
service. At server k, jobs are served at a rate of µk following the order of arrival.

Denote the interarrival time between consecutive arrivals by u`, ` = 1, 2, · · · . Denote the
service time of `-th job at server k by vk,`, ` = 1, 2, · · · , and k ∈ K. That is, the service time of
a job is server-dependent. We assume that the interarrival time sequence {u`, ` ≥ 1}, and the
service time sequences {vk,`, ` ≥ 1}, k ∈ K, are mutually independent i.i.d. random sequence,
all with finite second moments. In particular, let u` have mean 1/λ and coefficient of variation
ca, and let vk,` have mean 1/µk and coefficient of variation cb,k, k ∈ K.

For ease of presentation, we denote the sum of a set of numbers and functions, say {xi, i ∈ I}
or {fi(t), i ∈ I}, as xA =

∑
i∈A xi and fA(t) =

∑
i∈A fi(t), respectively, for any A ⊂ I. The

L1-norm of a vector is then |x| =
∑

i∈I |xi|. These representations of summation and L1-norm
will be used interchangeably in this paper. Hence, µK =

∑
k∈K µk denotes the total service rate

of the system, and then ρ = λ/µK is the (nominal) traffic intensity of the system.
Next, we introduce the following related processes:

Υ(`) =
∑̀
`′=1

u`′ , E(t) = sup{` :
∑̀
`′=1

u`′ ≤ t}, Sk(t) = sup{` :
∑̀
`′=1

vk,`′ ≤ t}.

We call E(t), t ≥ 0, the (exogenous) arrival process, which denotes the number of arrivals during
the time interval [0, t]. Υ(`) records the arrival time of the `-th job (for ` = 0, 1, 2, · · · , with
Υ(0) = 0), and hence can be referred to as the arrival time process. We call S(t) = (Sk(t))k∈K,
t ≥ 0, the service process, where Sk(t) denotes the number of class-k service completions (job
departures) after server k is busy for a total of t time units.

To describe the routing of jobs, we define routing sequence φ(`) = (φk(`))k∈K, ` = 0, 1, 2, · · · ,
as

φk(`) =

{
1 if the `-th arrival is routed to class-k,
0 otherwise.

Let the routing process be Φ(`) = (Φk(`))k∈K, ` = 0, 1, 2, · · · , where Φk(`) is the number of jobs
among the the first ` arrivals that are dispatched to the server k. The total number of jobs
routed to servers must be equal to the total arrivals:

Φk(`) =
∑̀
`′=1

φk(`
′),

∑
k∈K

Φk(`) = `. (1)
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We assume the routing policy is non-anticipating; that is, at each time t of a job arrival, the
policy depends only on past history in a measurable way (cf. Williams [59], Section 3.1.5). For
example, the controller cannot observe and hence is not allowed to utilize the service time of
any job before its service completion.

We focus on the routing controls that will minimize the performance objective, expected
stationary (total) queue length, i.e., EQK(∞) (= E

∑
k∈KQk(∞)), where Qk(∞) represents the

stationary queue length of server k, if exists. Then, according to the Little’s Law, the expected
waiting time of jobs (the time between a job’s arrival and its service completion in stead-state)
can be derived by dividing EQK(∞) by the arrival rate λ. Therefore, minimizing the waiting
time and total queue length in stead-state are equivalent.

Some routing policies that dictate the routing process Φ(`) are studied in this paper. Below,
we describe JSQ, BR, RR and PP routing policies, which are both theoretically and practically
important and are widely studied in the literature. The first two are state-dependent policies
that use the real-time queue length information in dispatching new arrivals, while the latter two
are blind policies that do not use any state information. Later, we introduce two additional
routing policies for improving system performance: an AC policy and an SC policy, both of
which are non-anticipating and utilize some real-time information about the arrival and the
service processes respectively.

The JSQ policy dispatches a new arrival to the queue that has the shortest queue length. The
BR policy with a given integer c (2 ≤ c ≤ K) and a probability distribution π = (π1, · · · , πK) is
described as follows. When a job arrives, c servers are first chosen sequentially — at each step,
server k is chosen with probability πk (k ∈ K), independent of the choice made for the previously
arrived jobs; repeat until c distinct servers are chosen. Then the job is routed to the server that
has the shortest queue among the c chosen servers. Typically, choosing π in proportional to
the service rate (i.e., πk = µk/µK) will yield an asymptotically optimal performance; and it is
interesting to note that BR policy is robust subject to small change in the value of π (cf. [16]).
By letting c = K, the BR policy is reduced to the JSQ policy.

In the above JSQ and BR policies, if there is a tie by having more than one shortest queue,
the job can be routed to any one of the tied servers. Actually, the main results remain the same
under any tie-breaking methods in our asymptotic analysis. Here and below, we omit the detail
of tie-breaking methods in all the routing policies being studied.

Under the RR policy with the weight parameter (also a probability distribution) p =
(p1, · · · , pK) satisfying

∑
k∈K pk = 1, a fraction pk of jobs is sent to the server k according

to a pre-specified splitting sequence. For example, when all the servers are treated equally, i.e.,
all pk’s are the same, the RR policy routes incoming jobs to servers in order and in rotating
fashion; specifically, the (`K+k)th job is sent to the kth server, k = 1, · · · ,K and ` = 0, 1, 2, · · · .
Indeed, this conventional RR routing control is often applied to the identical server setting.

More generally, the sequence of arrivals should be split so that the number of jobs dispatched
to each server k is “close” to its quota, a fraction pk of the total arrival, at any time instance.
More specifically, in addition to equation (1), the RR policy should satisfy the following require-
ment: for some constant κ,

|Φk(`)− pk`| < κ, ` = 1, 2, · · · , k ∈ K. (2)

Here, we have specified a condition that characterizes a (generalized) RR routing, which is
sufficient for our purpose in the asymptotic analysis below. As a concrete example, an imple-
mentation is as follows. Upon the `-th arrival (` = 1, 2, · · · ), pick (one of) the server, denoted
k′, that has the smallest “surplus”:

k′ = arg min
k∈K

(Φk(`− 1)− pk`). (3)

Then, send the `-th job to server k′, i.e., let

Φk′(`) = Φk′(`− 1) + 1, and Φk(`) = Φk(`− 1), k 6= k′.
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The PP policy is also specified with the weight parameter p = (p1, · · · , pK). That is, upon
the `-th arrival, this job is dispatched to the server k with probability pk,

P{φ(`) = ek} = pk, (4)

where ek a K-dimensional vector with its k-th component being one and other components being
zero. The routing sequence {φ(`), ` = 1, 2, · · · } are mutually independent random vectors, and
are also independent of all the interarrival times and service times. Note that, by allowing c = 1,
the BR policy will become a PP policy.

Clearly, given the weight parameter p, the RR and PP policies use no dynamic state infor-
mation and hence are “blind” policies. We will see later that to specify the weight (control)
parameter optimally requires a priori knowledge of all model parameters, i.e., the first two
moments of the interarrival and service times.

Here we describe the key performance measure of the system. Let Q(t) = (Qk(t))k∈K be the
queue length at time t, where Qk(t) denotes the number of jobs in queue k at time t. Then,
the number of arrivals routed to server k during [0, t], is given as Φk(E(t)), and satisfies the
requirement in (1): ∑

k∈K
Φk(E(t)) = E(t). (5)

Let B(t) = (Bk(t))k∈K, where Bk(t) denotes the busy time, i.e., total amount of the time
that server k has served jobs during [0, t]. With the busy time process, the number of service
completions at server k up to time t is given as Sk(Bk(t)). Then, the dynamics of the queueing
system is characterized by

Qk(t) = Qk(0) + Φk(E(t))− Sk(Bk(t)) ≥ 0, (6)

Bk(t) =

∫ t

0
1{Qk(s)>0}ds. (7)

The first equation is a balanced equation, assuming the initial queue length (at time 0) is Qk(0)
for k ∈ K. The second equation specifies a work-conserving condition, i.e., the server must
work at its full capacity when there is at least one job in its queue. Define the idling processes
Y (t) = (Yk(t))k∈K as follows,

Yk(t) = µk(t−Bk(t)) = µk

∫ t

0
1{Qk(s)=0}ds. (8)

It is immediately observed from the above expressions that for k ∈ K,∫ ∞
0

Qk(s)dYk(s) = 0, (9)

Yk(t) is non-decreasing in t ≥ 0, and Yk(0) = 0. (10)

To carry out the heavy traffic analysis, we introduce a sequence of systems, indexed by n ∈ N ,
where N can be chosen as the set of natural numbers, or more generally, a sequence of positive
real numbers that increase to +∞. Each system is like the one introduced above, but may differ
in their arrival rates. Specifically, for the n-th system, the interarrival times and service times
are denoted as un` and vnk,`, with the first and second order parameters (λn, cna) and (µnk , c

n
b,k),

respectively. For convenience, we assume that the mean and variance of service times do not
change with n, hence the index n is omitted for these parameters (i.e., (µnk , c

n
b,k) ≡ (µk, cb,k)). The

processes defined for the n-th system are then the arrival process En(t), the arrival time sequence
Υn(`), the service process Sn(t) = (Snk (t))k∈K, the routing sequence φn(`) = (φnk(`))k∈K, the
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routing process Φn(`) = (Φn
k(`))k∈K, the queue length process Qn(t) = (Qnk(t))k∈K, the busy

time process Bn(t) = (Bn
k (t))k∈K, and the idling process Y n(t) = (Y n

k (t))k∈K. These processes
satisfy the relationships in equations (5-10), with the index n properly appended.

We assume the sequence of systems are linked through the limit,

λn → λ := µK and cna → ca, as n→∞,

and furthermore the following heavy traffic condition is satisfied,

n(λn − µK)→ θK < 0, as n→∞. (11)

From now on, the parameter λ denotes the limit of λn rather than the arrival rate of a particular
system. Though λ takes on the same constant value as µK, it explicitly indicates that the value
is arrived at through a convergence procedure; this is useful when we infer the heuristic policy
for the pre-limit system from the limit theorems to be established below. Moreover, the above
condition implies that the (nominal) traffic intensity approaches one,

ρn :=
λn

µK
→ 1, as n→∞.

Without loss of generality, we assume λn < µK, or ρn < 1, for all n ∈ N . We also assume at
least one of the coefficients of variation, ca and cb,k (k ∈ K), is positive; otherwise, the system
becomes deterministic and is trivial in heavy traffic analysis.

In addition, to guarantee the convergence of the fluid-scaled and diffusion-scaled primitive
processes below, we make the following standard assumption: there exists a function g(a),
satisfying g(a)→ 0 as a→∞, such that the following holds uniformly on n,

E[(un` )21{un` > a}] ≤ g(a) and E[(vnk,`)
21{vnk,` > a}] ≤ g(a), for k ∈ K, and all a ≥ 0. (12)

This assumption, first introduced by Bramson [9] (see also [16, 43, 52]), imposes control on the
fluctuation of the arrival and service processes and thus the sample paths of the system state.

We apply the standard fluid scaling to the primitive processes associated with the sequence
of systems: (

Ēn(t), S̄n(t), Ῡn(t)
)

:=
1

n
(En(nt), Sn(nt),Υn(bntc)) , (13)

where the floor function bxc gives the greatest integer less than or equal to x for any real number
x. Similarly, define the fluid-scaled version of the derived processes:(

Q̄n(t), Φ̄n(t), B̄n(t), Ȳ n(t)
)

=
1

n
(Qn(nt),Φn(bntc), Bn(nt), Y n(nt)) . (14)

For the scaled primitive processes, when n → ∞ and under the assumption (12), we have the
following functional strong law of large numbers with probability one,(

Ēn(t), S̄n(t), Ῡn(t)
)
→ (λt, µt, λ−1t), u.o.c. of t ≥ 0. (15)

This convergence is a direct consequence of Lemma 13 (in Appendix A.1), which is useful in
heavy-traffic analysis.

In addition to the fluid scaling defined in (13,14), it would be convenient to introduce an
alternative version by replacing the scaling factor n by n2,(

Ẽn(t), S̃n(t), Υ̃n(t)Q̃n(t), Φ̃n(t), B̃n(t), Ỹ n(t)
)

:=
1

n2

(
En(n2t), Sn(n2t),Υn(bn2tc), Qn(n2t),Φn(bn2tc), Bn(n2t), Y n(n2t)

)
.
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Clearly, the following functional strong law of large numbers, just like (15), continues to hold
with probability one,(

Ẽn(t), S̃n(t), Υ̃n(t)
)
→ (λt, µt, λ−1t), u.o.c. of t ≥ 0. (16)

Define the diffusion scaling (along with centering) for the primitive processes:(
Ên(t), Υ̂n(t), Ŝnk (t)

)
:=

1

n

(
En(n2t)− λnn2t,Υn(bn2tc)− (λn)−1bn2tc, Snk (n2t)− µkn2t

)
.

By the functional central limit theorem for the renewal process (see, for example, Chapter 5
of [15]), we have the following weak convergence,

(Ên(t), Υ̂n(t), Ŝn(t)) ⇒ (Ê(t),−λ−1Ê(λ−1t), Ŝ(t)), as n→∞, (17)

where Ê(t) is a (one-dimensional) Brownian motion with zero mean and variance λc2
a; and

Ŝ(t) = (Ŝ(t))k∈K is a K-dimensional Brownian motion with independent coordinates, whose
kth coordinate, Ŝk(t), is a Brownian motion with zero mean and variance µkc

2
b,k. Ê(t) and Ŝ(t)

are independent.
For the routing process, we introduce a set of parameters (pnk)k∈K satisfying

∑
k∈K p

n
k = 1

and pnk ≥ 0, and denote formally:

Φ̂n
k(t) :=

1

n

(
Φn
k(bn2tc)− pnkbn2tc

)
=

1

n

bn2tc∑
`=1

(φnk(`)− pnk) , k ∈ K. (18)

A routing policy for the sequence of systems just introduced actually refers to a sequence of
policies, with the n-th policy associated with the n-th system. As we will see below, when
the routing policy and the parameters pnk are properly specified, the scaling in equation (18) is
indeed a proper diffusion-scaling and satisfies a central limit theorem.

For the other derived processes, we write:

Q̂n(t) :=
1

n
Qn(n2t), Ŷ n(t) :=

1

n
Y n(n2t), k ∈ K. (19)

Rewrite equation (6) for the n-th system as:

Qnk(t) = Qnk(0) + Φn
k(En(t))− Snk (Bn

k (t))

= Qnk(0) +Xn
k (t) + Y n

k (t), (20)

Xn
k (t) = [Φn

k(En(t))− pnkEn(t)] + pnk [En(t)− λnt]
−[Snk (Bn

k (t))− µkBn
k (t)] + (pnkλ

n − µk)t. (21)

Then, the dynamics given in equations (5-10) can be written in diffusion scaling for the n-the
system: for all k ∈ K and t ≥ 0,

Q̂nk(t) = Q̂nk(0) + X̂n
k (t) + Ŷ n

k (t) ≥ 0, (22)∫ ∞
0

Q̂nk(s)dŶ n
k (s) = 0, (23)

Ŷ n
k (t) is non-decreasing in t ≥ 0, and Ŷ n

k (0) = 0, (24)

where

X̂n
k (t) = Φ̂n

k(Ẽn(t)) + pnk Ê
n(t)− Ŝnk (B̃n

k (t)) + n(pnkλ
n − µk)t, (25)∑

k∈K
Φ̂n
k(t) = 0. (26)

Once the routing control Φ̂n(t) and the initial state Q̂n(0) are specified, the above Skorohod
problem will determine the queue length process Q̂n(t) (cf. Lemma 10).
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3 Admissible Control and Lower Bound

A routing policy for the sequence of systems introduced above, denoted as D, is called diffusion-
admissible, or simply admissible, if they are non-anticipating and there exist positive constants
pn = (pnk)k∈K for each n ∈ N , satisfying

∑
k∈K p

n
k = 1, such that the followings hold:

(a) For some constants θ = (θk)k∈K < 0, the following holds for θn = (θnk )k∈K,

θnk := n(pnkλ
n − µk)→ θk, as n→∞. (27)

(b) We can find a set of states G ⊂ RK+ (the non-negative orthant of the K-dimensional real
space), which serves as “good” initial (limiting) states and typically includes the origin.
(We write G = G(D) when we want to highlight its dependence on the policy D.) When
the initial states satisfy Q̂n(0) ⇒ Q̂(0) ∈ G (e.g., Q̂n(0) = Q̂(0) = 0), the scaled routing
processes defined in equation (18) satisfy the central limit theorem, i.e., the following weak
convergence:

Φ̂n(t)⇒ Φ̂(t) := (Φ̂k(t))k∈K, (28)

where Φ̂k(t), k ∈ K, are (possibly correlated) Brownian motions with zero means and finite
and constant variations. Furthermore, putting the arrival, service and routing together,
(Φ̂(t), Ê(t), Ŝ(t)) also constitutes a multi-dimensional Brownian motion with a zero drift
and a finite constant covariance matrix.

We will see that an admissible policy indeed induces a well-defined diffusion limit for the queue
length process under heavy traffic. Denote the class of all admissible routing policies as D.

We call pnk the (approximate) routing rate to server k in the n-th system. The (approximate)
arrival rate to and traffic intensity of server k are then denoted as pnkλ

n and ρnk := pnkλ
n/µk,

respectively. Hence, the condition in (a) requires that the arrival rates to the queues pnkλ
n

are within the service capacities (rates) µk and approach the capacities proportionally. This
condition also implies

pnk → pk :=
µk
µK

,
∑
k∈K

θk = θK. (29)

Observe that the convergence in (28) holds if pnk is replaced by any p̃nk satisfying n(pkk− p̃nk)→ 0,
and therefore, the choice of pnk is not unique. Also note that should the routing sequences satisfy
the law of large numbers too, i.e., for some constants p̃nk ≥ 0,

lim
`→∞

Φn
k(`)/` = p̃nk a.s., for all n,

it can be seen that n(p̃nk − pnk)→ 0, which justifies pnk as an “approximate” rate. The condition
(a) causes no loss of generality for our study since, if it does not hold, we can always focus on
any convergent subsequence of {θn}.

Unlike the parameter θK, which is given in (11) and is fixed, we have some room to adjust the
parameters θk’s when we try to find the optimal routing policy below. Also note from (29) that
pk is the limit of the sequence {pnk} rather than the routing rate for a specific system. Though
pk takes on the same value as µk/µK, it indicates intentionally that the value is arrived at via
a sequence. This is similar to different roles of λ and µK, and is useful for constructing routing
policy for the original (pre-limit) system from the diffusion limit theorems (to be established)
heuristically.

The condition (b) imposes the central limit theorem on the routing processes Φ̂n(t). There
is vast amount of literature for characterizing conditions for the central limit theorem to hold,
which relate to the notion of asymptotic independence. For examples, refer to: Gut [27], Section
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5 of Chapter 9; Whitt [58], Section 4.4; and Shiryaev [50], Section 8 of Chapter VII. From
a practical perspective, a useful routing policy should lead to an asymptotically stationary
system, or simply a stationary system if it starts from a “nice” initial state, and the resulting
routings, {φn(`), ` = 1, 2, · · · }, must be an asymptotically independent sequence. Therefore,
we believe that the class D contains a wide range of non-anticipating routing policies that are
well behaved and of practical interest, which indeed includes all the policies being studied.
Particularly, it includes some policies, such as the JSQ and BR policies (cf. Proposition 2),
that are asymptotically optimal over the set of all routing policies (a strict superset of D). By
restricting our attention to the more tractable class D, we are able to identify the optimal policies
and characterize the system performances given the availability of state information such as the
queue length state, the arrival history, and the service history.

3.1 Diffusion Limit and Lower Bound

The proposition below illustrates that an admissible policy induces a diffusion limit, which is
amenable to further analysis, and establishes a lower bound for the class of admissible poli-
cies. This lower bound is indeed achievable by applying the JSQ and BR policies, as shown in
Proposition 2.

Proposition 1 Suppose the routing policy D is admissible (D ∈ D), and the initial states
satisfy

Q̂n(0)⇒ Q̂(0) ∈ G(D). (30)

(a) (Diffusion limit) We have the following weak convergence: as n→∞,(
Q̂n(t), X̂n(t), Ŷ n(t))

)
⇒
(
Q̂(t), X̂(t), Ŷ (t)

)
, (31)

where the limit is the unique solution of the following Skorohod problem:

Q̂k(t) = Q̂k(0) + X̂k(t) + Ŷk(t) ≥ 0, (32)

Ŷk(t) is non-decreasing in t with Ŷk(0) = 0, (33)∫ ∞
0

Q̂k(t)dŶk(t) = 0, (34)

with X̂(t) = (X̂k(t))k∈K,

X̂k(t) = Φ̂k(λt) + pkÊ(t)− Ŝk(t) + θkt. (35)

(b) (Lower bound) Moreover, we have the following asymptotic lower bound for the system:

(Q̂K(t), ŶK(t)) ≥ (Q̂∗(t), Ŷ ∗(t)), (36)

where (Q̂∗(t), Ŷ ∗(t)) is the unique solution to the following Skorohod problem,

Q̂∗(t) = Q̂K(0) + X̂K(t) + Ŷ ∗(t) ≥ 0, (37)

Ŷ ∗(t) is non-decreasing in t with Ŷ ∗(0) = 0, (38)∫ ∞
0

Q̂∗(t)dŶ ∗(t) = 0, (39)

and

X̂K(t)

(
=
∑
k∈K

X̂k(t)

)
= Ê(t)−

∑
k∈K

Ŝk(t) + θKt.
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The proposition is proved by applying the continuity and the minimality properties of the
one-dimensional Skorohod mapping (Lemma 10); a detailed proof is given in the Appendix.

It is known that given Q̂k(0) and X̂k(t), the relations in (32-34), which constitute the Sko-
rohod problem, uniquely define the processes Q̂k and Ŷk: Q̂k = Φ(Q̂k(0) + X̂k) and Ŷk =
Ψ(Q̂k(0) + X̂k), with Φ(·) and Ψ(·) being Lipschitz continuous mappings (cf. Lemma 10). In
particular, when X̂k(t) is a Brownian motion, Q̂k(t) is a one-dimensional reflected Brownian
motion (RBM), and Ŷk(t) is the associated regulator. As the free process X̂k(t) has a negative
drift θk < 0, the process Q̂k(t) has a stationary distribution, which is exponential with rate
−2θk/var(Φ̂k(λ) + pkÊ(1)− Ŝk(1)) (cf. Lemma 11). Therefore, under the policy D (specified in
the above proposition) the expected stationary queue length in the limit is

EQ̂k(∞;D) =
var(Φ̂k(λ) + pkÊ(1)− Ŝk(1))

−2θk
. (40)

Here, Q̂k(∞;D), k ∈ K, is a random variable following the stationary distribution of Q̂k(t). In
this notation, the routing policy D is attached to explicitly indicate that the variable (as well as
the associated diffusion limit Q̂k(t)) is derived under the policy D, and such an argument will
be omitted if it causes no confusion.

Similarly, the lower bound described in (37-39) can be characterized by Q̂∗ = Φ(Q̂K(0)+X̂K)
and Ŷ ∗ = Ψ(Q̂K(0) + X̂K), where the free process X̂K(t) has a negative drift θK and a variation
λc2

a +
∑

k∈K µkc
2
b,k. The expected stationary queue length in the limit is

EQ̂∗(∞) =
λc2

a +
∑

k∈K µkc
2
b,k

−2θK
:= L̂∗, (41)

where Q̂∗(∞) follows the stationary distribution of Q̂∗(t). Clearly, it is the lower bound perfor-
mance over all admissible policy, i.e.,

EQ̂∗(∞) ≤ EQ̂K(∞;D), D ∈ D.

