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In this paper, an unsupervised change detection method is proposed by using
texture difference information for very-high-resolution (VHR) remote
sensing images. First, a new local similarity based texture difference measure
(LSTDM) is defined by using gray level co-occurrence matrix (GLCM). A
mathematical analysis shows that LSTDM is robust with respect to noise and
spectral similarity. Then, the unsupervised change detection problem in VHR
remote sensing images is formulated as minimizing an energy function
related with changed and unchanged classes in the difference image. A
modified expectation maximization based active contour model is applied to
the difference image for separating the changed and unchanged regions.
Finally, two different experiments were performed with SPOT5 images and
QuickBird images and compared with some state-of-the-art unsupervised
change detection methods to evaluate the effectiveness of the proposed
method. The results indicate that the proposed method can sufficiently
increase the robustness with respect to noise and spectral similarity and
obtain the highest accuracy among methods in this paper.

1 Introduction

Change detection is a process that identifies the changes occurred on the Earth surface
by jointly observing two (or more) images acquired on the same geographical area at
different times (Bruzzone and Prieto 2000; Lu et al. 2004; Bruzzone and Bovolo
2013). Recently, it is more convenient to obtain a series of multi-temporal optical
satellite images with the development of remote sensing techniques. Under this
background, land cover change detection from remote sensing images has been
becoming an attractive research topic.

In the past few decades, a variety of change detection methods have been proposed.
According to the existence of ground truth in the interesting area, the change detection
approaches can be divided into supervised approach and unsupervised approach. Due
to