Furthermore, it can be noted that Q∗(t) is indeed a lower bound in a stronger sense of stochastic
order and pathwise dominance (e.g., [16], Theorem 5(b) and its proof) over all feasible routing
policies, which might even not be non-anticipating or induce a diffusion limit. Nevertheless, it
is sufficient for our purpose to restrict our discussion to class D.

3.2 JSQ and BR Policies Revisited

Proposition 2 Consider the JSQ policy and the BR policy (with c ≥ 2 and πnk = µk/µK).
(a) ( [16,47,68]) Suppose the initial states satisfy

Q̂n(0)⇒ Q̂(0) ∈ G(JSQ) := {q : q ∈ RK+ , q1 = · · · = qK};

that is, all queue lengths are asymptotically equal. Then, under either the JSQ or BR policy,
we have the weak convergence: as n→∞,(

Q̂n(t), X̂n(t), Ŷ n(t))
)
⇒
(
Q̂(t), X̂(t), Ŷ (t)

)
, (42)

where in the diffusion limit the lower bound performance is achieved:

(Q̂K(t), X̂K(t), ŶK(t)) = (Q̂∗(t), X̂K(t), Ŷ ∗(t)),

and all queues are equal: for all k ∈ K,

(Q̂k(t), X̂k(t), Ŷk(t)) =
1

K
(Q̂∗(t), X̂K(t), Ŷ ∗(t)), (43)

Φ̂k(λt) =

(
1

K
− pk

)
Ê(t)−

 1

K

∑
j∈K

Ŝj(t)− Ŝk(t)

 , and (44)

θk = θK/K. (45)
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(b) The JSQ policy and BR policy belong to the class D, where the approximate routing rates
and traffic intensities, pnk and ρnk , can be chosen such that

µk − pnkλn =
1

K
(µK − λn), 1− ρnk =

µK
Kµk

(1− ρn). (46)

Observe that under the JSQ (or BR) policy, the diffusion limit attains the lower bound
system given in Proposition 1(b), i.e., a one-dimensional RBM with drift θK and variation
λc2

a +
∑

k µkc
2
b,k. Hence, the expected stationary queue lengths for the whole system and each

server are (cf. (40)),

EQ̂K(∞; JSQ) =
λc2

a +
∑

k µkc
2
b,k

−2θK
(= L̂∗), (47)

EQ̂k(∞; JSQ) =
1

K
L̂∗. (48)

From equality (43), we see that the state-space collapse property holds, that is, the queue
length of the diffusion limit evolves within the one-dimensional space G(JSQ). This subspace
is called the fixed-point state space or invariant manifold in literature. Furthermore, the total
queue length in the diffusion limit, Q̂K(t), is same as the one for a sequence of G/G/1 queueing
systems — in the n-th system, the interarrival arrival times have a mean 1/λn and a squared
coefficient of variation (cna)2, and the service times have a mean 1/µK and a squared coefficient
of variations of

∑
k∈K µkc

2
b,k/µK. That is, the (original) parallel server system behaves like a

G/G/1 queue and its servers appear pooled together to form an aggregated server in the diffusion
limit. This is known as the resource pooling effect, which also exhibited for some other stochastic
network models in previous studies (e.g., [32, 37,43]).

Moreover, the initial states are required to “collapse” into the subspace G(JSQ) with all
queue lengths being equal in the proposition. If we relax this requirement and allow initial
states to be a tight sequence, then the initial states will jump to the fixed-point state space
instantaneously. Consequently, the weak convergence in (42) still holds with a modification on
the convergence of the inital period (cf. [9, 43, 52, 66]). This extension is indeed required when
we study the interchange of limits below (cf. Propositions 20 and 21).

4 Round-Robin Routing: No State Information

Consider a sub-class of D, denoted H, which includes all admissible policies such that Φ̂(λt)
and (Ê(t), Ŝ(t)), the limits derived in Proposition 1, are not correlated for all t ≥ 0. Let
H0 be a further sub-class of H containing the blind routing policies such that the routing
{Φn(`), ` = 1, 2, · · · } is independent of {(En(t), Sn(t)), t ≥ 0}. Hence, under any policy in H the
routing is uncorrelated with the arrival and service history asymptotically, whereas under any
policy in H0 the routing is independent of the arrival and service history. Also observe that the
system dynamics, mainly described by Qn(t), is driven by the primitive processes (En(t), Sn(t))
and the routing control Φn(`) (cf. (22-24)). Thus, by using a blind policy (in H0), the controller
can “see” at most its own decisions {Φn(`)}. In contrast, the JSQ policy will review the queue
length state, which has encoded the information about the arrival, service and routing available
up to the epoch for routing decision-making.

For any policy H ∈ H, since it belongs to D as well, Proposition 1 applies, and following the
equality in (40) the expected stationary queue lengths of the diffusion limit are written as:

EQ̂k(∞;H) =
var(Φ̂k(λ)) + p2

kλc
2
a + µkc

2
b,k

−2θk
.
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Observe that the expected stationary queue length is lower bounded by the following, given the
same drift parameter θ(< 0):

EQ̂K(∞;H) ≥ h(θ) :=
∑
k∈K

p2
kλc

2
a + µkc

2
b,k

−2θk
.

Solving the optimization problem,

min
θk

h(θ), s.t.
∑
k∈K

θk = θK, θk < 0 for k ∈ K, (49)

yields a lower bound of expected stationary queue lengths over all class H policies,

h(θ∗) =

(∑
k

√
p2
kλc

2
a + µkc

2
b,k

)2

−2θK
, with θ∗ = (θ∗k)k∈K, θ

∗
k =

√
p2
kλc

2
a + µkc

2
b,k∑

j

√
p2
jλc

2
a + µjc2

b,j

θK. (50)

Now, for the n-the system, apply the RR control policy (as described in Section 2) with the
weight parameter pn = (pnk)k∈K satisfying the requirement in (2). We further require that the
condition in (27) is satisfied for some θ = (θk)k∈K < 0, and denote such an RR policy sequence
as RR({pn}n∈N , θ), or RR(θ) for short, since we will see that the parameters {pn} take effect on
the limit only through θ. The following theorem shows that the routing policy RR(θ), a blind
policy belonging to H0, can achieve the lower bound performance in (50) over the larger class
H.

Theorem 3 (a) Suppose the RR policy, RR(θ), is in force, and the initial states satisfy Q̂n(0)⇒
Q̂(0) ∈ G(RR(θ)) := RK+ . Then, the weak convergence described in (31-35) holds with Φ̂k(t)

and X̂k(t) satisfying

Φ̂k(t) = 0, X̂k(t) = pkÊ(t)− Ŝk(t) + θkt. (51)

The “free process” X̂k(t) is a Brownian motion with drift θk and variance (p2
kλc

2
a + µkc

2
b,k).

Hence, for each k ∈ K, Q̂k(t) is an RBM with drift θk and variation p2
kλc

2
a + µkc

2
b,k, and the

expected stationary queue lengths for the server k is:

EQ̂k(∞;RR(θ)) =
p2
kλc

2
a + µkc

2
b,k

−2θk
. (52)

(b) The routing policy RR(θ) belongs to H0(⊂ H ⊂ D), where the approximate routing rates
for the n-th system can be given as pn = (pnk)k∈K.
(c) Let θ be set to θ∗ = (θ∗k)k∈K given in (50), or alternatively, choose some approximate routing
rates such that

µk − pnkλn

µK − λn
=

√
(pnk)2λn(cna)2 + µkc

2
b,k∑

j

√
(pnj )2λn(cna)2 + µjc2

b,j

. (53)

Then, the RR policy RR∗ := RR(θ∗) is asymptotically optimal in H; that is, for any policy
H ∈ H, we have

EQ̂K(∞;RR∗) ≤ EQ̂K(∞;H).

Moreover, the expected stationary queue lengths of the diffusion limit under RR∗ are given as,

EQ̂K(∞;RR∗) =

(∑
k

√
p2
kλc

2
a + µkc

2
b,k

)2

−2θK
, (54)

EQ̂k(∞;RR∗) =

√
p2
kλc

2
a + µkc

2
b,k

(∑
j

√
p2
jλc

2
a + µjc2

b,j

)
−2θK

. (55)
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The key to proving the above theorem is to establish the convergence of the routing processes
to zero, i.e., the first equality in (51). And this follows from the property that the RR policy
dispatches jobs to each server in a deterministic manner, as stipulated by the requirement in
(2). Consequently, similar to the proof of Proposition 2, we can apply the Skorohod mapping to
establish the diffusion limit (process-wise convergence) and subsequently the other properties in
the theorem.

Note that in part (c) of the above theorem, (µk − λnpnk) and (µK − λn) are the surplus
capacities of the server k and the whole system, respectively; and ((pnk)2λn(cna)2 + µkc

2
b,k) is the

combined variability owing to the arrival and service processes of the class k. Hence, under
the optimal RR policy, the overall surplus capacity is distributed to each server in proportional
to the square root of its combined variability. This is reminiscent of the square-root rule in
various queueing models (e.g., [7,12,62]). Furthermore, in the special case of Poisson arrival and
exponential service (cna = 1 and cb,k = 1), the terms inside the square roots become ((pnk)2λn +
µk), a combination of the arrival and service rates. Hence, our square-root rule appears to be
a generalization of the conventional forms that involve the square root of either arrival rate or
service rate.

4.1 Comparison and Observation

Comparison between the optimal RR policy and the JSQ/BR policy. As the JSQ and BR policies
yield the same diffusion limit, we discuss JSQ only.

From the optimality of the JSQ policy in Proposition 2, we know that the expected stationary
queue length under the optimal RR policy RR∗ cannot be smaller than the JSQ policy. Here,
we first compare their performances in (47,54) and reveal when an RR policy can achieve the
performance under JSQ policy, i.e., the optimal performance over all admissible policies (class
D).

To this end, we focus on the case c2
a > 0, while the other degenerate case (c2

a = 0) involves
a tedious discussion but yields little new insight. To compare the performances, consider the
function:

∆(x1, · · · , xK) :=

(∑
k

√
p2
kλc

2
a + xk

)2

−2θK
−
λc2

a +
∑

k xk
−2θK

.

Clearly, we have

∆(0, · · · , 0) = 0, ∆(µ1c
2
b,1, · · · , µKc2

b,K) = EQ̂K(∞;RR∗)− EQ̂K(∞; JSQ),

and when (x1, · · · , xK) ≥ 0,

∂∆

∂xk
=

1

−2θK

∑
j

√
p2
jλc

2
a + xj√

p2
kλc

2
a + xk

− 1

−2θK
=

1

−2θK

∑
j∈K\{k}

√
p2
jλc

2
a + xj√

p2
kλc

2
a + xk

> 0, k ∈ K.

This implies that the equality, ∆(µ1c
2
b,1, · · · , µKc2

b,K) = 0, or EQ̂K(∞;RR∗) = EQ̂K(∞; JSQ),
holds only when

c2
b,k = 0 for all k ∈ K.

Under the above condition, the parameters θ∗k and pnk specified in Theorem 3(c) can be simplified
as:

θ∗k = pkθK, pnk =
µk
µK

.

In other words, the optimal RR policy can attain the performance of the JSQ policy if and
only if all service times are deterministic, and in this case, jobs are routed to each server in
proportional to the service rate.
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Wu and Down [63] studied the same model under the RR routing, but assuming that the
job arrivals follow a Poisson process and the service times follow a discrete requirement and
are known upon arrival. Under the latter assumption, their model is reduced to the one with
multiple job classes, each class having a Poisson arrival stream, deterministic service times, and
priority scheduling at servers. Then, they derive the diffusion limit under the RR routing policy,
and show (in Theorem 3.3) that the RR policy, assigning jobs in proportional to the service rates
for each class, is asymptotically optimal and has the same diffusion limit as the JSQ policy, as
well as the c-SRPT policy in their paper. Their optimality result (more specifically, in the
special case with a single job class) is consistent with our observation above, i.e., the RR policy
achieves the JSQ performance only when all service times are deterministic.

We now consider an example, and illustrate that the optimal RR policy can yield an expected
stationary queue length arbitrarily longer than the JSQ policy. In this example, assume all
servers are identical, services times are exponentials, and arrivals follow the Poisson process.
Then, we have pk = 1/K and c2

a = c2
b,k = 1, and thus θ∗k = θK/K according to the above

discussion. Consequently, according to Theorems 2 and 3, the expected queue lengths are
reduced to the following,

EQ̂K(∞;RR∗) =
(1 +K)λ

−2θK
, EQ̂K(∞; JSQ) =

λ

−θK
.

When the number of servers K grows, the performance under the optimal RR policy can be
arbitrarily worse than the JSQ policy, i.e.,

EQ̂K(∞;RR∗)

EQ̂K(∞; JSQ)
→∞ as K →∞.

Comparison between the optimal RR policy and the proportional RR policy. For the RR
policy RR(θ), a conventional option is, as we have seen above, to distribute the jobs to servers
in proportion to the service rate, i.e., to set the parameters as pnk = µk/µK and thus from the
condition in (27),

θk = θ′k :=
µk
µK

θK. (56)

We call it the proportional RR policy. From Theorem 3(a), the expected stationary queue length
under this policy is

EQ̂K(∞;RR(θ′)) =
∑
k∈K

pkλc
2
a + µKc

2
b,k

−2θK
. (57)

Putting (57,54) together, and taking into account the relationships pk = µk/µK and λ = µK,
then yield the ratio between the performances under the proportional and the optimal RR
policies:

EQ̂K(∞;RR(θ′))

EQ̂K(∞;RR(θ∗))
=

∑
k∈K(pkc

2
a + c2

b,k)(∑
k∈K

√
pk(pkc2

a + c2
b,k)
)2 ≥ 1,

where the inequality is due to the conclusion in Theorem 3(c) and alternatively can be shown
directly using the concavity of the square root function. Furthermore, let us examine an example:
assume Poisson arrival and exponential service (hence, c2

a = 1, c2
b,k = 1), and pick p1 = 1−1/K+

1/K2 and pk = 1/K2 for k = 2, · · · ,K. Then, the above performance ratio is reduced to

EQ̂K(∞;RR(θ′))

EQ̂K(∞;RR(θ∗))
=

K + 1

3 + 2
√

2 + o(1/K)
→∞, as K →∞.
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Therefore, the performance of the proportional RR policy is generally suboptimal within the
class of RR policies, and can be arbitrarily worse than the optimal RR policy.

Next, observing the definitions of θ′ and θ∗ in (56) and (50), respectively, we note that the
proportional RR policy coincides with the optimal RR policy if and only if√

p2
kλc

2
a + µkc

2
b,k∑

j∈K

√
p2
jλc

2
a + µjc2

b,j

= pk, k ∈ K. (58)

By simple algebra, this is reduced to µ−1
1 c2

b,1 = µ−1
2 c2

b,2 = · · · = µ−1
K c2

b,K . Recall µ−1
k c2

b,k =

σ2
b,k/µ

−1
k , where σ2

b,k denotes the variation of the service time (of server k) and thus σ2
b,k/µ

−1
k

is the variance-to-mean ratio. Consequently, the proportional RR policy coincides with the
optimal RR policy if and only if variance-to-mean ratios of service times for all servers are
the same. Therefore, in the special case that all servers are identical, the (asymptotically)
optimal RR policy will route incoming jobs in order and in rotating fashion. This policy is
indeed the optimal routing policy for a discrete system with identical parallel servers, renewal
arrival, general service time at each server, and no real-time information of the system state
(cf. Hajek [28] and Altman et al. [1]).

5 Probabilistic Proportional Routing: No State Information

Consider the PP routing policy (as described in Section 2) with the weight parameter pn =
(pnk)k∈K satisfying the requirement in (4) and the condition in (27) for some θ < 0. Denote
such a PP policy sequence as PP ({pn}n∈N , θ), or PP (θ) for short. In the following theorem we
identify the optimal PP policy.

Theorem 4 (a) Suppose the PP policy, PP (θ), is in force, and the initial states satisfy Q̂n(0)⇒
Q̂(0) ∈ G(PP (θ)) := RK+ . Then, the weak convergence depicted in (31-35) holds. In the limit, the

routing process Φ̂(λt) = (Φ̂k(λt))k∈K is a K-dimensional Brownian motion that is independent
of (Ê(t), Ŝ(t)) and has a correlation matrix Γ = (Γk`){k,`∈K} with Γkk = λpk(1 − pk) and

Γk` = −λpkp` for k 6= `. The “free process” X̂k(t) is a Brownian motion with drift θk and
variance (λpk(1 − pk) + p2

kλc
2
a + µkc

2
b,k). Hence, Q̂k(t) is an RBM with drift θk and variation

λpk(1− pk) + p2
kλc

2
a + µkc

2
b,kfor each k ∈ K, and the expected stationary queue lengths are:

EQ̂k(∞;PP (θ)) =
λpk(1− pk) + p2

kλc
2
a + µkc

2
b,k

−2θk
, (59)

EQ̂K(∞;PP (θ)) =
∑
k∈K

λpk(1− pk) + p2
kλc

2
a + µkc

2
b,k

−2θk
. (60)

(b) The routing policy PP (θ) belongs to H0(⊂ H ⊂ D), where the approximate routing rates
for the n-th system can be given as the weight parameter pn = (pnk)k∈K.
(c) Let θ be set to θ∗ = (θ∗k)k∈K, with

θ∗k =

√
λpk(1− pk) + p2

kλc
2
a + µkc

2
b,k∑

j

√
λpj(1− pj) + p2

jλc
2
a + µjc2

b,j

θK;

or alternatively, choose some approximate routing rates such that

µk − pnkλn

µK − λn
=

√
λnpnk(1− pnk) + (pnk)2λn(cna)2 + µkc

2
b,k∑

j

√
λnpnj (1− pnj ) + (pnj )2λn(cna)2 + µjc2

b,j

. (61)
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Then, the policy PP ∗ := PP (θ∗) is asymptotically optimal over all PP policies; that is, for any
PP policy PP (θ), we have

EQ̂K(∞;PP ∗) ≤ EQ̂K(∞;PP (θ)).

Moreover, the expected stationary queue lengths under the optimal PP policy PP ∗ are given
as:

EQ̂K(∞;PP ∗) =

(∑
k

√
λpk(1− pk) + p2

kλc
2
a + µkc

2
b,k

)2

−2θK
, (62)

EQ̂k(∞;PP ∗) =

√
λpk(1− pk) + p2

kλc
2
a + µkc

2
b,k

(∑
j

√
λpj(1− pj) + p2

jλc
2
a + µjc2

b,j

)
−2θK

.(63)

Conclusion (a) in the above theorem is a special case of the diffusion limit for the (generalized)
Jackson network (e.g., [15]). Conclusion (b) is obvious, and (c) is established by choosing the
best drift parameter θ to minimize the expected queue length given in (a). Detailed proof is
omitted.

Similar to the optimal RR policy, the optimal PP policy, particularly the routing rate in
(61), also exhibits a certain form of the square-root rule. In particular, in the case of Poisson
arrival and exponential service (hence, cna = 1 and cb,k = 1) and for large n (hence, λnpnk ≈ µk),
the routing rate is approximated as,

µk − pnkλn ≈
√
µk∑

j
√
µj

(µK − λn).

Therefore, in this special case, the overall surplus capacity (µK−λn) is distributed to each server
in proportion to the square root of the service rate µk.

Observe from the equalities in (52,60) that with the same drift parameter θ, the RR policy
has an expected stationary queue length strictly less than the PP policy. Hence, the optimal RR
policy also asymptotically outperforms the optimal PP policy strictly. Moreover, by comparing
the equalities in (54,62), it is direct to see that the performance ratio between the optimal PP
and RR policies, EQ̂K(∞;PP ∗)/EQ̂K(∞;RR∗), can be arbitrarily large when ca and cb,k are
sufficiently small.

6 Arrival Chasing: Using Arrival History Information

Consider a sub-class of D, denoted E , which includes all admissible policies such that Φ̂(λt) and
Ŝ(t) are not correlated for t ≥ 0. Let E0 be a further sub-class of E containing policies such that
the routing {Φn(`), ` = 1, 2, · · · } is independent of {Sn(t), t ≥ 0} for each n.

Clearly, any policy E ∈ E belongs to D as well, and therefore we apply Proposition 1 (the
equality in (40) in particular), along with the definition of E , to write the expected stationary
queue lengths as:

EQ̂k(∞;E) =
var(Φ̂k(λ) + pkÊ(1)) + µkc

2
b,k

−2θk
, EQ̂K(∞;E) =

∑
k∈K

EQ̂k(∞;E). (64)

A lower bound of EQ̂K(∞;E) can be estimated as follows. If we let

hk =
E[Φ̂k(λ)Ê(1)]

EÊ(1)2
,
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which satisfies
∑

k∈K hk = 0 (since
∑

k∈K Φ̂k(λ) = 0); then, the variation terms in EQ̂K(∞;E)
can be estimated as

var(Φ̂k(λ) + pkÊ(1)) = var
(

(Φ̂k(λ)− hkÊ(1)) + (hk + pk)Ê(1)
)

= var
(

(Φ̂k(λ)− hkÊ(1))
)

+ (hk + pk)
2 var(Ê(1)) ≥ (hk + pk)

2λc2
a,

where the equality is attained if

Φ̂k(λt) = hkÊ(t). (65)

Hence, we have the following for some constants h = (hk)k∈K satisfying
∑

k∈K hk = 0,

EQ̂K(∞;E) ≥ f(θ, h) :=
∑
k∈K

(hk + pk)
2λc2

a + µkc
2
b,k

−2θk
.

And consequently, solving the following optimization problem will yield a lower bound for
EQ̂K(∞;E) over the class E :

min
θk,hk

f(θ, h), s.t.
∑
k∈K

hk = 0,
∑
k∈K

θk = θK. (66)

Applying the KKT condition, it is direct to solve the above for the optimal solution (h∗k, θ
∗
k)

h∗k + pk =
θ∗k
θK

=

√
µkc

2
b,k∑

j

√
µjc2

b,j

, (67)

and the lower bound for EQ̂K(∞;E),

f(θ∗, h∗) =
λc2

a +
(∑

k

√
µkc

2
b,k

)2

−2θK
, (68)

with the corresponding estimate for EQ̂k(∞;E):

fk(θ
∗, h∗) = (h∗k + pk)f(θ∗, h∗). (69)

(Here and below, some constants and parameters (e.g., θ∗ and h∗) are redefined to represent
different values. As this appears under different classes of routing policies, we hope no confusion
will arise.)

Next, we introduce the so-called arrival-chasing (AC) routing policy in the class E0, which
will indeed lead to a limit in the form of (65) and achieve the lower bound in (68).

6.1 Arrival-Chasing Policy and Its Optimality

An AC routing policy for the n-th network is specified with the parameters pn = (pnk)k∈K ≥ 0
and hn = (hnk)k∈K satisfying ∑

k∈K
pnk = 1 and

∑
k∈K

hnk = 0 (70)

as follows: Upon the `-th arrival (` = 1, 2, · · · ), pick any server k′ such that

k′ = arg min
k∈K

αnk(`), with αnk(`) := (Φn
k(`− 1)− pnk`)− hnk(`− λnΥn(`)), (71)

21



and then let

Φn
k′(`) = Φn

k′(`− 1) + 1 and Φn
k(`) = Φn

k(`− 1), k 6= k′. (72)

If we denote t = Υn(`) and τ = Υn(`− 1), then, the function αnk(`), defined for choosing server
in the above, can be written as:

αnk(`) = (Φn
k(En(τ))− pnkEn(t))− hnk(En(t)− λnt). (73)

Take a closer look into how a server is selected upon the arrival of a job in (73) (or (71)).
Note that the term En(t) − λnt, called “arrival deviation” here, is the (real-time) deviation of
the external arrival from its mean. A portion of this arrival deviation will be assigned to server
k as specified by the parameter hnk (which could be either positive or negative), and acts as the
“targeted deviation”. Given the parameter pnk—the long-run fraction of jobs assigned to server
k, the term pnkE

n(t) can be viewed as the nominal amount of jobs dispatched to server k, or
the “mean routing”. Then, the term Φn

k(En(τ))− pnkEn(t) is the (real-time) deviation from the
mean routing, and can be called “routing deviation”. Now, the difference, αnk(`), represents the
“surplus” of routing deviation to be minimized. Thus, the AC policy steers the routing deviation
to “chase” the targeted deviation — hence, the name arrival-chasing. Observe that when hn = 0
(i.e., the history of past arrivals is ignored), the AC policy will be reduced to an RR policy.

It would be useful to define a chasing process, Ψn(t) = (Ψn
k(t))k∈K:

Ψn
k(t) := (Φn

k(En(t))− pnkEn(t)))− hnk(En(t)− λnt). (74)

Note that αnk(`) gives some state information (upon the `-th arrival at time t) excluding the
routing information of the arriving job, while the process Ψn(t) has embodied the routing infor-
mation of that job. Clearly, at time t = Υn(`), we have

Ψn
k(t) = αnk(`) + φnk(`),

∑
k∈K

Ψn
k(t) =

∑
k∈K

αnk(t) + 1 = 0. (75)

The AC policy can be implemented iteratively. Given Ψn
k(τ), the information of the chasing

process upon the (`− 1)-th arrival (or, time τ = Υn(`− 1)), it is only necessary to monitor the
interarrival time un(`) till the next arrival, and then, calculate αnk(`) as

αnk(`) = Ψn
k(τ)− pnk − hnk(1− λnun(`)). (76)

This determines the routing φn(`) (or Φn(`)) following (71,72), and thus the chasing process
at time t = Υn(`) (of the `-th arrival) is updated as in (75). Clearly, given the parameters
(pnk , h

n
k , λ

n), the routing decision of an AC policy depends only on the information about the
arrival and routing available up to the decision epoch, and is independent of the service process.
And, as we will see in the next theorem, to specify the control parameters (pnk , h

n
k) optimally

requires a priori knowledge of the model parameters (λn, µk, cb,k).

Now, apply the AC routing policy defined in (71,72) with the parameters (pn, hn) satisfying
the requirements in (70). We further require that the condition in (27) is satisfied for some
θ < 0, and

hnk → hk, as n→∞, for k ∈ K, (77)

for some h = (hk)k∈K satisfying
∑

k∈K hk = 0. Denote such an AC policy sequence asAC({pn, hn}n∈N , θ, h),
or AC(θ, h) for short. The following theorem shows that the routing policy AC(θ, h) belongs to
E0, and can achieve the lower bound performance in (68) over a larger class E .
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Theorem 5 (a) Suppose the AC policy, AC(θ, h), is in force, and the initial states satisfy
Q̂n(0) ⇒ Q̂(0) ∈ G(AC(θ, h)) := RK+ . Then, the weak convergence depicted in (31-35) holds

with Φ̂k(t) satisfying (65) and

X̂k(t) = (hk + pk)Ê(t)− Ŝk(t) + θkt.

Hence, Q̂k(t) is an RBM with drift θk and variation (hk + pk)
2λc2

a + µkc
2
b,k, and the expected

stationary queue lengths are:

EQ̂k(∞;AC(θ, h)) =
(hk + pk)

2λc2
a + µkc

2
b,k

−2θk
, (78)

EQ̂K(∞;AC(θ, h)) =
∑
k∈K

(hk + pk)
2λc2

a + µkc
2
b,k

−2θk
. (79)

(b) The routing policy AC(θ, h) belongs to E0(⊂ E ⊂ D), where the approximate routing rates
for the n-th system can be given as pn = (pnk)k∈K.
(c) Let (θ, h) be set to (θ∗, h∗) given in (67), or alternatively, choose the sequence of parameters
{pn, hn}n∈N as

hnk + pnk =
µk − pnkλn

µK − λn
=

√
µkc

2
b,k∑

j

√
µjc2

b,j

. (80)

Then, the policy AC∗ ≡ AC(θ∗, h∗) is asymptotically optimal in E ; that is, for any policy E ∈ E ,
we have

EQ̂K(∞;AC∗) ≤ EQ̂K(∞;E).

Moreover, the expected stationary queue lengths under AC∗ are given in (68,69), i.e.,

EQ̂K(∞;AC∗) =
λc2

a +
(∑

j

√
µjc2

b,j

)2

−2θK
, (81)

EQ̂k(∞;AC∗) = (h∗k + pk) · EQ̂K(∞;AC∗) =

√
µkc

2
b,k∑

j

√
µjc2

b,j

EQ̂K(∞;AC∗). (82)

Similar to the proof of Theorem 3, the key is to show the convergence of the routing processes
to the limit in (65). Under the AC policy, the routing deviation chases the arrival deviation
(adjusted with the coefficient hnk); refer to (71) or (73). With this property, we can apply the
hydrodynamic approach to establish the required convergence (cf. Lemmas 14 and 15).

From the above theorem, we observe that a square-root rule exhibits in the optimal AC
policy once again, similar to the optimal RR and PP policies. Completely analogous to the
optimal PP policy, in the case of Poisson arrival and exponential service (hence, cna = 1 and
cb,k = 1) the routing rate under the optimal SC policy, given in equation (80), is written as,

µk − pnkλn =

√
µk∑

j
√
µj

(µK − λn).

That is, the overall surplus capacity is distributed to each server in proportion to the square
root of the service rate.

A subtle point relates to the trivial case that all servers are deterministic (cb,k = 0 for all k).
In this case, it can be checked that part (c) of the theorem still holds if the coefficient in (80,82)
(or, the last term in (67)), which has a zero in the denominator, is interpreted as an arbitrarily
valid weight parameter w = (wk)k∈K satisfying w ≥ 0 and

∑
k∈K wk = 1. In other words, it only

requires the first equality in (67) for the AC policy to be optimal. We omit a detailed discussion
of this case to avoid complicating the presentation.
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6.2 Comparison and Observation

Comparison between the optimal AC policy and the JSQ policy. Since the JSQ policy asympti-
cally minimizes the expected stationary queue length globally (even beyond class D), it performs
better than the optimal AC policy, i.e.,

EQ̂K(∞;AC∗) ≥ EQ̂K(∞; JSQ) (= L̂∗).

From the expressions in (81,47), we note that the equality takes effect if and only if cb,k > 0 for
at most one of the servers. That is, when all servers, except at most one, have deterministic
service times, the optimal AC policy AC∗, using only the information of arrival history, can
achieve the JSQ performance.

In addition, if the service time for some server k is deterministic (cb,k = 0), we have h∗k+pk =
θ∗k = 0 from (67). Thus, using the optimal AC policy, we will choose hnk = −pnk and pnkλ

n = µk
for the n-th system, according to Theorem 5(c). Recall the definition of the AC policy in (73),
and note that the job stream routed to a server k is generally variable inherent in the use of
arrival information,

Φn
k(En(t)) ≈ (pnk + hnk)En(t)− hnkλnt.

Then, given the above choice of parameters, the arrival stream to server k becomes (nearly)
deterministic,

Φn
k(En(t)) ≈ pnkλnt = µkt.

Therefore, the optimal AC policy strikes to cancel out the variability of the stream routed to
any deterministic server. Given the deterministic arrival and service processes, such a server
can be fully utilized while its queue length maintains near zero.

Comparison between the optimal AC policy and the optimal RR policy. Recall that the
optimal RR and AA policies, described in Theorems 3(c) and 5(c) respectively, are specified
by the optimal solutions to the problems in (49) and (66) respectively. Both problems have
a strictly convex objective function and thus have their unique solutions (cf. (50) and (67)).
Comparing these two problems yields that

EQ̂K(∞;AC∗) ≤ EQ̂K(∞;RR∗),

and that the equality in the above holds if and only if h∗k = 0 for all k. From the equalities in
(67), it is direct to verify that the latter condition holds if and only if µ−1

k c2
b,k, k ∈ K, are all

equal. Recall that µ−1
k c2

b,k = σ2
b,k/µ

−1
k , where σ2

b,k denotes the variance of class-k service times.
In other words, when the variance-to-mean ratio of service times at all servers are equal, both
the optimal RR and AC policies yields the same expected stationary queue length, and thus
using the arrival information does not help minimize total queue length.

Next, we investigate to what extent the arrival information can help improve performance
— the value of arrival information.

For the performances under the optimal RR and AC policies in (54,81), we have(∑
k∈K

√
p2
kλc

2
a + µkc

2
b,k

)2

≤

(∑
k∈K

(√
p2
kλc

2
a +

√
µkc

2
b,k

))2

=

(√
λc2

a +
∑
k∈K

√
µkc

2
b,k

)2

≤ 2

λc2
a +

(∑
k∈K

√
µkc

2
b,k

)2
 ,

where the first inequality is due to the triangle inequality and the second to the convexity of
square function. Note that there must be a strict inequality in the above. Otherwise, the equality
in the first inequality would require that either p2

kλc
2
a or µkc

2
b,k must be zero for each k, i.e.,
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c2
a = 0 or (c2

b,k)k∈K = 0. This would prohibit the equality in the second inequality. (Recall, the
trivial case that ca and cb,k are all zero is not considered in this paper.) Hence, the performance
ratio between two policies is strictly less than 2:

EQ̂K(∞;RR∗)

EQ̂K(∞;AC∗)
=

(∑
k

√
p2
kλc

2
a + µkc

2
b,k

)2

λc2
a +

(∑
k

√
µkc

2
b,k

)2 < 2.

Moreover, if we pick some parameters such that c2
a > 0, c2

b,k = 0 for k = 2, · · · ,K, and

c2
b,1 = (1/p1 + 2)c2

a, by simple calculation, we can reduce the above ratio to:

EQ̂K(∞;RR∗)

EQ̂K(∞;AC∗)
=

2

1 + p1
.

Therefore, the ratio can be arbitrarily close to 2, the upper bound ratio, if p1 is sufficiently
small.

In summary, as compared with the optimal RR policy, the optimal AC policy can reduce up
to 50% of the expected stationary queue length by utilizing the arrival information.

7 Service Chasing: Using Service History Information

Consider a sub-class of D, denoted S, which includes all admissible policies such that Φ̂(λt) and
Ê(t) are not correlated for t ≥ 0.

Since S ⊂ D, Proposition 1 applies to any routing policy in S. Hence, under any policy
S ∈ S, the expected stationary queue lengths can be written as

EQ̂k(∞;S) =
p2
kλc

2
a + var(Φ̂k(λ)− Ŝk(1))

−2θk
. (83)

Below we derive a lower bound for EQ̂k∈K(∞;S) in a way similar to the AC policy in Section 6.
Denote h = (hki)k,i∈K, with

1− hkk =
E[Φ̂k(λ)Ŝk(1)]

EŜk(1)2
, for k ∈ K,

−hki =
E[Φ̂k(λ)Ŝi(1)]

EŜi(1)2
, for k 6= i, k, i ∈ K,

which satisfies for all i ∈ K,

1−
∑
k∈K

hki =
E[
∑

k∈K Φ̂k(λ)Ŝi(1)]

EŜi(1)2
= 0.

The variation term in EQ̂k(∞;S) can be estimated as

var(Φ̂k(λ)− Ŝk(1)) = var

((
Φ̂k(λ)−

(
Ŝk(1)−

∑
i∈K

hkiŜi(1)

))
−
∑
i∈K

hkiŜi(1)

)

= var

(
Φ̂k(λ)−

(
Ŝk(1)−

∑
i∈K

hkiŜi(1)

))
+
∑
i∈K

h2
kiE(Ŝi(1))2 ≥

∑
i∈K

h2
kiµic

2
b,i. (84)

Note, in the second equality, we have applied the following,

cov

((
Φ̂k(λ)−

(
Ŝk(1)−

∑
i∈K

hkiŜi(1)

))
,
∑
i∈K

hkiŜi(1)

)
= 0,
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which is due to the definition of hki in the above. Observe that the equality in (84) is attained
if

Φ̂k(λt) = Ŝk(t)−
∑
i∈K

hkiŜi(t). (85)

Applying the bound (84) to the stationary queue length in (83), we have

EQ̂K(∞;S) ≥ g(θ, h) :=
∑
k∈K

p2
kλc

2
a +

∑
i∈K h

2
kiµic

2
b,i

−2θk
.

Hence, the optimal solution to the following optimization problem will give a lower bound for
EQ̂K(∞;S) over the class S:

min
θk,hki

g(θ, h), s.t.
∑
k∈K

θk = θK,
∑
k∈K

hki = 1 for i ∈ K.

Applying the KKT condition, we can find the optimal solution (θ∗k, h
∗
ki),

θ∗k = pkθK, h
∗
ki = pk, k, i ∈ K. (86)

Consequently, a lower bound for EQ̂K(∞;S) is given as,

g(θ∗, h∗) =
λc2

a +
∑

k∈K µkc
2
b,k

−2θK
(= L̂∗). (87)

This is indeed the lower bound over the class D and can be attained if the policy S ∈ S induces
a limit satisfying

Φ̂k(λt) = Ŝk(t)− pk
∑
i∈K

Ŝi(t). (88)

As motivated by the above discussion, particularly the expression in (85,88), we introduce the
so-called service-chasing (SC) policy in the class S below. Such a routing policy, with properly
chosen parameters, will indeed lead to a limit in the form of (88) and achieve the lower bound
in (87).

7.1 Service-Chasing Policy and Its Optimality

An SC routing policy for the n-th network is specified with parameters pn = (pnk)k∈K ≥ 0 and
hn = (hnki)k,i∈K satisfying ∑

k∈K
pnk = 1, and

∑
k∈K

hnki = 1 for i ∈ K, (89)

as follows: Upon the `-th arrival (` = 1, 2, · · · ), pick any server k′ such that

k′ = arg min
k∈K

βnk (`), with (90)

βnk (`) = (Φn
k(`− 1)− pnk`)

−
[
(Snk (Bn

k (Υn(`)))− µkBn
k (Υn(`)))−

∑
i∈K

hnki(S
n
i (Bn

i (Υn(`)))− µiBn
i (Υn(`)))

]
, (91)

and then send the job to that server, i.e.,

Φn
k′(`) = Φn

k′(`− 1) + 1 and Φn
k(`) = Φn

k(`− 1), k 6= k′. (92)
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If we denote t = Υn(`) and τ = Υn(`− 1), then, the function βnk (`), defined for choosing server
in the above, can be written as:

βnk (`) = (Φn
k(En(τ))− pnkEn(t))−

[
(Snk (Bn

k (t))− µkBn
k (t))−

∑
i∈K

hnki(S
n
i (Bn

i (t))− µiBn
i (t))

]
.(93)

Note that upon the `-th arrival at time t = Υn(`), the amount of time that server k has
been busy is Bn

k (t), and the server k has served the amount, Snk (Bn
k (t)), of jobs. Hence, by

time t, (Snk (Bn
k (t)) − µkBn

k (t)) is the (real-time) deviation of the service completions from its
mean (during the busy period before time t), and we call it the “service deviation” for server k.
The term inside the squared bracket in (91) then acts as the “target deviation”. Thus, by the
SC policy the routing deviation will “chase” the target (service) deviation. Observe that when
hnkk = 1 and hnki = 0 (k 6= i) (i.e., the “target” vanishes), the SC policy will also be reduced to
an RR policy.

Similar to (74) (for AC policy), we introduce a chasing process under the SC policy, Ψn(t) =
(Ψn

k(t))k∈K:

Ψn
k(t) := (Φn

k(En(t))− pnkEn(t))−
[
(Snk (Bn

k (t))− µkBn
k (t))−

∑
i∈K

hnki(S
n
i (Bn

i (t))− µiBn
i (t))

]
.(94)

Note that βnk (`) gives some state information (upon the `-th arrival at time t) excluding the rout-
ing information of the arriving job while the process Ψn(t) has embodied the routing information
of that job. Clearly, at time t = Υn(`), we have

Ψn
k(t) = βnk (`) + φnk(`),

∑
k∈K

Ψn
k(t) =

∑
k∈K

βnk (t) + 1 = 0. (95)

In the iterative implementation of the SC policy, we must keep track of the changes in
the busy time and the service completion in each server whenever a service is completed or
an arrival triggers a routing decision. Consider two consecutive events at times t1 and t2,
and the chasing process at t1, Ψn(t1), is known. Denote δB,k := Bn

k (t2) − Bn
k (t1) and δS,k :=

Snk (Bn
k (t2))− Snk (Bn

k (t1)) for convenience. The busy time changes as δB,k = t2 − t1 if the server
k is busy during time interval [t1, t2), and δB,k = 0 otherwise. If there is a service completion at
time t2, say, in server k′, then we have δS,k′ = 1, and δS,k = 0 for k 6= k′. The chasing process is
updated as:

Ψn
k(t2) := Ψn

k(t1)−
[
δS,k − µkδB,k −

∑
i∈K

hnki(δS,i − µiδB,i)
]
.

On the other hand, if it is an arrival event at time t2, say, of the `-th arrival, then δS,k = 0 for
all servers. The arrival process En(t) must increase by 1 at time t2, and we calculate βnk (`) as:

βnk (`) := Ψn
k(t1)− pnk −

[
δS,k − µkδB,k −

∑
i∈K

hnki(δS,i − µiδB,i)
]
.

This determines the routing following (90-92), and thus the chasing process is updated as in
(95):

Ψn
k(t2) = βnk (`) + φnk(`).

Observe that given the parameters (pnk , h
n
ki, µk), the routing decision of an SC policy utilizes the

information about the service and routing available up to the decision epoch. And, as we will
see in the next theorem, to specify the control parameters (pnk , h

n
ki) optimally requires a priori

knowledge of the model parameters µk only. Also note that the routing process and the arrival
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process need not be mutually independent due to the busy time process, but they do in the
diffusion limit to be established.

Now, apply the SC routing policy defined in (90,91) with the parameters (pn, hn) satisfying
the requirements in (89). We further require that the condition in (27) is satisfied for some
θ = (θk)k∈K < 0, and

hnki → hki, as n→∞, for k, i ∈ K, (96)

for some h = (hki)k,i∈K satisfying
∑

k∈K h
n
ki = 1 for i ∈ K. Denote such an SC policy sequence

as SC({pn, hn}n∈N , θ, h), or SC(θ, h) for short. The following theorem shows that the routing
policy SC(θ, h) belongs to S, and can achieve the lower bound performance in (87) over the
same class S as well as the larger class D.

Theorem 6 (a) Suppose the SC policy, SC(θ, h), is in force, and the initial states satisfy

Q̂n(0)⇒ Q̂(0) ∈ G(SC(θ, h)) := RK+ . (97)

Then, the weak convergence depicted in (31-35) holds with Φ̂k(t) satisfying equation (85) and

X̂k(t) = pkÊ(t)−
∑
i∈K

hkiŜi(t) + θkt.

Hence, Q̂k(t) is an RBM with drift θk and variation p2
kλc

2
a +

∑
i∈K h

2
kiµkc

2
b,k, and the expected

stationary queue lengths are:

EQ̂k(∞;SC(θ, h)) =
p2
kλc

2
a +

∑
i∈K h

2
kiµic

2
b,i

−2θk
(98)

EQ̂K(∞;SC(θ, h)) =
∑
k∈K

p2
kλc

2
a +

∑
i∈K h

2
kiµic

2
b,i

−2θk
. (99)

(b) The routing policy SC(θ, h) belongs to S(⊂ D), where the approximate routing rates for
the n-th system can be given as pn = (pnk)k∈K.
(c) Let (θ, h) be set to (θ∗, h∗) given in (86), or alternatively, choose the sequence of parameters
{pn, hn} as

hnki = pnk =
µk
µK

, k, i ∈ K. (100)

Then, the policy SC∗ := SC(θ∗, h∗) is asymptotically optimal in D; that is, for any policy
D ∈ D, we have

EQ̂K(∞;SC∗) ≤ EQ̂K(∞;D). (101)

The limit satisfies (88) and

X̂k(t) = pk

(
Ê(t)−

∑
i∈K

Ŝi(t) + θKt
)

= pkX̂K(t). (102)

The postponed state-space collapse property holds, i.e.,

Q̂k(t) = pkQ̂K(t), t ≥ τ, (103)

with

τ = min
{
s : −X̂K(s) = max

k∈K

Q̂k(0)

pk

}
. (104)

The expected stationary queue lengths under SC∗ are given in (87), i.e.,

EQ̂K(∞;SC∗) =
λc2

a +
∑

k∈K µkc
2
b,k

−2θK
(= L̂∗), EQ̂k(∞;SC∗) = pk · L̂∗. (105)
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Similar to the proof of Theorem 5, to prove the above theorem, we now employ the chasing
property of the SC policy (i.e., the routing deviation chases the service deviation; refer to (91) or
(93)) to establish the convergence of the routing processes to the limit given in (85). We again
apply the hydrodynamic approach (cf. Lemmas 17 and 18), but with an extra care in handling
the busy process embedded in the service process (cf. Lemma 16).

From the above theorem (part (c) in particular), we note that the optimal SC policy does
not require estimating the arrival rate. Hence, the policy (just like the JSQ/BR policy) will
remain effective when the arrival rate changes over time, which is a desirable feature in real
applications.

It would be interesting to observe the SSC properties under various policies here.
Recall from Proposition 2 that the well-known state-space collapse property holds true for

all time under the JSQ/BR policy; that is, the convergence Q̂n(t) ⇒ Q̂(t) requires the initial
states to (asymptotically) collapse to a one-dimensional space G(JSQ), and the limit Q̂(t) also
then evolves within the space.

In contrast, the state-space collapse property does not exhibit under the RR, PP and AC
policies. This is because under these policies, the arrival and routing (Ê(t) and Φ̂(t)) are
independent of the service (Ŝ(t)), and therefore the “free process” X̂(t) (= Φ̂(t)+pÊ(t)−Ŝ(t)+θt)
evolves in RK+ . Consequently, the diffusion limit Q̂(t) also evolves in the whole space of RK+ .

Most interestingly, under the SC policy, the SSC property need not hold for the initial
states (see (97)). But the queue length process does collapse to the one-dimensional space
{q ∈ RK+ : q1/µ1 = · · · = qK/µK} at one time and evolves within the space afterward. In other
words, the arrival and routing processes are coupled with the service process, via the mechanism
of the SC policy, so that the queue lengths evolve simultaneously and in proportion to the service
rates as shown in (103). Such a postponed SSC phenomenon is new in the literature.

8 Estimators and Numerical Studies

Using the diffusion limit theorems established in the above sections, we can derive heavy traffic
estimators, or estimators for short, of the performance objective heuristically.

From part (a) of Theorem 3, we can turn the result in (52) into the estimators for the expected
queue lengths under the RR policy RR(θ) (i.e., RR({pn}, θ)), by replacing the parameters
(λ, ca, pk, θk) with the pre-limit counterparts (λn, cna , p

n
k , n(pnkλ

n − µk)) and then “un-scaling”
the diffusion scaling through the relationship in (19), for the n-th system:

EQnk(∞;RR(θ)) ≈
(pnk)2λn(cna)2 + µkc

2
b,k

2(µk − λnpnk)
,

EQnK(∞;RR(θ)) ≈
∑
k∈K

(pnk)2λn(cna)2 + µkc
2
b,k

2(µk − λnpnk)
.

Recall that the policy RR(θ) refers to a sequence of RR policies, in which the n-th policy is
applied to the n-th system and is specified by the weight parameter pn satisfying (27). Then,
the random variable Qnk(∞;RR(θ)) represents the stationary distribution of Qnk(t) under the
policy sequence RR(θ), or more specifically, the n-th policy in the sequence.

For the optimal RR routing policy RR∗, following Theorem 3(c), the weight parameters
pn = (pnk)k∈K can be specified by solving equation (53) described in the theorem. The estimators
of the expected stationary queue lengths, for the server k and the system, are

EQnK(∞;RR∗) ≈

(∑
j

√
(pnj )2λn(cna)2 + µjc2

b,j

)2

2(µK − λn)
:= L(RR∗), (106)

EQnk(∞;RR∗) ≈

√
(pnk)2λn(cna)2 + µkc

2
b,k

(∑
j

√
(pnj )2λn(cna)2 + µjc2

b,j

)
2(µK − λn)

.
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As indicated by the weak convergence in Theorem 3(a), the closer the arrival rate λn is to the
total service rate µK (i.e., the larger the index n is), the more accurate the above estimators
must be.

Similarly, from Theorem 5, part (a) in particular, an estimator under the AC policy AC(θ, h)
(i.e., AC({pn, hn}n∈N , θ, h)), with the parameters (pn, hn) satisfying in (70), can be written as

EQnk(∞;AC(θ, h)) ≈
(hnk + pnk)2λn(cna)2 + µkc

2
b,k

2(µk − λnpnk)
,

EQnK(∞;AC(θ, h)) ≈
∑
k∈K

(hnk + pnk)2λn(cna)2 + µkc
2
b,k

2(µk − λnpnk)
.

And from part (c), an estimator under the optimal AC policy AC∗ with the parameters (pn, hn)
specified in (80), can be written as

EQnK(∞;AC∗) ≈
λn(cna)2 +

(∑
j

√
µjc2

b,j

)2

2(µK − λn)
:= L(AC∗), (107)

EQnk(∞;AC∗) ≈ (hnk + pnk)L(AC∗) =

√
µkc

2
b,k∑

j∈K

√
µjc2

b,j

L(AC∗).

From part (a) of Theorem 6, an estimator under the SC policy SC(θ, h) (i.e., SC({pn, hn}n∈N , θ, h)),
with the parameters (pn, hn) satisfying (89), can be written as:

EQnk(∞;SC(θ, h)) ≈
(pnk)2λn(cna)2 +

∑
i∈K(hnki)

2µic
2
b,i

2(µk − λnpnk)
,

EQnK(∞;SC(θ, h)) ≈
∑
k∈K

(pnk)2λn(cna)2 +
∑

i∈K(hnki)
2µic

2
b,i

2(µk − λnpnk)
.

And from part (c), an estimator under the optimal SC policy SC∗ with the parameters (pn, hn)
specified in (100), can be written as:

EQnK(∞;SC∗) ≈
λn(cna)2 +

∑
k µkc

2
b,k

2(µK − λn)
:= L∗, EQnk(∞;SC∗) ≈ µk

µK
L∗. (108)

For comparison, we also write the estimator under the JSQ (or BR) policy using Proposition
2 (cf. (47,48)) as follows,

EQnK(∞; JSQ) ≈
λn(cna)2 +

∑
k∈K µkc

2
b,k

2(µk − λnpnk)
= L∗, EQnk(∞; JSQ) ≈ 1

K
L∗. (109)

Clearly, the estimator of the expected stationary queue length under the SC policy attains the
lower bound estimate as the JSQ policy does. (We have not discussed the PP policy in this
section since it has been widely studied in the literature.)

In our study, we have assumed prior (static) information about key parameters (i.e., first
two moments of the arrival and service processes — λn, cna , µk, and cb,k), which may require
effort to determine in many applications. It is interesting to observe that an optimal routing
policy requires specifying some of these parameters a priori but is insensitive to the others.
Specifically, when no (dynamic) state information is available, determining the optimal RR
policy requires all the first two moments (cf. (3,53)). In contrast, the JSQ policy uses none of
these parameters; the queue length state synthesizes the arrival and service state information
for purpose of routing control. The optimal AC and SC policies lie in between in terms of
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the “usage” of these parameters. That is, using the state information of the arrival (En(t)),
the optimal AC policy depends on λn, µk and cb,k, but not cna (cf. (73,80)); while with the
state information of the service (Snk (t)), the optimal SC policy requires a less amount of prior
information, i.e., the mean of service times (µk) only (cf. (93,100)).

In application, the above estimators apply to a specific, original heavily-loaded system,
without artificially introducing a system sequence and the resulting diffusion limit. Thus, the
parameters like λn, ρn, pn and hn refer to those in the original system of interest, and the index
n is not required. In the reminder of this section, we omit the index n to lighten the burden of
notation.

To carry out the simulation studies, we consider a system with five servers. The ser-
vice times in each server follow an exponential distribution with service rates (µ1, · · · , µ5) =
(0.1, 0.1, 0.2, 0.2, 0.4) and total rate µK = 1. Jobs arrive following a Poisson process with arrival
rate λ. The coefficients of variation are then c2

a = c2
b,1 = · · · = c2

b,5 = 1. The system traffic
intensity is ρ = λ (= λ/µK), and this parameter will vary in the numerical studies.

First, we examine the accuracy of the estimators by comparing it with the simulated per-
formances under various policies. For each of the routing policies (i.e., RR∗, AC∗, SC∗ and
JSQ), we compute the expected stationary queue length for the system traffic intensity ρ =
0.80, 0.81, · · · , 0.99, by using the respective estimators in (106,107,108,109) (the “estimated”
performance) and by simulation (the “simulated” performance). By adjusting the length and
the number of simulation runs, we ensure the width of 99% confidence interval is always within
1% of the mean for all the simulation results reported in the paper. Thus, we use the simulated
mean total queue length performance as the proxy of the (theoretical) expected performance.

In the comparisons shown in Figures 2-5, the estimated mean total queue length (contin-
uous/red curves) generally approximate the simulated performance (dashed/blue curves) more
closely when the traffic intensity ρ approaches 1, which is predicted by the associated heavy
traffic results in Theorems 3, 5 and 6 and Proposition 2, respectively. For the optimal RR policy
RR∗, as indicated by the dot/green line in Figure 2, the estimator yields an over estimation of
the expected stationary queue length as compared with the simulated performance. The ratio of
the estimated to the simulated performance, i.e., (the proxy of) L(RR∗)/EQK(∞;RR∗), ranges
from 1.17 to 1.09 for “moderate” traffic intensity ρ = 0.80, · · · , 0.90, and then drops to 1.036,
1.030 and 1.024 for ρ = 0.97, 0.98 and 0.99. For the optimal AC policy AC∗, we observe in Fig-
ure 3 that the estimator first over-estimates and then gets very close to the expected stationary
queue length. The performance ratio (dot/green line), L(AC∗)/EQK(∞;AC∗), decreases from
1.14 to 1.00 when ρ increases from 0.80 to 0.99.

Both estimators for the optimal SC and the JSQ policies under-estimate the expected perfor-
mances, as indicated by the performance ratios (dot/green line) in Figures 4 and 5, respectively.
The performance ratios, L∗/EQK(∞;D) (D = SC∗, JSQ), raise from 0.53 to 0.98 for the op-
timal SC policy and from 0.57 to 0.96 for the JSQ policy, when ρ increases from 0.80 to 0.99.
We should note that, though both policies achieve the optimal performance assymptotically,
they require different parameters and state information in implementation. Moreover, when the
realtime queue length information is available, the JSQ policy is often easy to implement and
does not require a priori knowledge of system parameters.

To close this section, we deviate from the heavy traffic analysis slightly, and present some
preliminary simulation studies for systems under varying traffic loads. We aim to shed light on
the selection of routing policy when the traffic intensity, variability of interarrival and service
times, and number of servers vary in application, keeping in mind that different policies may
employ different state information and apply in different settings. We will look at the average
waiting time (including both queueing and service), instead of the average queue length, for a
different performance perspective.

It is known that the JSQ policy may not be optimal in the usual sense (rather than asymptot-
ically) when the servers are not identical ( [57]). Thus, when real-time queue length information
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Figure 2: RR policy Figure 3: AC policy

Figure 4: SA policy Figure 5: JSQ policy

is available, many policies have been proposed to improve the performance (e.g., [4,49] ). Hence,
we include some of those policies in the simulations and describe them following Banawan and
Zeidat [4].

� The shortest expected delay policy (SED) tries to minimize the expected waiting time of
a job by dispatching the job, upon its arrival at time t, to the server k′ = arg mink

qk+1
µk

.
Here, qk := Qk(t−) is the number of jobs at server k (including the one being served, if
any) immediately prior to the time t.

� The never queue policy (SEDNQ) is a variation of the SED policy. It assigns a new arrival
to an idle server, if any; and if there are more than one idle server, assign the job to the
fastest server. On the other hand, if all servers are busy, the policy behaves similar to the
SED policy.

� The greedy throughput policy (GTP) aims at maximizing the (approximate) system through-
put by assigning an arrival to the server k′ = arg maxk(

µk
µk+λ)qk+1.

� The adaptive separable policy (ASP) provides another improvement over the SED policy by
adjusting the service rate of the server based on its traffic intensity (utilization) in estimat-
ing the expected delay. It dispatches the incoming job to the server k′ = arg mink

qk+1
µk(1−ρk) .

Here, the traffic intensity of server k, ρk, depends on the routing policy and is estimated
and updated by keeping track of the server’s busy time in implementation.

We continue to examine the system with five servers considered just above, and compare
the average waiting times of different policies as the traffic intensity changes from ρ = 0.10 to
0.98 for four different cases in Figures 6-9. We assume a Poisson arrival process in all cases.
In the first case (Figure 6), the service times are exponentially distributed with the same rates
(µ1, · · · , µ5) = (0.1, 0.1, 0.2, 0.2, 0.4) as above. In the second and third case (Figures 7 and
8), we consider a more realistic service time distribution, the Gamma distribution, with the
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same service rates. The service times in the second case have a large coefficient of variation
for all servers (with c2

b,k = 10). In contrast, in the third case, the servers have imbalanced
variabilities. Specifically, a slow server has a coefficient of variation much larger than the others
(with c2

b,1 = 10, and c2
b,k = 0.1 for k = 2, 3, 4, 5). In the fourth case (Figures 9), we replicate

the five-server model by 10 times and merge the arrival streams of the 10 identical models to
form a single Poisson arrival stream. Same as the first case, all service times are exponentially
distributed. Thus, we examine a many-server system with 50 servers in total.

From the simulations, we can see that the RR∗ policy, without using any state information,
may be comparable to (or even better than) certain policies that use state information for systems
under light or moderate traffic intensity. While the AC∗ and SC∗ policies are asymptotically
optimal (Theorems 5 and 6), their behaviors look more complicated when ρ drops to moderate
or light traffic. For example, the AC∗ policy outperforms the RR∗ policy apparently in the third
case (Figure 8) when the system is heavily loaded. However, its advantage diminishes when the
traffic intensity ρ drops below 0.9, and its performance even falls behind the RR∗ policy when
ρ moves from 0.88 to 0.80. Figure 9 shows that when there are many servers, the performance
of the SC∗ policy degrades significantly even when the traffic intensity is close to one. This
highlights the need for many-server regime in the study of large-scale systems again, as pointed
out in the Introduction.

When the real-time queue length information is available, none of the policies dominate all
the others for the four cases. Nevertheless, it appears that the GTP policy performs well when
the traffic intensity, server heterogeneity and number of servers vary. In contrast, the JSQ policy
does not require estimating any model parameter, but yields a waiting time significantly longer
than the GTP policy. The JSQ policy is inferior to the SEDNQ policy too; this is because,
while both policies enforce the use of idle servers, the SEDNQ policy incorporates the service
rates to speed up services. The SED policy appears less reliable and performs worse when the
traffic intensity and the number of servers increase, as illustrated in Figure 9. As a variation
of SED, the SEDNQ policy yields a more reliable performance though it is less favorable for
highly heterogeneous servers under light traffic (cf. [4]). Indeed, further investigation is required
to understand when the “no queue” strategy gives improvement and whether the strategy can
be applied to improve the other routing policies (cf. [23]). Another variation of SED, the ASP
policy often gives a good performance comparable to the GTP policy, but similar to SED in
Figure 9, appears less reliable when the traffic intensity and the number of servers increase.

In summary, when moving beyond the heavy traffic setting considered in this paper, the
performance of a routing policy depends on multiple factors in a complex manner, e.g., the traffic
intensity ρ, the number of servers, the heterogeneity of servers (in service rates, variability and
distribution of service times), tie-breaking method of the policy, and even the order of servers.
Therefore, further research about the efficient use of various state information in the non-heavy
traffic setting is required.

9 Interchange of Limits

We have established process-wise convergences in diffusion limit theorems, Theorems 3, 4, 5 and
6, under various routing policies, which indicate that the limit Q̂(t) is “close” to the pre-limit
process Q̂n(t) for all finite time (t <∞). Presuming that their stationary performances (at time
t =∞) are also close to each other, we use EQ̂K(∞) as an approximation of EQ̂nK(∞) to derive
the heavy traffic estimators heuristically in the previous section.

The foregoing presumption can be justified more rigorously by studying the interchange of
limits. This idea is illustrated more formally by the rectangle in Figure 10, a setup due originally
to Gamarnik and Zeevi [24]. We take the RR policy as an example and follow Ye and Yao [67]
to describe the idea.

First, in Theorem 3(a), we have established the diffusion limit under the heavy traffic condi-
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Figure 6: Exponential service times

Figure 7: Gamma service, high variability

tion, “Q̂(t) = limn→∞ Q̂
n(t)”, which is the task designated to the left vertical side, edge I, of the

rectangle. (Equations in quotation marks give an intuitive description rather than a rigorous
formulation.) Next, for each n, we want to claim that Q̂n(t) has a stationary distribution as
t → ∞, with Q̂n(∞) denoting the random variable associated with this limiting distribution.
This step is represented on edge II of the rectangle, and can be accomplished by applying the
fluid model approach developed by Rybko and Stolyar [48], Dai [17], Chen [13] and Stolyar [51],
etc. It will be a by-product of establishing edge IV in this section. Analogously, as represented
by the edge III, Theorem 3(a) also implies that the diffusion limit Q̂(t) has a stationary dis-
tribution, embodied by Q̂(∞). The diffusion approximation is then to use this last stationary
distribution, that of the diffusion limit Q̂(t), as an approximation for the stationary distribution
of the queue length in the original network. This is tantamount to claiming weak convergence
on edge IV,

“ lim
n→∞

Q̂n(∞) = Q̂(∞)”, or “ lim
t→∞

lim
n→∞

Q̂n(t) = lim
n→∞

lim
t→∞

Q̂n(t)”. (110)

Thus, to justify the diffusion approximation boils down to justifying the interchange of two
limits, n→∞ and t→∞.

From the above description, it remains to establish edges II and IV of the rectangle, partic-
ularly the convergence of the stationary distributions, and furthermore the stationary moments,
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Figure 8: Gamma service, imbalance variability

Figure 9: Exponential service, 50 servers

of pre-limit queue lengths to those of the diffusion limit for the routing policies being studied.
Recall that the RR policy can be viewed as a special case of the AC or SC policy. In addition,
our parallel system under the PP routing is a special case of the generalized Jackson network,
for which the interchange-of-limits problem has been thoroughly studied in [11]. Hence, the
following discussions focus on the AC, SC, JSQ and BR policies, with the RR policy treated as
a special case.

To establish the interchange of limits, we will modify the sequence of systems to allow
more general initial states, construct a Markovian representation for the systems, and introduce
additional conditions on distributions of interarrival and service times.

First, we allow the initial residual arrival and service times, un1 and vnk,1, to be any nonnegative
numbers while the rest of the interarrival time and service time sequences, {un` , ` ≥ 2} and
{vnk,`, ` ≥ 2}, remain mutually independent i.i.d. random sequences. The arrival and service
processes, En(t) and Snk (t), are then delayed renewal processes. Moreover, we include the “initial
surplus” of routing deviation to the chasing processes in (74) and (94), for AC policy,

Ψn
k(t;AC(θ, h)) := Ψn

k(0) + (Φn
k(En(t))− pnkEn(t)))− hnk(En(t)− λnt), (111)
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Figure 10: Interchange of limits

and for SC policy,

Ψn
k(t;SC(θ, h)) := Ψn

k(0) + (Φn
k(En(t))− pnkEn(t)))

−

[
(Snk (Bn

k (t))− µkBn
k (t))−

∑
i

hnki(S
n
i (Bn

i (t))− µiBn
i (t))

]
. (112)

Under either AC or SC policy, the following initial condition is imposed,∑
k∈K

Ψn
k(0) = 0. (113)

For JSQ or BR policy, the chasing process is not necessary, and therefore for ease of presentation,
we denote

Ψn
k(t;D) ≡ 0, for D = JSQ,BR. (114)

We follow the standard approach (e.g., [11, 17, 24, 25]) to construct a Markov process rep-
resentation of the network by appending supplement information to the queue length state.
First, we denote the residual interarrival and service times (at each time instant) as Un(t) and
V n(t) = (V n

k (t))k∈K, t ≥ 0, where:

Un(t) =

En(t)+1∑
`=1

un` − t, V n
k (t) =

Sn
k (Bn

k (t))+1∑
`=1

vnk,` −Bn
k (t)

 · 1{Qn
k (t)>0}. (115)

That is, at any given time t, Un(t) is the remaining time before the next arrival, and V n
k (t) is

the remaining service time for the class-k job that is in service. (If there is no class-k job and
the server k is idle, V n

k (t) is the “remaining” service time for the class-k job that has just left,
i.e., V n

k (t) = 0.) Observe that at time t = 0, we have Un(0) = un1 and V n
k (0) = vnk,1 (if the server

k is busy), the residuals at time zero introduced above. (Note, the residual service time process
defined here is a slight refinement of those in previous studies (e.g., [11,17]) by introducing the
non-idling component, 1{Qn

k (t)>0}.) Hence, below we shall refer to Un(t) and V n
k (t) as “residuals”

(at time t) as well.
Then, Ξn(t) = (Qn(t), Un(t), V n(t),Ψn(t)) is a strong Markov process, taking values on the

nonnegative orthant of the (3K + 1)-dimensional real space, denoted by X (cf. [17, 21, 36]).
Clearly, the dynamics of the Markov process Ξn(t) will be completely determined when the
initial state Ξn(0) is given. Below, we will often consider many copies of the same network,
each starting from a different initial state. To highlight the dependence on the initial state, we
will append it to the argument of the corresponding Markov process and queue length process.
Hence, instead of Ξn(t) and Qn(t), we will write Ξn(t;x) and Qn(t;x), with Ξn(0) = x ∈ X
being the initial state.
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The above Markov representation of the network is necessary for much of the proofs below,
which rely heavily on the theory of Markov processes. It would be useful, however, to keep in
mind that in the special case of Poisson arrivals and exponential service times, the queue length
Qn(t), plus the chasing process Ψn(t) if the routing policy is AC or SC, already constitute a
Markov process, instead of the more elaborate Ξn(t). Focusing on this special case, as the
reader may choose to do below, has the advantage of getting directly to the main ideas, without
interference from all the technicalities involving the appended states Un(t) and V n(t).

As previously stated, we require the primitives of the network, the interarrival and service
times, to possess a finite second moment. In the following, we justify not only the conver-
gence of stationary distributions but also the convergence of stationary moments. This requires
strengthening the second moment to a higher (p-th) moment condition that holds uniformly for
all the systems. To avoid technicality, we assume that the system sequence is driven by the
same primitives except the initial arrival and service times; that is, assume for all n ∈ N ,

λnun` = λ1u1
` and vnk,` = v1

k,`, ` ≥ 2, k ∈ K. (116)

The p-th moment condition reads: for a given p > 2, assume all interarrival and service times
have uniform bounded p-th moments, i.e.,

sup
n∈N

E

[
(un` )p +

∑
k∈K

(vnk,`)
p

]
<∞, or E

[
(u1

2)p +
∑
k∈K

(v1
k,2)p

]
<∞. (117)

Clearly, this strengthens Bramson’s uniform second moment condition in (12). As we will see,
we need p > m+ 1 when the convergence of the m-th moment of the queue length is required.
And, to justify our (first moment) heavy-traffic estimators as valid stationary approximations
amounts to requiring m = 1 and thus a uniform bounded (2 + ε)-th moment condition.

In addition, we assume that for all n and ` ≥ 2,

P{un` ≥ a} > 0, for any a > 0; (118)

and that for some integer j ≥ 2 and some nonnegative function p(x) satisfying
∫∞

0 p(s) > 0, the
following inequality holds:

P

{
a ≤

j∑
`=2

un` ≤ b

}
≥
∫ b

a
p(x)dx, for any 0 ≤ a < b. (119)

These are certain forms of “spread-out” condition, required to guarantee the positive (Harris)
recurrence and hence the uniqueness of the stationary distribution of the pre-limit systems in
edge II of Figure 10. They also appeared in prior works, e.g., [8, 17].

Moreover, to avoid non-essential technicalities, we assume that the interarrival times {un` }
are continuous random variables. Consequently, the time of a job’s arrival will not coincide
with the time of any service completion or any other arrival almost surely. (It should be noted
that to remove this assumption involves a tedious discussion about the possible simultaneous
events of arrivals and service completions. This can be done since at any time of job arrival,
the number of simultaneous arrivals follows a geometric distribution if we allow un` = 0 with a
positive probability, and this number has a moment of any order. We leave a formal discussion
to the interested reader.)

Given the Markovian state descriptor and additional conditions on the interarrival and service
times described above, we are ready to study the interchange-of-limits problem.

For edge II in Figure 10, we have the following theorem.

Theorem 7 Consider the sequence of systems {Ξ̂n(t)}n∈N under theRR(θ), AC(θ, h), SC(θ, h),
JSQ or BR policy. For any sufficiently large n, Ξ̂n(t) = (Q̂n(t), Ûn(t), V̂ n(t), Ψ̂n(t)) is positive
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recurrent and has a unique stationary distribution. Furthermore, if the p-th moment condition
in (117) also holds, the stationary queue length has a finite (p− 1)-th moment and

lim
t→∞

E|Q̂n(t;x)|p−1 = E|Q̂n(∞)|p−1 <∞, for any initial state Ξ̂n(0) = x, (120)

where Q̂n(∞) stands for a random variable (vector) following the stationary distribution of
Q̂n(t).

Note that this theorem holds under the heavy-traffic condition in (11) with θK < 0 in
particular, which is enforced throughout the paper and guarantees the usual traffic condition,
λn < µK, for sufficiently large n. The second moment condition in (12) is used to ensure the
positive recurrence of Ξ̂n(t) while the “furthermore” part of the theorem requires the stronger
p-th moment condition.

It should be pointed out that the stability of our parallel server system under the JSQ/BR
policy, a conclusion in the above theorem, is known in the literature (cf. [10, 16, 38]). For
example, Bramson [10] studied stability of the JSQ policy for systems with sophisticated service
disciplines, which implies the stability of JSQ for the parallel server model being studied. In Chen
and Ye [16], the fluid model associated with the JSQ/BR policy (without initial residuals) is
well-understood, and thus the stability and the positive recurrence of the system with JSQ/BR,
as stipulated in Theorem 7, can be inferred immediately.

We establish the above theorem following the fluid model approach that relates the stability
of a queueing (network) system to the stability of the associated fluid model. To apply the
approach, we first identify the fluid model corresponding to each of the pre-limit systems (Lemma
19(a)). Intuitively, it is obtained by replacing the random arrival and service processes by
deterministic fluid flows. Then, for each (the n-th) system Ξ̂n(t), we show that the corresponding
fluid model, mainly the queue length analogy q̂n(t), is stable (Lemma 19(b)). That is, starting
with any initial state bounded by 1, the queue length q̂n(t) drains to zero by a time t0 that is
independent of k. Once these steps are accomplished, the results of [17, 19] can be invoked to
complete the proof of the above theorem.

Notably, the above stability property is uniform in the sense that the time t0 can be spec-
ified independent of the (sufficiently large) index n. Such a uniform stability will be used as
an important tool in establishing the edge IV below. For more general stochastic processing
networks, we have shown that such a uniform stability property is guaranteed by the stability
of fluid model corresponding to the diffusion limit (cf. [66]). Those networks may involve more
complicated features such as the complex network topology, feedback mechanism, and current
resources. That approach, somewhat detoured, can be applied to establish the uniform stability
for our model. Nevertheless, as our (pre-limit) parallel server systems involve simple fluid mod-
els only, which are one-dimensional reflecting mappings, we are able to establish the property
directly.

Now, we are ready to establish our main results for the edge IV, the convergence of stationary
distributions and moments, in the following two theorems.

Theorem 8 Consider the sequence of systems {Ξ̂n(t)}n∈N under the RR(θ), AC(θ, h), SC(θ, h)
or JSQ policy. Then, the following weak convergence holds:

Q̂n(∞)⇒ Q̂(∞), as n→∞.

Furthermore, if the p-th moment condition in (117) also holds, we have, for any m ∈ [0, p− 1),

lim
n→∞

E|Q̂n(∞)|m = E|Q̂(∞)|m.
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Theorem 9 Consider the sequence of systems {Ξ̂n(t)}n∈N under the BR (with c ≥ 2) policy.
Then, the following weak convergence holds:

Q̂n(∞)⇒ Q̂(∞), as n→∞.

Furthermore, suppose for some p∗ > 2(p+2), a p∗-th moment condition is in force: all interarrival
and service times have bounded p∗-th moments,

sup
n∈N

E

[
(un` )p

∗
+
∑
k∈K

(vnk,`)
p∗

]
<∞. (121)

Then, for any m ∈ [0, p− 1), we have:

lim
n→∞

E|Q̂n(∞)|m = E|Q̂(∞)|m.

In [66, 67], we developed a recipe for studying the interchange-of-limits problem for a wide
range of stochastic processing networks under heavy traffic. Here, we adopt the recipe, by
carefully handling the additional features due to the routing control mechanisms, to prove the
above two theorems.

As we mention in the introduction, the crucial step in the recipe is to bound the p-moment
of the state process, which is mainly to bound E sup0≤s≤t |Q̂n(s)|p (cf. (209,266)). For the AC,
SC and JSQ policies, we will do so by verifying a pathwise bound, meaning that the queue
length process Q̂n(t) can be bounded by the free process comprising primitive processes Ên(t)
and Ŝn(t) along with the initial state (Lemma 23). This is possible because under the AC and
SC policies, the routing process Φ̂n(t) “chases” the (scaled) arrival and the service processes,
and thus can be bounded by the respective processes. For the JSQ policy, the pathwise bound
is established through a delicate analysis of the sample path. As the processes Ên(t) and Ŝn(t)
has a moment bound, the pathwise bound then yields the required p-moment bound (Lemma
24).

However, for the BR policy, it is not obvious how to establish a similar pathwise bound.
To overcome this difficulty, we assume a higher moment condition, the p∗-th moment of the
primitives (cf. (121)). Under this condition, we are able to identify and focus on a sequence
of “regular” events, in which the state processes behave “nicely,” and the probabilities of these
events occurring approach 1 at a certain rate (cf. Lemma 28). We then apply the hydrodynamic
approach to derive a pathwise bound for the queue length process for sample paths in regular
events (cf. Lemmas 29 and 30). Therefore, the queue length processes, when restricted to the
regular events, possess a bounded p-th moments. On the other hand, the p-th moment of the
queue length processes, restricted to the non-regular events, have the same bound owing to the
small probability of such events. Combining these two cases leads to the desired p-th moment
of queue length processes (cf. (266)).

Once the p-th moment bound is established for queue length processes, along with the
uniform stability established on edge II, we can prove the uniform p-th moment stability of the
queue length processes (cf. (212,267)), which will lead to the tightness of {Q̂n(∞), n ∈ N} and
the convergence of stationary distributions and moments on edge IV, following the approach (by
now standard) in [11,19,66,67].

A Appendix

A.1 Preliminary: One-Dimensional Reflection Mapping, Reflecting Brown-
ian Motion, Law Of Large Numbers

We first collect some useful results about the reflection mapping and reflecting Brownian motion.
(Note, notation introduced in the following three lemmas, except the mappings Φ and Ψ, are
valid only within this subsection, and should not be confused with those elsewhere in the paper.)
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Lemma 10 (e.g., [15], Theorem 6.1) Let x(t), t ≥ 0, be any one-dimensional real-valued
function that is right-continuous and with left limits (RCLL). Then, there exists a unique pair
of RCLL functions (y(t), z(t)) satisfying

z(t) = x(t) + y(t) ≥ 0, (122)

y(t) is non-decreasing in t, with y(0) = 0, (123)∫ ∞
0

z(t)dy(t) = 0. (124)

In fact, the unique pair (y(t), z(t)) can be expressed as

y(t) = sup
0≤s≤t

[−x(s)]+, (125)

z(t) = x(t) + sup
0≤s≤t

[−x(s)]+. (126)

We call the functions y(t) and z(t) the regulator and reflected process of the function (“free”
process) x(t), respectively. Hence, the relationships in (122-124) define a one-dimensional re-
flection mapping, known as the Skorohod mapping, denoted as: (z, y) = (Φ(x),Ψ(x)). The
mappings Φ and Ψ are Lipschitz continuous under the uniform topology (e.g., [15], Exercises 1
and 2 of Chapter 6): for any RCLL functions x and x′, the following inequalities hold for any
t ≥ 0,

sup
0≤s≤t

|Ψ(x)(s)−Ψ(x′)(s)| ≤ sup
0≤s≤t

|x(s)− x′(s)|, (127)

sup
0≤s≤t

|Φ(x)(s)− Φ(x′)(s)| ≤ 2 sup
0≤s≤t

|x(s)− x′(s)|. (128)

Let X(t), t ≥ 0, be a one-dimensional Brownian motion that starts at X(0), and has drift θ
and standard deviation σ. Then, we call the process Z(t) := Φ(X)(t), t ≥ 0, a one-dimensional
reflecting Brownian motion (RBM), which we characterize in the lemma below.

Lemma 11 (e.g., [15], Theorem 6.2) The RBM Z(t) has a stationary distribution if and only
if θ < 0, in which case the stationary distribution is exponential with rate −2θ/σ2, and has a
mean as follows,

EZ(∞) =
σ2

−2θ
,

where Z(∞) stands for a random variable following the stationary distribution of Z(t).

The following lemma describes the least element characterization of the reflection mapping
and a relaxed dynamic complementarity property, and is adapted from Section 2 in Chen and
Shanthikumar [14].

Lemma 12 (a) (Least element property) Suppose that x(t) is an RCLL function on [0,∞). If
a pair of functions (y(t), z(t)) satisfy the following conditions for all t ≥ 0,

z(t) = x(t) + y(t) ≥ 0,

y(t) is non-decreasing in t, with y(0) = 0,

then the following inequalities hold,

z(t) ≥ Φ(x)(t) and y(t) ≥ Ψ(x)(t), for all t ≥ 0.
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(b) (Relaxed dynamic complementarity property) Suppose that x(t) is an RCLL function on
[0,∞). For any fixed ε > 0, if a pair of functions (y(t), z(t)) satisfy the following condition for
all t ≥ 0,

z(t) = x(t) + y(t) ≥ 0,

y(t) does not increase at t if z(t) > ε (or, (z(t)− ε)dy(t) ≤ 0),

then, the following inequalities hold,

y(t) ≤ Ψ(x(·)− ε)(t) and z(t)− ε ≤ Φ(x(·)− ε)(t).

Next, the following strong law of large numbers is concerned with the fluid scaling of the
primitive renewal processes defined in (13). It is often used in heavy-traffic analysis. Its proof
can be found in the Appendix A.2 of Stolyar [52], which is based on the weak law estimate in
Bramson [9].

Lemma 13 Let t∗ > 0 and u∗ > 0 be any given time lengths, and assume the condition (12).
Then, the following convergence of the fluid scaling given in (13) holds with probability one: as
n→∞,

sup
0≤t≤nt∗

sup
0≤u≤u∗

|(Ēn(t+ u)− Ēn(t))− λu| → 0,

sup
0≤t≤nt∗

sup
0≤u≤u∗

|(S̄n(t+ u)− S̄n(t))− µu| → 0,

sup
0≤t≤nt∗

sup
0≤u≤u∗

|(Ῡn(t+ u)− Ῡn(t))− λ−1u| → 0.

A.2 Proofs for Sections 3 and 4

Proof of Proposition 1. First, we establish that

B̃n
k (t)→ t, u.o.c. of t ≥ 0. (129)

Write (6-10) for the n-th system with fluid scaling as

Q̃nk(t) = Q̃nk(0) + Φ̃n
k(Ẽn(t))− S̃nk (B̃n

k (t)) ≥ 0, (130)

Ỹ n
k (t) := µk(t− B̃n

k (t)) is non-decreasing in t ≥ 0, and Ỹ n
k (0) = 0, (131)∫ ∞

0
Q̃nk(s)dỸ n

k (s)ds = 0. (132)

From the assumption in (28), along with the convergence of Ẽn(t) in (16) and the definition in
(18), we can apply random time change theorem (e.g., Chapter 5 of [15]) to obtain

Φ̃n
k(Ẽn(t))→ pkλt, u.o.c. (133)

Let N1 be any subsequence of N . As B̃n
k (t) is continuous and non-decreasing, we can find a

further subsequence N2 of N1, such that as n→∞ along N2

B̃n
k (t)→ B̄k(t), u.o.c., (134)

where the limit B̄k(t) is also (Lipschitz) continuous and nondecreasing. Moreover, by using the
convergence of S̃n(t) in (16), we have, as n→∞ along N2,

S̃nk (B̃n
k (t))→ µkB̄k(t), u.o.c. (135)
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Given (30,133,134,135), letting n→∞ along N2 in (130-132) yields

(Q̃nk(t), Ỹ n
k (t))→ (Q̄k(t), Ȳk(t)), u.o.c.,

where the limit satisfies the followings,

Q̄k(t) = Ȳk(t) [= µk(t− B̄k(t))] ≥ 0, (136)

Ȳk(t) is nondecreasing, with Ȳk(0) = 0, (137)∫ ∞
0

Q̄k(t)dȲk(t). (138)

According to the uniqueness of the solution to the one-dimensional Skorohod mapping (cf. Lemma
10), we have

Q̄k(t) = 0 (= Φ(0)) , for all t ≥ 0,

which implies

B̄k(t) = t, for all t ≥ 0. (139)

Since N1 is arbitrarily given, the convergence in (134) is along the full sequence of N , with
B̄k(t) = t, too. That is, the claim in (129) holds.

Next, it follows from (17,28,129), along with the random time-change theorem (e.g., Chapter
5 of [15]), the process X̂n(t) given in (25) converges weakly as follows,

X̂n(t) ⇒ X̂(t), as n→∞, (140)

where the limit X̂(t) is given in (35) and is a Brownian motion with drift θ and a finite covariation
matrix. Now, applying the continuity property of the Skorohod mapping (cf. (127,128)) to the
Skorohod problem in (22-24), we have the convergence in (31), with the limit satisfying (32-34).

From (32,33), we have

Q̂K(t) = Q̂K(0) + X̂K(t) + ŶK(t) ≥ 0,

ŶK(t)

(
=
∑
k∈K

Ŷk(t)

)
is non-decreasing in t with ŶK(0) = 0.

Note that the complementarity property is not necessarily satisfied for (Q̂K(t), ŶK(t)). Hence,
according to the minimality of the reflection mapping (cf. Lemma 12) we have the lower bound
in (36). �

Proof of Proposition 2 (for part (b) only). It suffices to find pnk such that the properties in
(27,28) hold. Along with (45), this requires that as n→∞,

λnpnk − µk
λn − µK

→ 1

K
or

1− ρnk
1− ρn

→ µK
Kµk

, (141)

which is indeed (46). Now, given (46), we can use the expression of X̂n
k (t) in (25) and its

convergence in (42) to verify that the property in (28) hold with Φ̂k(t) given in (44). �

Proof of Theorem 3. From (2), we have |Φn
k(En(t)) − pnkEn(t)| ≤ κ, or, |Φ̂n

k(Ẽn(t))| ≤ κ
n .

This implies,

Φ̂n
k(Ẽn(t))⇒ 0, as n→∞. (142)

Similar to the argument for (129), we can show that B̃n(t) → µt (u.o.c.) under the given RR
policy. Then, for the service process, we also have,

Ŝnk (B̃n
k (t))⇒ Ŝk(t), as n→∞. (143)
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Putting the convergences in (142,143,16) and the expression in (25) together yields the con-
vergence of the “free process”: X̂n

k (t) ⇒ X̂k(t) as n → ∞, where X̂k(t) is given in (51). The
diffusion limit for the queue length process is then,

Q̂nk(t)⇒ Q̂k(t) := Q̂k(0) + X̂k(t) + Ŷk(t), (144)

which satisfies the Skorohod problem (32-34) too and therefore is an RBM with drift θk and
variation p2

kλc
2
a + µkc

2
b,k. This RBM has an expected stationary mean as given in (52)

The property in (b) follows directly from the definition of the RR policy and the weak
convergence in (a), and the property in (c) can be seen from the discussion prior to the theorem.
�

A.3 Proof of Theorem 5: AC Policy

Write αnk(`) (given in (71)) under the diffusion scaling as, for any (real number) t ≥ 0,

α̂nk(t) :=
1

n
αnk(bn2tc) = Φ̂n

k(t)− 1

n
φnk(bn2tc) + hnkλ

nΥ̂n(t). (145)

We adopt the hydrodynamic approach of Bramson [9] (also see, e.g., [43,52,64]) to rewrite α̂nk(t).
Let T > 0 be a (given) constant, and denote for any integer j ≥ 0 and any u ≥ 0,

ᾱn,jk (u) := α̂nk((jT + u)/n)

=
1

n

[
Φn
k(bn(jT + u)c)− pnkbn(jT + u)c − φnk(bn(jT + u)c)

]
−
hnk
n

[
bn(jT + u)c − λnΥn(bn(jT + u)c)

]
.

It can be further expressed as,

ᾱn,jk (u) = ᾱn,jk (0) + [ᾱn,jk (u)− ᾱn,jk (0)]

= ᾱn,jk (0) +
1

n

[
Φn
k(bn(jT + u)c)− Φn

k(bnjT c)
]

−
pnk
n

[
bn(jT + u)c − bnjT )c

]
− 1

n

[
φnk(bn(jT + u)c)− φnk(bnjT )c)

]
−
hnk
n

[
(bn(jT + u)c − bnjT c)− λn(Υn(bn(jT + u)c)−Υn(bnjT c))

]
. (146)

Lemma 14 Let ∆ > 0 be any given time length. Consider any sequence of indices {jn}n∈N
satisfying 0 ≤ jn ≤ n∆/T , and suppose {ᾱn,jn(0)}n∈N is a bounded (vector) sequence. Then,
for any subsequence of N , there exists a further subsequence N1 such that the followings hold:
(a) (Fluid limit) ᾱn,jn(u) converge to a “fluid limit” ᾱ(u) as n→∞ along N1,

ᾱn,jnk (u)→ ᾱk(u) := ᾱk(0) + Φ̄k(u)− pku, u.o.c. of u ≥ 0,

where Φ̄k(u) is a Lipschitz continuous function in u, with a Lipschitz constant 1 and Φ̄k(0) = 0.
Consequently, Φ̄k(u) and ᾱk(u) are differentiable for almost all u ≥ 0.
(b) Denote ᾱmin(u) = mink∈K ᾱk(u). For any regular time u ≥ 0 (at which ᾱ(u) is differentiable),
if ᾱmin(u) < 0, then

˙̄αmin(u) ≥ σp :=
mink pk
K

.

(c) ᾱ(u) = 0 for all u ≥ |ᾱ(0)|/σp.
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Proof. Part (a). Denote for convenience the four terms with the squared brackets in (146) as
fn1 (u), · · · , fn4 (u), all with j being replaced by jn. First, the term fn2 (u) converges (u.o.c.) to
−pku as n → ∞. Since φnk(`) is equal to either 0 or 1, the term fn3 (u) vanishes. According to
Lemma 13, the term fn4 (u) converges (u.o.c.) to 0.

Next, note that fn1 (u) is nondecreasing in u and satisfies fn1 (0) = 0. Therefore, for any
subsequence of N we can find a further subsequence N1 such that for some nondecreasing
function Φ̄k(u) with Φ̄k(0) = 0, the following convergence holds for all those times u ≥ 0 where
Φ̄k(u) is continuous,

fn1 (u)→ Φ̄k(u), as n→∞ along N1. (147)

Since {ᾱn,jn(0)} is a bounded, the subsequence N1 can be chosen such that, along which,
ᾱn,jn(0)→ ᾱ(0). Note that for any times 0 ≤ u1 ≤ u2 (≤ T ),

0 ≤ fn1 (u2)− fn1 (u1) ≤ 1

n
(bn(jT + u2)c − bn(jT + u1)c)→ u2 − u1,

which implies the Lipschitz continuity of Φ̄k(u), with a Lipschitz constant 1 and Φ̄k(0) = 0. The
Lipschitz continuity also implies that the convergence in (147) is not only pointwise, but also
u.o.c. of u ≥ 0.

Part (b). From (75) (
∑

k α
n
k(`) = −1), we have

∑
k ᾱk(u) = 0; hence for any u ≥ 0,

either ᾱ(u) = 0 or ᾱk(u) < 0 for some k ∈ K. Consider any regular time u0 ≥ 0 such that
ᾱmin(u0) < 0. Denote Kmin = arg mink∈K ᾱk(u0), i.e., the set of servers that have minimum (and
negative) surplus of routing deviation (cf. the definition in (71-73) and the remark following the
definition). From the conclusion (a), we can find (small) positive constants δ and ε such that
for any k1 ∈ Kmin, k2 ∈ K \ Kmin, u ∈ [u0, u0 + δ], we have the following for sufficiently large
n ∈ N1,

ᾱn,jnk2
(u)− ᾱn,jnk1

(u) > ε.

This inequality implies that Kmin must contain the server with the minimum surplus of routing
deviation during the time interval [u0, u0 + δ] for the fluid scaled process ᾱn,jn(u) (i.e., the `-th
job, bn(jnT +u0)c ≤ ` ≤ bn(jnT +u0 + δ)c in the original scale of αn,jn(`)) for sufficiently large
n ∈ N1. Hence, according to the policy in (71,72), all jobs are routed to servers in Kmin during
this time interval; that is, for any time u ∈ [u0, u0 + δ],∑

k∈Kmin

[Φn
k(bn(jnT + u)c)− Φn

k(bn(jnT + u0)c)] = bn(jnT + u)c − bn(jnT + u0)c.(148)

Applying the above to (146) (for j = jn), with simple algebra, we have the following,∑
k∈Kmin

[
ᾱn,jnk (u)− ᾱn,jnk (u0)

]

=
1

n

1−
∑

k∈Kmin

pnk

[bn(jnT + u)c − bn(jnT + u0))c
]

− 1

n

∑
k∈Kmin

[
φnk(bn(jnT + u)c)− φnk(bn(jnT + u0))c)

]
−
∑

k∈Kmin

hnk
n

[
(bn(jnT + u)c − bn(jnT + u0)c)

−λn(Υn(bn(jnT + u)c)−Υn(bn(jnT + u0)c))
]
. (149)
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Letting n→∞ along N1, we have∑
k∈Kmin

[ᾱk(u)− ᾱk(u0)] = (1−
∑

k∈Kmin

pk)(u− u0).

Since the above equality holds for all u ∈ [u0, u0 +δ] and the time u0 is regular, the above implies∑
k∈Kmin

˙̄αk(u0) = 1−
∑

k∈Kmin

pk.

Observe that

˙̄αk(u0) = ˙̄αmin(u0) for k ∈ Kmin. (150)

(Refer to the proof of Proposition 3(c) of [16] and Lemma 3.2 of [20] for similar cases.) Therefore,
we have

˙̄αmin(u0) =
1

|Kmin|

(
1−

∑
k∈Kmin

pk

)
≥ σp.

The conclusion in (c) follows from the part (b) immediately. �

Lemma 15 Let ∆ > 0 be any given time and ε > 0 be any (small) number. Then, there
exists a sufficiently large time T such that for sufficiently large n, the following holds for all
integer 0 ≤ j ≤ n∆/T and u ∈ [0, T ],

|ᾱn,j(u)| < ε. (151)

Consequently, we have

α̂n(t)→ 0 u.o.c. of t ≥ 0, as n→∞. (152)

Proof. Choose any time length T such that T ≥ ε/σp, where σp is specified in Lemma 14. This
time length T is long enough so that the fluid limit ᾱ(t) will reach zero, from any initial point
|ᾱ(0)| ≤ ε.

We prove the property for j = 0 first. Note that by way of the construction, we have
ᾱn,0(0) = α̂n(0) = 0, and hence, from Lemma 14(a,c), we have, as n → ∞ (here, along the full
sequence N ),

ᾱn,0(u)→ 0 u.o.c. (153)

The above implies the conclusion in (151) for j = 0, for sufficiently large n.
Next, we extend to verify the property in (151) for j = 1, . . . , n∆/T . Suppose to the contrary,

there exists a subsequence N1 of N such that, for any n ∈ N1, the property in (151) does not
hold for some integers 1 ≤ j ≤ nδ/T . Consequently, for any n ∈ N1, there exists a smallest
integer, denoted as jn, in the interval [1, n∆/T ] such that the property in (151) does not hold.
To reach a contradiction, it suffices to construct an infinite subsequence N2 ⊂ N1, such that the
desired property in (151) hold for j = jn for sufficiently large n ∈ N2.

From the proof of the property in (151) for j = 0 and the contradictory assumption above,
we know that the property (151) holds for j = 0, ..., jn − 1, n ∈ N1. Specifically, for j = jn − 1,
we have

|ᾱn,jn−1(0)| ≤ ε, for all (sufficiently large) n ∈ N1.

Therefore, the sequence {ᾱn,jn−1(0), n ∈ N1} has a convergent subsequence. Then, by Lemma
14(a,c) again, there exists a further subsequence N2 ⊂ N1 such that

ᾱn,jn−1(u)→ ᾱ(u), u.o.c., as n→∞ along N2, (154)
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with |ᾱ(0)| ≤ ε and ᾱ(u) = 0 for u ≥ T (≥ ε/σp). Recall from the definition that ᾱn,jn(u) =
ᾱn,jn−1(T + u). Hence, from (154), we have

ᾱn,jn(u)→ 0, u.o.c., as n→∞ along N2,

which implies the property in (151) for j = jn for sufficiently large n ∈ N2.
Following the definitions of α̂n(t) and ᾱn,j(u), the first conclusion of the lemma translates

to the following immediately: For any ∆ > 0 and ε > 0, we have for sufficiently large n,

|α̂n(t)| < ε, t ∈ [0,∆].

This implies the convergence in (152). �

Proof (of Theorem 5). Applying Lemma 15 and the functional central limit theorem for Υ̂n(t)
(refer to (17)) to the expression in (145), we have the following weak convergence,

Φ̂n
k(λnt)⇒ Φ̂k(λt) := hkÊ(t).

Given this convergence, it is direct to verify the conclusion in (b). And then, the conclusion in
(a) follows from Proposition 1. Finally, for the conclusion in (c), it can be verified directly that
the parameters (pn, hn) specified in (80) meets the convergence requirements in (27,77) with the
limits (θ∗, h∗) following the relationship in (67). The other conclusions in (c) can be seen from
the discussions leading to the lower bound in (68).

A.4 Proof of Theorem 6: SC Policy

Write βnk (`) (given in (91)) under the diffusion scaling as, for any t ≥ 0,

β̂nk (t) :=
1

n
βnk (bn2tc) = Φ̂n

k(t)− 1

n
φnk(bn2tc)−

[
Ŝnk (B̃n

k (Υ̃n(t))−
∑
i∈K

hnkiŜ
n
i (B̃n

i (Υ̃n(t)))
]
. (155)

Let T > 0 be a (given) constant, and denote for any integer j ≥ 0 and any u ≥ 0,

β̄n,jk (u) := β̂nk ((jT + u)/n) =
1

n
βnk (bnjT + nuc).

It can be expressed as,

β̄n,jk (u) = β̄n,jk (0) +
1

n

[
Φn
k(bn(jT + u)c)− Φn

k(bnjT c)
]
−
pnk
n

[
bnjT + nuc − bnjT c

]
− 1

n

[
φnk(bn(jT + u)c)− φnk(bnjT )c)

]
−
[
ηn,jk (u)−

∑
i∈K

hnkiη
n,j
i (u)

]
, (156)

where

ηn,jk (u) =
1

n

[
Snk (Bn

k (Υn(bnjT + nuc)))− Snk (Bn
k (Υn(bnjT c)))

]
− 1

n

[
µkB

n
k (Υn(bnjT + nuc))− µkBn

k (Υn(bnjT c))
]
.

Lemma 16 Let ∆ > 0 be any given time length, and consider any sequence of indices {jn}n∈N
satisfying 0 ≤ jn ≤ n∆/T . Then, the following holds (almost surely),

ηn,jnk (u)→ 0, u.o.c. of u ≥ 0. (157)
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Proof. Write

ηn,jk (u) = [S̄nk (tn + sn)− S̄nk (tn)]− µksn, with

tn = B̄n
k (Ῡn(jnT )), sn = B̄n

k (Ῡn(jnT + u))− B̄n
k (Ῡn(jnT )),

where (B̄n
k (t), Ῡn

k(t)) = 1
n(Bn

k (nt),Υn
k(bntc)) (as in (13,14)). Estimate

1

n
tn =

1

n
B̄n
k (Ῡn(jnT )) ≤ 1

n
Ῡn(jnT ) ≤ 1

n
Ῡn(n∆)→ ∆

λ
.

Hence, for sufficiently large n, we have tn ≤ nt∗ with t∗ := λ−1∆ + 1. Moreover, we have the
following estimate,

sn ≤ Ῡn(jnT + u)− Ῡn(jnT ) ≤ |Ῡn(jnT + u)− Ῡn(jnT )− λ−1u|+ λ−1u→ λ−1u,

where the first inequality is due to the equation in (7) and the convergence follows from Lemma
13. Hence, letting τ > 0 be an arbitrarily given time length, we have for sufficiently large n,
sn ≤ s∗ := λ−1τ + 1 for all u ≤ τ .

Given the above estimates of tn and sn, we have for sufficiently large n, for all u ∈ [0, τ ],

ηn,jnk (u) ≤ sup
0≤t≤nt∗

sup
0≤s≤s∗

|S̄n(t+ s)− S̄n(t)− µks|.

Then, applying Lemma 13, we have the convergence in (157). �

Lemma 17 Let ∆ > 0 be any given time length. Consider any sequence of indices {jn}n∈N
satisfying 0 ≤ jn ≤ n∆/T , and suppose {β̄n,jn(0)}n∈N is a bounded (vector) sequence. Then,
for any subsequence of N , there exists a further subsequence N1 such that the followings hold:
(a) (Fluid limit) β̄n,jn(u) converge to a “fluid limit” β̄(u) as n→∞ along N1,

β̄n,jnk (u)→ β̄k(u) := β̄k(0) + Φ̄k(u)− pku, u.o.c. of u ≥ 0,

where Φ̄k(u) is a Lipschitz continuous function in u, with a Lipschitz constant 1 and Φ̄k(0) = 0.
Consequently, Φ̄k(u) and β̄k(u) are differentiable for almost all u ≥ 0.
(b) Denote β̄min(u) = mink∈K β̄k(u). For any regular time u ≥ 0 (at which β̄(u) is differentiable),
if β̄min(u) < 0, then

˙̄βmin(u) ≥ σp =
mink pk
K

.

(c) β̄(u) = 0 for all u ≥ |β̄(0)|/σp.

Proof. According to Lemma 16, the term in the last squared bracket in (156) converge to 0.
Then, the rest of the proof for the conclusion (a) simply repeats the one for Lemma 14(a).

The proof for the conclusion (b) involves two slight modifications of the corresponding one
for Lemma 14(b). First, the equality in (148) is now argued by using the SC policy specified in
(90,92). Second, the equation (149) is modified as follows,∑

k∈Kmin

[β̄n,jnk (u)− β̄n,jnk (u0)]

=
1

n
(1−

∑
k∈Kmin

pnk) [bn(jT + u)c − bn(jT + u0))c]

− 1

n

∑
k∈Kmin

[φnk(bn(jT + u)c)− φnk(bn(jT + u0))c)]

−
∑

k∈Kmin

[
(ηn,jnk (u)− ηn,jnk (u0))−

∑
i∈K

hnki(η
n,jn
i (u)− ηn,jni (u0))

]
.

The conclusion in (c) also follows from part (b) immediately. �
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Lemma 18 Let ∆ > 0 be any given time and ε > 0 be any (small) number. Then, there
exists a sufficiently large time T such that for sufficiently large n, the following holds for all
integer 0 ≤ j ≤ n∆/T and u ∈ [0, T ],

|β̄n,j(u)| < ε.

Consequently, we have

β̂n(t)→ 0 u.o.c. of t ≥ 0, as n→∞. (158)

The proof of this lemma is a repetition of the one for Lemma 15, where the role of Lemma 14
will be replaced by Lemma 17 just established. Hence, the detailed proof is omitted.

Proof (of Theorem 6). Write

β̃nk (t) =
1

n
β̂nk (t) = Φ̃n

k(t)− 1

n2
pnkbn2tc − 1

n2
φnk(bn2tc)

− 1

n

[
Ŝnk (B̃n

k (Υ̃n(t))−
∑
i∈K

hnkiŜ
n
i (B̃n

i (Υ̃n(t)))

]
.

From Lemma 18, we have β̃nk (t)→ 0 (u.o.c.) as n→∞. Note that the terms involving φnk and

Ŝn in the above all vanish as n→∞ too. Therefore, letting n→∞ in the above yields

Φ̃n
k(t)→ pkt, u.o.c. of t ≥ 0, as n→∞.

Using the this convergence, we can repeat the argument from (133) to (139) to show the following,

B̃n
k (t)→ B̄k(t) ≡ t, u.o.c. of t ≥ 0, as n→∞. (159)

Recall that

Υ̃n(λnt)→ t and Ŝn(t)⇒ Ŝ(t). (160)

Now, applying the convergences in (158,159,160) to the definition in (155), we have

Φ̂n
k(λnt)⇒ Φ̂k(λt) := Ŝk(t) +

∑
i∈K

hkiŜi(t). (161)

Similar to the proof of Theorem 1, given the above convergence, it is direct to verify the con-
clusion in (a,b).

For the conclusion in (c), it can be verified directly that the parameters (pn, hn) specified
in (100) meet the convergence requirements in (27,96) with the limit (θ, h) = (θ∗, h∗) following
the relationship in (86). The optimality property in (101) follows from the discussions leading
to the lower bound in (87). The equality (102) follows from (161,35).

From (102) and the Skorohod mapping (Lemma 10), we have

Q̂k(t) = Q̂k(0) + pkX̂K(t) + sup
0≤s≤t

(−Q̂k(0)− pkX̂K(s))+.

Note that the time τ , given in (104), is the first time that the “free” process (−X̂K(s)) increases
to the maximum initial queue length (weighted by pk) among all classes. Hence, it can be verified
that at time τ ,

sup
0≤s≤τ

(−Q̂k(0)− pkX̂K(s))+ = −Q̂k(0)− pkX̂K(τ),

and therefore, Q̂k(τ) = 0 for all k. Now, we “restart” the system Q̂(t) from the time τ and write

Q̂k(τ + t) = Q̂k(τ) + pk(X̂K(τ + t)− X̂K(τ)) + (Ŷk(τ + t)− Ŷk(τ)),
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or
1

pk
Q̂k(τ + t) = (X̂K(τ + t)− X̂K(τ)) +

1

pk
(Ŷk(τ + t)− Ŷk(τ)).

Clearly, the triples ( 1
pk
Q̂k(τ + ·), (X̂K(τ + ·)− X̂K(τ)), 1

pk
(Ŷk(τ + ·)− Ŷk(τ)), k ∈ K, constitutes

a one-dimensional Skorohod mapping. Since these Skorohod mappings (for all k) are driven by
the same “free” process (X̂K(τ + ·)− X̂K(τ)), all the queue lengths 1

pk
Q̂k(τ + ·) are equal. That

is, the conclusion in (103) holds.
The expected stationary queue lengths in (105) also follows from the discussions leading to

the lower bound in (87).

A.5 Proof of Theorem 7: Stability and Stationarity under RR, AC, SC, JSQ
and BR Policies

We apply the fluid model approach to prove Theorem 7. Lemma 19 below relates the n-th
(diffusion-scaled) system Ξ̂n(t) to the fluid model characterized by the following relationships:

q̂nk (t) = q̂nk (0) + nφ̄nk

(
λn(t− t ∧ û

n(0)

n
)

)
− nµk

(
b̄nk(t)− b̄nk(t) ∧

v̂nk (0)

n

)
= q̂nk (0) + nφ̄nk

(
λn(t− t ∧ û

n(0)

n
)

)
− nµk

(
t− b̄nk(t) ∧

v̂nk (0)

n

)
+ ŷnk (t) ≥ 0,(162)

φ̄nk(t) is non-decreasing with φ̄nk(0) = 0, and Lipschitz with constant 1, (163)

b̄nk(t) is non-decreasing with b̄nk(0) = 0, and Lipschitz with constant 1, (164)

ŷnk (t) = nµk(t− b̄nk(t)) is non-decreasing with ŷnk (0) = 0, (165)∫ ∞
0

q̂nk (s)dŷnk (s) = 0, (166)

and the fluid analogy of the chasing process, ψ̂nk (t), satisfies the followings under the respective
policies,

ψ̂nk (t;AC(θ, h)) = ψ̂nk (0) + nφ̄nk(λn(t− t ∧ û
n(0)

n
))− pnkλnn(t− t ∧ û

n(0)

n
)

+ hnkλ
nn(t ∧ û

n(0)

n
), (167)

ψ̂nk (t;SC(θ, h)) = ψ̂nk (0) + nφ̄nk(λn(t− t ∧ û
n(0)

n
))− pnkλnn(t− t ∧ û

n(0)

n
)

+

[
µkn(b̄nk(t) ∧

v̂nk (0)

n
)−

∑
i∈K

hnkiµkn(b̄ni (t) ∧ v̂
n
i (0)

n
)

]
, (168)

ψ̂nk (t; JSQ/BR) = 0. (169)

Note the “hat” and “bar” designations in the above processes, such as q̂nk (t) and b̄nk(t), are in

line with the scalings of their stochastic counterparts, such as the diffusion-scaled process Q̂nk(t)
and the fluid-scaled process B̃n

k (t).

Lemma 19 Suppose the RR(θ), AC(θ, h), SC(θ, h), JSQ or BR policy is in force, and consider
the n-th (diffusion-scaled) system characterized by the Markov process Ξn(t), for any fixed
n. Let {mi; i = 1, 2, · · · } be a sequence of numbers such that mi → ∞ as i → ∞; and let
{xi ∈ X ; i = 1, 2, · · · } be a sequence of initial states such that |xi| ≤ mi for all i.
(a) Then, for any subsequence of positive integers, there exists a further subsequence, denoted
by I, such that the following (a.s.) convergence holds as i→∞ along I,

1

mi
Ξ̂n(0;xi) =

1

mi

(
Q̂n(0), Ûn(0), V̂ n(0), Ψ̂n(0)

)
→
(
q̂n(0), ûn(0), v̂n(0), ψ̂n(0)

)
, (170)
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and

1

mi

(
Q̂n(mit), Φ̃

n(mit), B̃
n(mit), Ŷ

n(mit), Ψ̂
n(mit)

)
→
(
q̂n(t), φ̄n(t), b̄n(t), ŷn(t), ψ̂n(t)

)
, u.o.c. of t ≥ 0, (171)

where the limit is Lipschitz continuous and is a solution to the fluid model in (162-169), with
initial condition

|q̂n(0)|+ |ûn(0)|+ |v̂n(0)|+ |ψ̂n(0)| ≤ 1. (172)

(b) (Uniform stability) Moreover, there exists a time t0 > 0, independent of the index n, such
that for sufficiently large n, any fluid limit derived in part (a) (which is a solution to (162-
169,172)) have

q̂n(t) = 0 and ψ̂n(t) = 0, t ≥ t0. (173)

Proof. Part (a), for AC(θ, h), SC(θ, h), JSQ and BR policies. As the initial state is bounded
by 1 (|Ξ̂n(0;xi)|/mi = |xi|/mi ≤ 1), it follows that there exists a subsequence I such that the
convergence of initial state in (170) with a limit satisfying (172). Hence, we have, as i → ∞
along I,

1

mi
Ẽn(mit)→ λn(t− t ∧ û

n(0)

n
),

1

mi
S̃nk (mit))→ µk(t− t ∧

v̂nk (0)

n
), u.o.c. of t ≥ 0, (174)

by applying the functional strong law-of-large-numbers (e.g., Theorem 5.10 in [15]) and carefully
taking care of the initial residuals (e.g., Lemma 4.2 of [17], Section A.1 of [66]). Then, following
the procedure from (130) to (138) in the proof of Proposition 1, with the parameter mi playing
the role of scaling factor, it is direct to establish the convergence of the first four components in
(171), with the limit satisfying (162-166). Similarly, using the same approach for Lemmas 14(a)
and 17(a), we establish the convergence of Ψ̂n(mit)/mi with the limit satisfying (167) and (168)
under AC(θ, h) and SC(θ, h) policies respectively. (Recall that the RR policy can be viewed as
a special case of the AC and SC policies.)

Part (b), for AC(θ, h) and SC(θ, h) policies. Observe from (115) that V n
k (0) = vnk,1. If

V n
k (0) > 0, then there must be an initial class-k jobs being served (Qnk(0) > 0), and this initial

service completes at the time V n
k (0) (or vnk,1). Thus, we have Bn

k (t) = t for t < V n
k (0), which

implies b̄nk(t) = t for t ≤ v̂nk (0)/n. And the term in (162), b̄nk(t) ∧ (v̂nk (0)/n), then can be
replaced by t ∧ (v̂nk (0)/n). Consequently, after a time longer than all (scaled) residuals, say, for
t ≥ 1/n ≥ (|ûn(0)|+ |v̂n(0)|)/n, the relationships in (162,167,168) are reduced to

q̂nk (t) = q̂nk (0) + nφ̄nk(λn(t− ûn(0)

n
))− nµk

(
b̄nk(t)−

v̂nk (0)

n

)
, (175)

ψ̂nk (t) = ψ̂nk (0) + nφ̄nk(λn(t− ûn(0)

n
))− pnkλnn(t− ûn(0)

n
) +Ank , (176)

where for AC(θ, h),

Ank = hnkλ
nûn(0) ≤ hnkλn,

and for SC(θ, h),

Ank = µkv̂
n
k (0)−

∑
i∈K

hnkiµkv̂
n
i (0) ≤ µk +

∑
i∈K

hnkiµk.
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Moreover, at time t = 1
n , the state can be bounded as,

|q̂n(
1

n
)|+ |ψ̂n(

1

n
)|

≤
∑
k∈K

[
q̂nk (0) + nφ̄nk(λn(

1

n
− ûn(0)

n
)) + nµk

(
b̄nk(

1

n
)−

v̂nk (0)

n

)]
+
∑
k∈K

[
ψ̂nk (0) + nφ̄nk(λn(

1

n
− ûn(0)

n
)) + pnkλ

nn(
1

n
− ûn(0)

n
) +Ank

]
≤ |q̂n(0)|+

∑
k∈K

[λn + µk] + |ψ̂n(0)|+
∑
k∈K

[λn + pnkλ
n +Ank ]

≤ κ1, (177)

for some constant κ1 > 0 that is independent of n.
Next, using the approach for proving Lemma 14(b) for AC policy (or Lemma 17(b) for SC

policy), we can find a time length σ > 0 that is independent of n and satisfies σ < σp =
mink p

n
k/K (for sufficiently large n), such that

ψ̂n(t) = 0, for t ≥ 1

n
+
ψ̂n( 1

n)/n

σ
.

(Here, the function ψ̂n( 1
n + t)/n plays the role of ᾱ(t) in Lemma 14, or β̄(t) in Lemma 17. In

addition, in that lemma the limit is derived by taking n → ∞ while here we scale the (fixed)
n-th system by mi and let mi → ∞.) Let τ = 1 + κ1/σ. Given the bound in (177), we have
τ ≥ 1 + ψ̂n( 1

n)/σ. Hence, the above implies

ψ̂n(t) = 0, for t ≥ τ

n
, (178)

and similar to (177), at time t = τ/n, we have

|q̂n(
τ

n
)|+ |ψ̂n(

τ

n
)| ≤ κ2. (179)

Now, using the property in (178) and taking derivative at both sides of (176), we have for
t ≥ τ/n,

d

dt
φ̄nk(λn(t− ûn(0)

n
)) = pnkλ

n. (180)

Consider any time t ≥ τ/n and q̂nk (t) > 0. From (165,166), we have dŷnk (t)/dt = 0 and hence
˙̄bnk(t) = 1; that is, in the fluid limit, the server k is busy if there is a positive queue length. Given
the latter and by taking derivative on (175), we have

dq̂nk (t)

dt
= npnkλ

n − nµk = θnk . (181)

Recall that the right-hand-side of the above has a limit θk < 0. Hence, from (179,181), we can
find a time t′ that is independent of n, such that

q̂nk (t) = 0, for t ≥ τ

n
+ t′.

Consequently, the conclusion (a) holds with t0 := 1 + t′.
Part (b), for JSQ and BR policy. We deal with the BR policy (with 2 ≤ c ≤ K and

πnk = µk/µK, as in Proposition 2) only, as the JSQ policy is a special case.
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First, it can be verified that under the BR policy, the results in (175,177) are still valid for
t ≥ 1/n (with ψ̂nk (t) ≡ 0).

Denote q̂nmax(t) := maxk∈K q̂
n
k (t). Let Ktmax = argmaxk∈Kq̂

n
k (t) be the set of the servers with

the maximum fluid level and let Kt
max be the cardinal of (the number of elements in) the set

Ktmax at time t ≥ 0. Define q̂nmin(t), Ktmin and Kt
min similarly. Similar to (150), the following

result is widely known: for any k ∈ Ktmax and ` ∈ Ktmin,

˙̂qnk (t) = ˙̂qnmax(t) and ˙̂qn` (t) = ˙̂qnmin(t). (182)

Also recall the following result from Proposition 3(b) of [16]. If maxk∈K1 q̂
n
k (t) < mink∈K2 q̂

n
k (t)

for some strict nonempty subsets K1 ⊂ K and K2 = K\K1 (that is, the set K1 consists of queues
that are strictly shorter than those not in it at time t), then∑

k∈K1

d

dt
φ̄nk(λn(t− ûn(0)

n
)) ≥

(
µK1

µK
+ σ

)
λn, for t ≥ 1

n
, (183)

where σ is chosen as any positive number satisfying σ ≤ [1−(µK2/µK)c]−µK1/µK (for BR policy
with c servers randomly selected upon each job arrival), and the function φ̄nk(λn(t− ûn(0)/n)),
an item in (175), is the amount of fluid flowing into the server k by time t. As there are finite
number of non-empty strict subsets of K, the constant σ can be chosen independent of the sets
K1 and K2.

Consider any (regular) time t > 1/n and q̂nmax(t) > 0 (i.e., |q̂n(t)| > 0). There are two
possible cases. First, if Ktmax is a strict subset of K, then by letting K2 = Ktmax, we have from
the property in (183), ∑

k∈Kt
max

d

dt
φ̄nk(λn(t− ûn(0)

n
)) ≤

∑
k∈Kt

max

µk
µK

λn.

Observe that q̂nk (t) > 0 for k ∈ Ktmax, which implies

˙̄bnk(t) = 1, for k ∈ Ktmax. (184)

Therefore, summing up (175) over k ∈ Ktmax and taking derivative yield,∑
k∈Kt

max

˙̂qnk (t) =
∑

k∈Kt
max

n

(
d

dt
φ̄nk(λn(t− ûn(0)

n
))− µk

)
≤

∑
k∈Kt

max

n

(
µk
µK

λn − µk
)

(185)

=
∑

k∈Kt
max

µk
µK

n(λn − µK) =
∑

k∈Kt
max

µk
µK

(θK + o(1)) ≤ −κ3,

for some constant κ3 > 0 that is independent of the index n (which is sufficiently large) and the
set Ktmax. (Here, o(1) stands for a quantity that converges to 0 as n→∞.) Given the property
in (182), the above implies

˙̂qnmax(t) =
1

Kt
max

∑
k∈Kt

max

˙̂qnk (t) ≤ −κ3

K
.

In the other case, if Ktmax = K (and Kt
max = K), then by summing up (175) for all k ∈ K

and taking derivative, we have

q̂nK(t) = q̂nK(0) + n(λn(t− ûn(0)

n
))− n

∑
k∈K

µk

(
b̄nk(t)−

v̂nk (0)

n

)
,
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and then

˙̂qnK(t) = nλn − n
∑
k∈K

µk = θK + o(1) ≤ −κ4,

for some constant κ4 > 0 that is independent of the (sufficiently large) index n. Consequently,
we have

˙̂qnmax(t) =
1

K
˙̂qnK(t) ≤ −κ4

K
.

In summary, we can find a constant κ5 > 0 such that whenever q̂nmax(t) > 0, we have
˙̂qnmax(t) ≤ −κ5 for t > 1/n, for sufficiently large n. This implies the conclusion in (173) given
the bound in (177). �

Proof of Theorem 7 (outline). The stability of the fluid model corresponding to the n-th
system Ξ̂n(t), just established in Lemma 19(b), directly implies the positive recurrence of the
Markov process Ξ̂n(t), as well as the existence and uniqueness of its stationary distribution,
according to Theorem 4.2 of Dai [17]. The finiteness of the (p − 1)-th moment of the queue
length and the convergence in (120) follow from Theorem 4.1(ii) of Dai and Meyn [19]. �

A.6 Preparation for Proof of Theorems 8 and 9

Before proceeding, we introduce two variations of the diffusion limit theorems that will play an
auxiliary role in the proofs of Theorems 8 and 9. The first one allows more flexible initial states
in the sequence of systems {Ξ̂n(t)}.

Proposition 20 Suppose the sequence of initial states {Ξ̂n(0);n ∈ N} is tight. Let {tn0 ;n ∈
N} be any sequence of times such that tn0 → 0 and ntn0 → ∞ as n → ∞. Then, for any
subsequence of N , there exists a further subsequence, denoted by N1, such that the following
weak convergence holds when n→∞ along N1:

Ξ̂k(tn0 + t) =
(
Q̂n(tn0 + t), Ûn(tn0 + t), V̂ n(tn0 + t), Ψ̂n(tn0 + t)

)
⇒
(
Q̂(t), 0, 0, 0

)
,

where the limit Q̂(t) follows the specifications in Theorem 3(a) (resp. Theorem 5(a), Theorem
6(a), Proposition 2(a)) under the RR(θ) policy (resp. AC(θ, h), SC(θ, h), JSQ/BR policy).
Furthermore, we have for any M ≥ 0,

lim sup
n→∞,n∈N1

P{κ|Ξ̂n(0)| ≤M} ≤ P{|Q̂(0)| ≤M}, (186)

where κ is a constant that depends only on network parameters.

To describe the second variation of the diffusion limit theorem, we introduce a linear Sko-
rohod problem which is obtained by removing the randomness in the diffusion limit given in
(32-34): for each k ∈ K,

q̂k(t) = q̂k(0) + θkt+ ŷk(t) ≥ 0, (187)∫ ∞
0

q̂k(s)dŷk(s)ds = 0, (188)

ŷk(t) is non-decreasing with ŷnk (0) = 0. (189)

The processes q̂k(t) and ŷk(t) satisfying the above constitute a one-dimensional reflecting map-
ping (Lemma 10). Clearly, as θk < 0 (for any admissible policy), it is stable:

q̂k(t) = 0, for t ≥ q̂k(0)

−θk
. (190)

In the second variation, we add an extra scaling to the diffusion-scaled systems, and relate
the sequence of systems with “mixed” scalings to the linear Skorohod problem just described.
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Proposition 21 Let {mn;n ∈ N} be any sequence that increases to infinity (i.e., mn → ∞
as n → ∞), and assume that the sequence of initial states {Ξ̂n(0)/mn, n ∈ N} is tight. Let
{tn0 ;n ∈ N} be any sequence of times such that tn0 → 0 and ntn0 →∞ as n→∞. Then, for any
subsequence of N , there exists a further subsequence, denoted by N1, such that the following
weak convergence holds when n→∞ along N1:

1

mn
(X̂n(mn(tn0 + t))− X̂n(mnt

n
0 ))⇒ θt,

1

mn

(
Ûk(mn(tn0 + t)), V̂ k(mn(tn0 + t)), Ψ̂k(mn(tn0 + t))

)
⇒ 0,

1

mn

(
Q̂k(mn(tn0 + t)), Ŷ n(mn(tn0 + t))− Ŷ n(mnt

n
0 )
)
⇒ (q̂(t), ŷ(t)) , (191)

where the limit (q̂(t), ŷ(t)) follows the specifications in (187-189) under the RR(θ), AC(θ, h),
SC(θ, h), or JSQ/BR (with θk = θK/K) policy. Furthermore, we have for any M ≥ 0,

lim sup
n→∞,n∈N1

P{κ|Ξ̂n(0)/mn| ≤M} ≤ P{|q̂(0)| ≤M}, (192)

where κ is a constant that depends only on network parameters.

Proposition 20 can be proved following the idea outlined by Bramson (page 115 of [9],
also see [43, 52]). In Ye and Yao [66], we also extend the diffusion limit theorem, for a more
complex resource-sharing network, to allow for a tight initial sequence of Markovian states as
in Proposition 20 here, and provide a detailed proof following Bramson’s idea. That proof
can be adapted to prove the proposition here, and hence we omit the details. The proof of
Proposition 21 is a straightforward modification of the arguments that establish the diffusion
limit in Proposition 20 (cf. the proof of Proposition 3(b) of [66]), and hence is also omitted.

The stability properties described in (173,190) (for the limits in Lemma 19 and Proposition
21 respectively) can be turned into a kind of pathwise stability of the respective systems, which
will lead to a stronger moment stability.

Lemma 22 There exists a time t0 such that the following conclusions hold.
(a) Let {mi; i = 1, 2, · · · } be a sequence of number such that mi → ∞ as i → ∞; and let
{xi ∈ X ; i = 1, 2, · · · } be a sequence of initial states such that |xi| ≤ mi for all i. Then, for any
sufficiently large n ∈ N , the following holds (with probability one), as i→∞,

1

mi

(
Q̂n(mit;x

i), Ψ̂n(mit;x
i)
)
→ 0 u.o.c. of t ≥ t0.

(b) Let {mn;n ∈ N} be a sequence of numbers such mn → ∞ as n → ∞; and assume that
the sequence of initial states {Ξ̂n(0)} satisfies |Ξ̂n(0)| ≤ mn. Then, the following holds (with
probability one): as n→∞ (along the full sequence N ),

1

mn

(
Q̂n(mnt), Ψ̂

n(mnt)
)
→ 0 u.o.c. of t ≥ t0.

Two conclusions in the above lemma can be established by applying the stability properties
(173) and (190) to the limits in (171) and (191), respectively. The proof repeats the one for
Lemma 10(a,b) of [66] and is omitted.

A.7 Proof of Theorem 8: Interchange of Limits under RR, AC, SC and JSQ
Policies

In the next two lemmas, we establish a pathwise bound and a moment bound for the Markov
states of the sequence of systems. The moment bound (bounded p-th moment) will play two
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bridging roles. First, it ensures the uniform integrability required for converting the pathwise
stability property in Lemma 22 to some moment stability property in Lemma 26 below. Second,
it restricts the variability of the system when we follow the approach in Budhiraja and Lee [11]
(a refinement of the one in Dai and Meyn [19]) to bound a return time — a key step to establish
a required tightness property leading the interchange of limits. (The proof related to this second
role will be omitted as it almost repeats the corresponding one for Proposition 12 of [66]. Refer
to that proof for details.)

Lemma 23 (Pathwise bound) Suppose RR(θ), AC(θ, h), SC(θ, h) or JSQ policy is in force.
There exists a constant κ > 0 such that for any index n and any time t ≥ 0, the following
bounds hold,

|Ψ̂n(t)| ≤ κ

(
1 + |Ψ̂n(0)|+ sup

0≤s≤t
|Ên(s)|

)
, (193)

|Q̂n(t)| ≤ κ

(
1 + |Ξ̂n(0)|+ sup

0≤s≤t
|Ên(s)|+

∑
k∈K

sup
0≤s≤t

|Ŝnk (s)|+ t

)
. (194)

Proof. For RR, AC and SC policies. Consider AC(θ, h) policy first. Fix an index n and a
time t > 0 arbitrarily. We first establish the following bound concerning the routing process:
for some constant κ1 (independent of t and k),

|Φn
k(En(t))− pnkEn(t))| ≤ κ1

(
1 + |Ψn(0)|+ sup

0≤s≤t
|En(s)− λns|

)
. (195)

Pick any server k. Let τ be the maximum time, before time t, such that the surplus of
routing deviation is less than 0,

τ = sup{s : Ψn
k(s) ≤ 0, 0 ≤ s ≤ t};

if the set at the right-hand-side is empty, we let τ = 0. Consider the case with τ < t (and ignore
the trivial case with τ = t). Observe that for any time s ∈ (τ, t], we have Ψn

k(s) > 0. Since
the sum

∑
k′∈KΨn

k′(s) = 0 (from (113)), the smallest value of Ψn
k′(s), k

′ ∈ K, must be negative
and be attained with some k′ other than class-k. Hence, according to the AC policy defined in
Section 6.1, no job will be assigned to class-k queue during the time interval (τ, t], which implies

Φn
k(En(t′)) = Φn

k(En(τ)), for t′ ∈ (τ, t].

Then, we have for any t′ ∈ (τ, t],

Φn
k(En(t′))− pnkEn(t′)) ≤ Φn

k(En(τ))− pnkEn(τ))

= Ψn
k(τ)−Ψn

k(0) + hnk(En(τ)− λnτ),

where the equality follows from (111). Note that from the definition of τ , we have Ψn
k(τ−) ≤ 0

and thus Ψn
k(τ) ≤ 1 if τ > 0. (Recall the assumption of continuous interarrival times. Without

loss of generality, we can assume that any job’s arrival does not coincide with any other arrival
or service completion event. Thus, there is at most one arrival at time τ .) Therefore, if τ > 0,
the above gives

Φn
k(En(t′))− pnkEn(t′)) ≤ 1 + |Ψn

k(0)|+ sup
0≤s≤t′

|hnk(En(s)− λns)|, for t′ ∈ (τ, t]. (196)

Clearly, the above estimate still holds if τ = 0. Now, as the above estimate is valid for any k
and particularly for t′ = t, we have

−Φn
k(En(t))− pnkEn(t)) =

∑
k′ 6=k,k′∈K

[Φn
k′(E

n(t))− pnk′En(t))]

≤ (K − 1) + |Ψn(0)|+
∑
k′∈K

sup
0≤s≤t′

|hnk′(En(s)− λns)|. (197)
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The bounds in (196,197) implies (195) with properly chosen constant κ1.
Now, from (111,195), we have

|Ψn(t)| ≤ κ2

(
1 + |Ψn(0)|+ sup

0≤s≤t
|En(s)− λns|

)
. (198)

As (Q̂nk(t), Y n
k (t)) constitutes a one-dimensional Skorohod mapping (refer to (20,21,9,10) or (22-

24)), we have (cf. Lemma 10 and inequality (128)),

Qnk(t) = Qnk(0) +Xn
k (t) + sup

0≤s≤t
[−Qnk(0)−Xn

k (s)]+

≤ 2Qnk(0) + 2 sup
0≤s≤t

|Xn
k (s)|.

Using the expression in (21) and the estimate in (195) in the above yield the following bound,

Qnk(t) ≤ κ3

(
1 +Qnk(0) + |Ψn(0)|+ sup

0≤s≤t
|En(s)− λns|+ sup

0≤s≤t
|Snk (s)− µks|+

1

n
t

)
. (199)

Finally, by applying diffusion scaling to the two bounds in (198,199) and choosing the constant
κ properly, we establish the bounds in (193,194) under AC(θ, h) policy.

The proof for SC(θ, h) simply repeats the above, with the item hnk(En(t)−λnt) in the chasing
process of the AC policy being replaced by

δnk (t) := (Snk (Bn
k (t))− µkBn

k (t))−
∑
i∈K

hnki(S
n
i (Bn

i (t))− µiBn
i (t)),

and keeping in mind that Bn
k (t′′)−Bn

k (t′) ≤ t′′ − t′ for all 0 ≤ t′ ≤ t′′. The proof for the RR(θ)
policy is immediate since it is special case of the AC(θ, h) or SC(θ, h) policy.

For JSQ policy. Fixed an index n and a time t > 0 arbitrarily, and consider any (fixed) sample
path. Observe that the queue length process Q̂n(s) is a piecewise constant RCLL function of
time s ≥ 0. Denote the time of successive job arrivals as ti = Υn(i) for convenience. As the
interarrival times follow a continuous distribution with mean 1/λn > 0, we can assume without
loss of generality: (1) 0 = t0 ≤ t1 < t2 < t3 < · · · and ti → ∞ (recall, t1 = un(1) is the initial
residual arrival time), (2) the time ti (i ≥ 2) does not coincide with any service completion time
as well. Hence, at time ti (i ≥ 2), there is an arrival, and if it is routed to, say, server k, then
this arrival triggers an increase in queue k, Q̂nk(ti) = Q̂nk(ti−) + 1/n, while no change in other
queues.

Denote the (diffusion scaled) maximum queue length process and its maximum during time
interval [0, t] as

Q̂nmax(s) := max
k∈K

Q̂nk(s), q∗ := max
s∈[0,t]

Q̂nmax(s). (200)

Observe that the maximum value q∗ must be attained at a job arrival time (and for a time
period thereafter). Let tm be the first time at which the maximum queue length attains the
value q∗ within time interval [0, t]:

m = min{i : Q̂nmax(ti) = q∗, ti ≤ t}.

If tm = t0 or t1, the bound in (194) is satisfied immediately. Hence, without loss of generality,
assume tm > 0 (or m ≥ 2). Let k∗ be the index of longest queue at time tm, and we have

Q̂nk∗(tm) = Q̂nk∗(tm−) +
1

n
= q∗. (201)
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Observe that all queue lengths are at most (q∗ − 1/n) just before time tm, and that class-k∗

queue length is among the shortest ones just before tm. Therefore, we have

Q̂k(tm) = Q̂k(tm−) = q∗ − 1

n
, k 6= k∗. (202)

Similar to (200), denote the minimum queue length as

Q̂nmin(s) := min
k∈K

Q̂nk(s).

Let t` be the minimum time such that no queue is empty during [t`, tm]:

` = min{i : Q̂nmin(s) > 0 for s ∈ [ti, tm]}.

Then, all servers are busy during [t`, tm]: for all k ∈ K,

Ŷ n
k (s) = Ŷ n

k (t`), s ∈ [t`, tm]. (203)

Now, from the property in (203) and the dynamics in (22,25), we have∑
k∈K

Q̂nk(tm) =
∑
k∈K

Q̂nk(t`) + (Ên(tm)− Ên(t`))

−
∑
k∈K

(Ŝnk (B̃n
k (tm))− Ŝnk (B̃n

k (t`))) + θnK(tm − t`). (204)

From (201,202), the left-hand-side of the above is,∑
k∈K

Q̂nk(tm) = q∗ + (K − 1)(q∗ − 1

n
). (205)

If t` = t0, then the equality in (204) is reduced to

Kq∗ − K − 1

n
= |Q̂nk(0)|+ Ên(tm)−

∑
k∈K

Ŝnk (B̃n
k (tm)) + θnKtm.

Keeping in mind that |Q̂n(t)| ≤ Kq∗, the above implies (194). On the other hand, if t` > t0,
from the definition of t`, we must have

Q̂nmin(t`−) = 0 and Q̂nmin(t`) =
1

n
, (206)

which implies that a job must arrive at time t` and join the unique empty queue. Hence, at
time t`, at least one of the queues is equal to 1/n while all other queues are at most q∗ (under
diffusion scaling). Consequently, we have∑

k∈K
Q̂nk(t`) ≤

1

n
+ (K − 1)q∗. (207)

Putting (207,205) into (204) yields

q∗ ≤ K

n
+ (Ên(tm)− Ên(t`))−

∑
k∈K

(Ŝnk (B̃n
k (tm))− Ŝnk (B̃n

k (t`))) + θnK(tm − t`), (208)

which implies (194) as well.
Recall Ψ̂n(t; JSQ) ≡ 0. Thus, the bound about the chasing process in (193) is trivial and

can be omitted for the JSQ policy. �

Under the p-moment bound of the primitives in (117), the pathwise bound just established
is converted to a moment bound of the system state in the next lemma. The proof is same
as the one for Lemma 9(a) of [66]; the additional routing component, Ψ̂n(t), makes nearly no
difference to the proof given the bound in (193). The detailed proof is omitted.
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Lemma 24 (Bounded p-th moment) Suppose RR(θ), AC(θ, h), SC(θ, h) or JSQ policy is
in force, and the p-th moment condition in (117) holds. Then, the following holds for some
constant κ,

E sup
0≤s≤t

|Q̂k(s)|p + E sup
0≤s≤t

|Ψ̂n(s)|p ≤ κ(|Ξ̂n(0)|p + 1 + tp); (209)

and consequently (redefining κ), for any 0 ≤ q ≤ p,

E sup
0≤s≤t

|Q̂k(s)|q + E sup
0≤s≤t

|Ψ̂n(s)|q ≤ κ(|Ξ̂n(0)|q + 1 + tq).

With the bounded p-th moment of the system state in the above lemma, the pathwise stability
properties in Lemma 22 can be turned into corresponding moment stability properties in the next
lemma. The latter serves as intermediate steps to establish the uniform p-th moment stability
(Proposition 26) that holds the key to establishing the tightness of the stationary distributions
associated with the sequence of systems {Ξ̂n(t), n ∈ N}.

Lemma 25 Suppose RR(θ), AC(θ, h), SC(θ, h) or JSQ policy is in force, and the p-th moment
condition in (117) holds. Then, there exists a time t0 such that the following conclusions hold.
(a) Assume {mi} and {xi} as in Lemma 22(a). Then, the followings hold for sufficiently large
n,

{| 1

mi
Q̂n(mit;x

i)|p} and {| 1

mi
Ψ̂n(mit;x

i)|p} are uniformly integrable (w.r.t. i), for any t ≥ 0,

and

lim
i→∞

E
1

mp
i

(∣∣∣Q̂n(mit;x
i)
∣∣∣p +

∣∣∣Ψ̂n(mit;x
i)
∣∣∣p) = 0, for any t ≥ t0. (210)

(b) Assume {mn} and {Ξ̂n(0)} as in Lemma 22(b). Then, the followings hold,

{| 1

mn
Q̂n(mnt)|p} and {| 1

mn
Ψ̂n(mnt)|p} is uniformly integrable (w.r.t. n), for any t ≥ 0,

and

lim
n→∞

E
1

mp
n

(∣∣∣Q̂n(mnt)
∣∣∣p +

∣∣∣Ψ̂n(mnt)
∣∣∣p) = 0, for t ≥ t0. (211)

The proof of the uniform integrability properties in the above lemma is same as the one for
Lemma 9(b,c) of [66] and is omitted. Then, these uniform integrability properties justify the
interchange of the expectation and the limit in (210) and (211) respectively, and therefore the
conclusions in (210) and (211) follow from Lemma 22 immediately.

Next, by putting the results in (210) and (211) together, we can show the uniform p-th
moment stability property whose proof is same as the one for Proposition 11 of [66] and hence
omitted.

Proposition 26 (Uniform p-th moment stability) Suppose RR(θ), AC(θ, h), SC(θ, h) or
JSQ policy is in force, and the p-th moment condition in (117) holds. Then, there exists a time
t0 and a sufficiently large index n0 such that the following holds for all t ≥ t0,

lim
|x|→∞

sup
n≥n0

E
1

|x|p
(∣∣∣Q̂n(|x|t;x)

∣∣∣p +
∣∣∣Ψ̂n(|x|t;x)

∣∣∣p) = 0. (212)
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Now, we are able to establish the tightness and a uniform p-th moment bound of the sequence
of steady states {Ξ̂n(∞), n ∈ N}, by making use of moment bound and moment stability results
in Properties 24 and 26 and following the approach developed in [11, 19]. Refer to [66] as well,
and the detailed proof is omitted. Finally, given such tightness and moment bound properties of
the steady states, the proof of our interchange of limits in Theorem 8 (for RR, AC, SC and JSQ
policies) is identical to the proof of Theorem 4 in [66] (Proposition 20, a variation of diffusion
limit theorem, is used here), which is a modification of the standard argument leading to the
interchange of limits from the tightness in [11,24,25,36].

A.8 Proof of Theorem 9: Interchange-of-Limits under BR Policy

As a preparation, we first introduce a new fluid model and its uniform attraction property. This
fluid model is associated with the whole sequence of systems {Ξ̂n(t), n ∈ N}, which is derived
as the limit (or cluster point) of a sequence of systems under the hydrodynamic scaling (cf. the
uniform continuity in Lemma 29). Intuitively, it can also be obtained from a critically loaded
system (i.e., ρ = 1 in the system described in (5-10) and under BR routing), by removing the
randomness of arrival and service processes while taking into account the initial residuals. It is
described by the following set of conditions:

q̄k(t) = q̄k(0) + φ̄k (λ(t− t ∧ ū(0)))− µk
(
b̄k(t)− b̄k(t) ∧ v̄k(0)

)
= q̄k(0) + φ̄k (λ(t− t ∧ ū(0)))− µk

(
t− b̄k(t) ∧ v̄k(0)

)
+ ȳk(t) ≥ 0, (213)

φ̄k(t) is non-decreasing with φ̄k(0) = 0, and Lipschitz with constant 1, (214)

b̄k(t) is non-decreasing with b̄k(0) = 0, and Lipschitz with constant 1, (215)

ȳnk (t) = µk(t− b̄k(t)) is non-decreasing with ȳk(0) = 0, (216)∫ ∞
0

q̄k(s)dȳk(s)ds = 0. (217)

In addition, if maxk∈K1 q̄k(t) < mink∈K2 q̄k(t) for some strict nonempty subset K1 ⊂ K and
K2 = K \K1 (that is, the set K1 consists of queues that are strictly shorter than those not in it
at time t), then ∑

k∈K1

d

dt
φ̄k(λ(t− t ∧ ū(0))) ≥

(
µK1

µK
+ σφ

)
λ, for t ≥ ū(0), (218)

where σφ is any positive number independent of (K1,K2) and satisfying σφ ≤ [1− (µK2/µK)c]−
µK1/µK.

The above inequality indicates that the shorter queues in the (critically loaded) fluid model
described above will receive flows more than the capacity of associated servers, which also implies
that the longer queues get less. Consequently, all short and long queues converge to the same
length. This observation leads to the uniform attraction property in the following proposition,
which is a key to establishing a bound for the queue length (in Lemma 30).

Proposition 27 (Theorem 4 of [16]) (a) There exists a constant κw > 0 that only depends
on the network parameters such that for any solution to the fluid model in (213-218) satisfying
|q̄(0)|+ |ū(0)|+ |v̄(0)| ≤ 1, the following bound holds,

|q̄(t)| ≤ κw, t ≥ 0. (219)

(b) (Uniform attraction) There exists a time T0 such that the following holds for any solution
to the fluid model in (213-218) satisfying |q̄(0)|+ |ū(0)|+ |v̄(0)| ≤ 1:

q̄1(t) = · · · = q̄K(t) = q∗, for t ≥ T0, (220)

where q∗ is a constant.

59



The above proposition (part (b) in particular) is a variation of Theorem 4 of [16]. The new
feature here, the additional residuals ū(0) and v̄(0), can be dealt with in the same way as in the
proof of Lemma 19(b) so that the effect of these residuals can be mitigated after the time t = 1.
Hence, the proof is omitted.

Next, we will introduce the regular events and derive a probabilistic bound for these events.
With the initial residuals un1 and vnk,1 removed from En(t) and Snk (t), the (undelayed) arrival

and service processes are denoted: Eo,n(t) and So,n(t) = (So,nk (t))k∈K, t ≥ 0, where

Eo,n(t) = max

{
i :

i∑
`=2

un` ≤ t

}
, and So,nk (t) = max

{
i :

i∑
`=2

vnk,` ≤ t

}
. (221)

Here and below, the superscript “o” denotes the undelayed version of a (possibly) delayed renewal
process.

Define the variables:

un,max(t) := max

{
uni :

i−1∑
`=2

un` ≤ t, i = 2, 3, · · ·

}
, (222)

vn,max
k (t) := max

{
vnk,i :

i−1∑
`=2

vnk,` ≤ t, i = 2, 3, · · ·

}
. (223)

The first variable is the maximal interarrival time of jobs realized before time t for the n-th
system; the second variable is analogous, for the service times. Note that the initial residuals
un1 and vnk,1 are excluded.

Let t∗ and u∗ be any positive times, and {mn, n ∈ N} be a sequence of real numbers with
mn ≥ 1. Define the regular events as:

Ωn(t∗, u∗,mn) = Ωn
u(t∗,mn) ∩ Ωn

v (t∗,mn) ∩ Ωn
E(t∗, u∗,mn) ∩ Ωn

S(t∗, u∗,mn) ∩ Ωn
X(t∗,mn) (224)

where

Ωn
u(t∗,mn) =

{
1

nmn
un,max(n2mnt

∗) ≤ 1

n(p∗−2)/2p∗

}
, (225)

Ωn
v (t∗,mn) =

⋂
k∈K

{
1

nmn
vn,max
k (n2mnt

∗) ≤ 1

n(p∗−2)/2p∗

}
, (226)

Ωn
E(t∗, u∗,mn) =

{
sup

0≤t≤nt∗
sup

0≤u≤u∗
| 1

mn
(Ēo,n(mn(t+ u))− Ēo,n(mnt))− λnu| ≤

1

log n

}
,(227)

Ωn
S(t∗, u∗,mn) =

{
sup

0≤t≤nt∗
sup

0≤u≤u∗
| 1

mn
(S̄o,n(mn(t+ u))− S̄o,n(mnt))− µu| ≤

1

log n

}
,(228)

Ωn
X(t∗,mn) =

{
sup

0≤t≤t∗

1

mn
(|Êo,n(mnt)|+ |Ŝo,n(mnt)|) ≤

n

log n

}
. (229)

The ranges that bound the sample paths are carefully specified such that the probabilities of
these events must approach one at a certain rate as indicated in the following lemma (Lemma
3.1 of [67]).

Lemma 28 Suppose the p∗-th moment condition in (121) holds, and let t∗ and u∗ be any
positive times. Then, the following estimate holds for sufficiently large n (depending on t∗ and
u∗),

P(Ωn(t∗, u∗,mn)) ≥ 1− (log n)p
∗+1

np∗/2−2
, for all mn ≥ 1.
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We remark that in the above regular events and the hydrodynamic scaling to be defined imme-
diately, the parameters {mn, n ∈ N} are included so that the system under a “mixed” scaling,
Ξ̂n(mnt)/mn, can be analyzed directly. These parameters also serve to contain the sequence of
initial states {Ξ̂n(0)} when we allow |Ξ̂n(0)| to increase infinitely in the hydrodynamic analysis
below.

Now, we introduce the hydrodynamics representation for our model, and establish a uniform
continuity property (Lemma 29) in which the fluid model described in (213-218) is derived as
the limit point for the hydrodynamic processes restricted to the regular events.

The hydrodynamics here is a modification of the original one by Bramson [9], and is dedicated
to studying the system under a “mixed” scaling, Ξ̂n(mnt)/mn. Denote

yn[= yn(ω,∆,mn)] := max

(
1

mn
|Q̂n(0)|+ sup

0≤t≤∆

1

mn
|X̂n(mnt)|,

1

mn
|Ξ̂n(0)|, 1

)
,(230)

for any time interval [0,∆] (for the process Ξ̂n(mnt)/mn), with ∆ > 0, and any sequence of
numbers {mn ≥ 1;n ∈ N}. Let T > 0 be a fixed time of a certain magnitude (to be specified
later). Divide the time interval [0,mn∆] (for the process Ξ̂n(t)) into a total of dn∆/ynT e
segments with equal length ynmnT/n, where d·e denotes the integer ceiling. The j-th segment,
j = 0, ..., dn∆/ynT e − 1, covers the time interval [jynmnT/n, (j + 1)ynmnT/n] (of Ξ̂n(t)). Note
that the last interval (with j = dn∆/ynT e − 1) covers a negligible piece of time beyond the
right end of [0,∆] if n∆/ynT is not an integer. For simplicity, below we shall treat n∆/ynT
as an integer so as to omit the ceiling notation. Then, for any t ∈ [0,∆], we can write t =
ynmn(jT + u)/n for some j = 0, · · · , n∆/ynT and u ∈ [0, T ]. Therefore, for u ∈ [0, T ] and
j ≤ n∆/ynT , we write

1

ynmn
Q̂n(mnt) =

1

ynmn
Q̂n(

jynmnT + ynmnu

n
)

=
1

nynmn
Qn(nynmn(jT + u)) := Q̄n,j(u). (231)

Hence, this hydrodynamic scaling can be regarded as a special fluid scaling with the scaling
parameter nynmn and a shifted start time. The processes, Ξ̄n,j(u), Ūn,j(u) and V̄ n,j(u), are
defined in the same manner. The arrival, routing, busy time and service processes are written
as,

Ēn,j(u) :=
1

nynmn
[En(nynmn(jT + u))− En(nynmnjT )], (232)

Φ̄n,j
k (u) :=

1

nynmn
[Φn
k(nynmn( ¯̄E

n,j
+ u))− Φn

k(nynmn
¯̄E
n,j

)], (233)

B̄n,j
k (u) :=

1

nynmn
[Bn

k (nynmn(jT + u))−Bn
k (nynmnjT )], (234)

S̄n,jk (u) :=
1

nynmn
[Snk (nynmn( ¯̄B

n,j

k + u))− Snk (nynmn
¯̄S
n,j

k )], (235)

where

( ¯̄E
n,j
, ¯̄S

n,j

k ) :=
1

nynmn

(
En(nynmnjT ), Bn

k (nynmnjT )
)
. (236)

It can be verified that for the routing and service components in the system equation in (25),
we have

Φ̄n,j
k (Ēn,j(u)) :=

1

ynmn

(
Φ̂n
k

(
Ẽn(

ynmn

n
(jT + u))

)
− Φ̂n

k

(
Ẽn(

ynmn

n
jT )
))
, (237)

S̄n,jk (B̄n,j
k (u)) :=

1

ynmn

(
Ŝnk
(
B̃n
k (
ynmn

n
(jT + u))

)
− Ŝnk

(
B̃n
k (
ynmn

n
jT )
))
. (238)
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Lemma 29 (Uniform continuity) Let M , ∆ (and ∆∗ := ∆+1), T and T ∗ be any given positive
numbers, and suppose |Ξ̂n(0)| ∨ 1 ≤ mn for all n. (∆ and T are the parameters in the definition
of the hydrodynamic processes above, and ∆∗ and T ∗ will be used to specify the regular event.)
(a) For any ε > 0, there exists n∗ such that for any n ≥ n∗, the following holds for any
ω ∈ Ωn(∆∗, T ∗,mn) and 0 ≤ j ≤ n∆/ynT : if

|Q̄n,j(0)|+ |Ūn,j(0)|+ |V̄ n,j(0)| ≤M, (239)

then, we can find a fluid model (q̄(t), ū(0), v̄(0)) satisfying (213-218) and |q̄(0)|+ |ū(0)|+ |v̄(0)| ≤
M such that

sup
0≤u≤T

|Q̄n,j(u)− q̄(u)|+ |Ūn,j(0)− ū(0)|+ |V̄ n,j(0)− v̄(0)| < ε. (240)

(b) Moreover, the time T can be chosen sufficiently long (depending on network parameters
only) such that the following holds for any ω ∈ Ωn(∆∗, T ∗,mn) and 1 ≤ j ≤ n∆/ynT (excluding
j = 0):

Ūn,j(0) and V̄ n,j(0) ≤ 1

k(p∗−1)/2p∗
.

Consequently, for any ε > 0, there exists n∗ such that the following holds for any n ≥ n∗,
|Ξ̂n(0)| ∨ 1 ≤ mn, ω ∈ Ωn(∆∗, T ∗,mn), and 1 ≤ j ≤ n∆/ynT , if

|Q̄n,j(0)| ≤M, (241)

then, we can find a fluid model (q̄(t), ū(0) = 0, v̄(0) = 0) satisfying (213-218) and |q̄(0)| ≤ M
such that

sup
0≤u≤T

|Q̄n,j(u)− q̄(u)| < ε.

In [67], a similar result for multiclass queueing networks is established. In that paper, a
tedious process is used to decompose the system equations into the corresponding fluid model
plus the associated random components, and to show the random components vanish uniformly.
Then, a general uniform continuity property (also established there) is invoked to conclude the
required result. In contrast, we will prove the above lemma directly, through a contradictory
argument involving the conventional fluid limit. This approach is more transferable to similar
studies.

Proof. Suppose the conclusion does not hold. That is, there exists an ε0 > 0 and a subsequence
of index N1 ⊂ N such that for any n ∈ N1, we can find a sample ωn ∈ Ωn(∆∗, T ∗,mn) and an
integer jn ∈ [0, n∆/ynT ] for which the condition in (239) holds but the bound in (240) does not:
that is,

|Q̄n,jn(0)|+ |Ūn,jn(0)|+ |V̄ n,jn(0)| ≤M, (242)

and, for any fluid model (q̄(t), ū(0), v̄(0)) satisfying (213-218) and |q̄(0)|+ |ū(0)|+ |v̄(0)| ≤M ,

sup
0≤u≤T

|Q̄n,jn(u)− q̄(u)|+ |Ūn,jn(0)− ū(0)|+ |V̄ n,jn(0)− v̄(0)| ≥ ε0. (243)

(Note that the processes Q̄n,jn(u), Ūn,jn(u) and V̄ n,jn(u) specified just now are sample paths
associated with ωn.)

Applying the conventional approach for proving fluid limit theorem (refer to for example
[13,17], among many others), however, we can find a further subsequence N2 ⊂ N1 such that as
n→∞ along N2, we have

sup
0≤u≤T

|Q̄n,jn(u)− q̄(u)|+ |Ūn,jn(0)− ū(0)|+ |V̄ n,jn(0)− v̄(0)| → 0, (244)
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for some fluid model (q̄(t), ū(0), v̄(0)) satisfying (213-218) with |q(0)|+|u(0)|+|v(0)| ≤M , which
contradicts to (243).

It is left to claim the limit (q̄(t), ū(0), v̄(0)) in the above convergence. Using the hydrody-
namic scaling described in (231-238), the system equations in (6-10) (indexed by n properly)
can be rewritten as,

Q̄n,jk (t) = Q̄n,jk (0) + Φ̄n,j
k (Ēn,j(t))− S̄n,jk (B̄n,j

k (t)) ≥ 0, (245)

B̄n,j
k (t) =

∫ t

0
1{Q̄n,j

k (s)>0}ds, (246)

Ȳ n,j
k (t) = µk(t− B̄n,j

k (t)) = µk

∫ t

0
1{Q̄n,j

k (s)=0}ds, (247)∫ ∞
0

Q̄n,jk (s)dȲ n,j
k (s) = 0, (248)

Ȳ n,j
k (t) is non-decreasing in t ≥ 0, and Ȳ n,j

k (0) = 0. (249)

From the condition (242), we can find a subsequence N2 ⊂ N1 such that

(Q̄n,jn(0), Ūn,jn(0), V̄ n,jn(0))→ (q̄(0), ū(0), v̄(0)), (250)

with |q̄(0)|+ |ū(0)|+ |v̄(0)| ≤M .
Observe that Ēn,j(s) is a (scaled) delayed renewal process, and its undelayed version Ēo,n,j(s)

can be defined in a way similar to (221). It can be verified directly the two versions satisfy the
following,

Ēn,j(s) =
1{s≥Ūn,j(0)}

nynmn
+ Ēo,n,j(s− s ∧ Ūn,j(0)). (251)

Recall from the proof of Lemma 3.4 of [67] (the bound in (B.16) in particular) that under the
condition |Ξ̂n(0)| ≤ mn and ωn ∈ Ωn(∆∗, T ∗,mn), the following convergence holds as n → ∞
(along the full sequence N ),

sup
0≤j< n∆

ynT

sup
s∈[0,T ]

|Ēo,n,j(s− s ∧ Ūn,j(0))− λn(s− s ∧ Ūn,j(0))| → 0.

(As a side note, the initial condition, |Ξ̂n(0)| ≤ mn, imposes certain bound on the parameter
yn used in defining the hydrodynamic processes. Such a bound is required when we employ the
property of the regular event to claim the above convergence. Refer to [67] for technical details.)
Given the relationship in (251), the above convergence gives the following immediately,

sup
s∈[0,T ]

|Ēn,jn(s)− λ(s− s ∧ ū(0))| → 0, as n→∞ along N2. (252)

Similarly, we have

sup
s∈[0,T ]

|S̄n,jnk (s)− µk(s− s ∧ v̄k(0))| → 0, as n→∞ along N2. (253)

Given (250,252,253), we are now able to apply the conventional approach (as in the proof of
Lemma 19) to derive the fluid limit for Q̄n,jk (t) as depicted in (244). �

The uniform attraction and the uniform continuity (in Lemmas 27 and 29) established above
are concerned with properties of the system sequence in O(n)-long period under the original
scaling (here, ignore the additional scalling factors yn and mn for simplicity). Assembling these
properties across O(n2)-long period (or, constant period under the diffusion scaling), we can
bound the queue length over regular events in the following lemma.
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Lemma 30 Consider any time interval [0,∆], with ∆ > 0, and suppose |Ξ̂n(0)| ∨ 1 ≤ mn for
all n. Let ε > 0 be any given (small) number. Then, there exists a sufficiently large T such that
for sufficiently large n, the following results hold for any ω ∈ Ωn(∆∗, T ∗,mn) (here ∆∗ = ∆ + 1
and T ∗ = 2T ) and positive integers j = 1, · · · , n∆/ynT :
(a) (Uniform attraction)

|Q̄n,jk (u)− 1

K
Q̄n,jK (u)| ≤ ε, for all u ∈ [0, T ], k ∈ K. (254)

(b) (Complementarity) If Q̄n,jK (u′) > 2Kε for some u′ ∈ [0, T ], then

Ȳ n,j
K (u)− Ȳ n,j

K (0) = 0, for all u ∈ [0, T ]. (255)

(c) (Boundedness)

|Q̄n,j(u)| ≤ κ, for all u ∈ [0, T ], (256)

where κ is a positive constant that depends only on system parameters (independent of n and
ω). In addition, the bound in (256) also applies to j = 0.

The above lemma is indeed a version of Lemma 3.5 of [67], but in the context of the parallel
server model here. The proof in that paper is transferable with minor modifications (e.g.,
carefully handling certain complementarity property). As the model under study is simpler in
the network structure, the proof can be substantially simplified, which is included as follows.

Proof. Let T be any real value satisfying:

T ≥ κT0, (257)

where the time T0 is given in Lemma 27(b). Note that T is large enough so that in the fluid
model in Theorem 27 (under the heavy traffic condition), the state q̄(t) will reach the fixed-
point state (satisfying q̄1(t) = · · · = q̄K(t)), starting from an initial state (q̄(0), ū(0), v̄(0)) that
is bounded by κ. Here κ is a constant that depends on network parameters only:

κ = 2κw + 5, (258)

where κw is given in Lemma 27. The rationale for the choice of κ will become evident shortly.
We prove the lemma in two steps.
Step 1. Prove (a,b) for j = 1 and (c) for j = 0, 1.
Note that |Ξ̄n,0(0)| = |Ξ̂n(0)/ynmn| ≤ 1 according to the definitions in (230,231). By

Lemma 29, we have for sufficiently large n, and ω ∈ Ωn(∆∗, T ∗,mn), there exists a fluid model
(q̄(u), ū(0), v̄(0)) satisfying (213-218) which may depend on n, Ξ̂n(0), mn and ω, such that,

|q̄(0)|+ |ū(0)|+ |v̄(0)| ≤ 1, and (259)

sup
u∈[0,T ∗]

(
|Q̄n,0(u)− q̄(u)|+ |Ūn,0(0)− ū(0)|+ |V̄ n,0(0)− v̄(0)|

)
<
ε

2
. (260)

Since T ≥ κT0 (≥ T0), applying the uniform attraction property in Lemma 27 to the above fluid
model q̄(u) yields:

q̄1(u) = · · · = q̄K(u) = q∗, for all u ≥ T, and (261)

|q̄(u)| ≤ κw, for all u ≥ 0. (262)

Note that Q̄n,0(T + u) ≡ Q̄n,1(u). Then, it follows from (260,261) that the conclusion (a) holds
with j = 1 for sufficiently large n and for all ω ∈ Ωn(∆∗, T ∗,mn).
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By (259,262) again, we have for all u ∈ [0, T ∗] (= [0, 2T ]),

|Q̄n,0(u)| ≤ |q̄(u)|+ ε

2
≤ κw +

ε

2
,

and for all u ∈ [0, T ],

|Q̄n,1(u)| = |Q̄n,0(T + u)| ≤ κw +
ε

2
(≤ κ). (263)

That is, the bounding property in (c), for both j = 0 and j = 1, is satisfied.
When Q̄n,1K (u′) > 2Kε for some u′ ∈ [0, T ], we have from (254) (for j = 1),

Q̄n,1k (u′) ≥
Q̄n,1K (u′)

K
− ε > ε,

which, along with (260,261), implies

q∗ > Q̄n,1k (u′)− ε

2
≥ ε

2
,

and thus

Q̄n,1k (u) > q∗ − ε

2
> 0, for all u ∈ [0, T ], k ∈ K.

Therefore, following the complementarity relationship in (248), we have,

Ȳ n,1
k (u) does not increase in u ∈ [0, T ], for all k ∈ K.

In summary, if Q̄n,1K (u′) > Kε for some u′ ∈ [0, T ], then,

Ȳ n,1
K (u) does not increase in u ∈ [0, T ];

that is, the conclusion (b) holds for j = 1.
Step 2. We now extend the above to j = 2, . . . , n∆/ynT .
Suppose again to the contrary, there exists a subsequence N1 ⊂ N such that, for any

n ∈ N1, at least one of the results in (a,b,c) does not hold for some integer j ∈ [2, n∆/ynT ] and
some sample-path ω ∈ Ωn(∆∗, T ∗,mn). Let jn be the smallest positive integer in the interval
[2, n∆/ynT ] such that at least one of the properties in (a,b,c) does not hold with the associated
Ξ̂n(0), mn and ω. To reach a contradiction, in the rest of the proof we will show that the
desired properties in (a,b,c) hold for j = jn for sufficiently large n ∈ N1, and indeed for any
ω ∈ Ωn(∆∗, T ∗,mn).

Following the earlier argument, under the (contradictory) assumption above, the results in
(a,b,c) hold for j = 1, ..., jn − 1 and any ω ∈ Ωn(∆∗, T ∗,mn), for each n ∈ N1. Specifically, for
j = jn − 1 (≥ 1), we have

|Q̄n,jn−1(0)| ≤ κ, for all n ∈ N1.

By Lemma 29(b), we have for any sufficiently large n ∈ N1 and any ω ∈ Ωn(∆∗, T ∗,mn), there
exists a fluid model (q̄(u), ū(0) = 0, v̄(0) = 0) satisfying (213-218) (which may depend on n,
Ξ̂n(0), mn and ω) such that

sup
u∈[0,T ∗]

|Q̄n,jn−1(u)− q̄(u)| < ε

2
, (264)

with |q̄(0)| ≤ κ. (Here, we know that |Ūn,jn−1(0)| + |V̄ n,jn−1(0)| → 0 as n → 0, and can set
ū(0) = v̄(0) = 0 by Lemma 29(b).) Since T ≥ κT0, applying the uniform attraction property in
Lemma 27 to the above limit yields the following again:

q̄1(u) = · · · = q̄K(u) = q∗, for all u ≥ T. (265)
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Note that Q̄n,jn−1(T +u) ≡ Q̄n,jn(u). Hence, the bound in (264), along with (265), implies that
the conclusion (a) holds with j = jn and ω ∈ Ωn(∆̄∗, T ∗,mn), for sufficiently large n ∈ N1.

Following the same procedure for proving the conclusion (b) for j = 1, we can show that the
complementarity property in conclusion (b) holds for j = jn.

Now, consider any sufficiently large n ∈ N1, such that the results in (a,b) hold for j =
1, · · · , jn (but it needs not holds for j = 0) and for all ω ∈ Ωn(∆∗, T ∗,mn). This implies that
when restricted to ω ∈ Ωn(∆∗, T ∗,mn), the processes,

(q(t), x(t), y(t)) :=
1

ynmn
(Q̂nK(mnt), Q̂

n
K(
mny

nT

n
) + X̂n

K(mnt)− X̂n
K(
mny

nT

n
), Ŷ n
K (mnt)),

satisfy the specifications in Lemma 12(b) in the time interval [ynT/n, (jny
nT + ynT )/n], which

merges all intervals [jynT/n, (j + 1)ynT/n] for j = 1, · · · , jn. Hence, we have for any t ∈
[ynT/n, (jny

nT + ynT )/k] (⊂ [0,∆∗]),

1

ynmn
Q̂nK(mnt)− 2Kε

≤ Φ

(
1

ynmn

(
Q̂nK(

mny
nT

n
) + X̂n

K(mn·)− X̂n
K(
mny

nT

n
)

)
− 2Kε

)
(t)

≤ 2 sup
s∈[ y

nT
n
,t]

∣∣∣∣ 1

ynmn

(
Q̂nK(

mny
nT

n
) + X̂n

K(mns)− X̂n
K(
mny

nT

n
)

)
− 2Kε

∣∣∣∣
≤ 2(κw +

ε

2
+ 2 + 2Kε),

where in the second inequality we have also applied the conclusion in (263) (i.e., Q̂nK(mny
nT/n)/ynmn

= |Q̄n,1(0)| ≤ κw + ε/2) and the definition in (230). Keeping in mind that Q̄n,jn(u) ≡
Q̂n((jny

nmnT + ynmnu)/n)/ynmn, the above implies that (c) holds with j = jn for sufficiently
large n ∈ N1. �

The rest of the proof for Theorem 9 follows the same procedure in [67], starting from Lemma
3.6 of that paper. It is also the procedure in the proof of Theorem 8 (for RR, AC, SC and JSQ
policies), from Lemma 24 onward in Section A.5. We omit the detailed proof and outline the
procedure as follows.

First, we employ the pathwise bound of the queue length process for sample path in the
regular event (Lemma 30(c)) and the probabilistic bound of the regular event (Lemma 28), to
establish the bounded p-th moment of queue length:

E sup
0≤s≤t

∣∣∣∣ 1

mn
Q̂n(mns)

∣∣∣∣p ≤ κ(1 + tp), (266)

for sufficiently large n and for some constant κ > 0. Note, in Lemma 24, we have established a
similar inequality in (209) for the RR, AC, SC and JSQ policies without requiring the stronger
p∗-th moment condition in (121), since the queue length process (and the associated chasing
process as well) under these policies can be bounded by the “free” primitive processes (Lemma
23).

Second, using the p-th moment bound of queue length in (266), we turn the pathwise stability
results in Lemma 22 to a uniform p-th moment stability:

lim
|x|→∞

sup
n≥n0

E
1

|x|p
∣∣∣Q̂n(|x|t;x)

∣∣∣p = 0, t ≥ t0, (267)

for some time t0 and some (large) index n0. This is parallel to Proposition 26.
Finally, given the above moment bound and stability of the queue length process, we are able

to establish the tightness of the stationary distributions of the pre-limit queue length processes
and thus the interchange of limits, the main result in Theorem 9. Refer to the comments
following Proposition 26 (for RR, AC, SC and JSQ policies) as well.
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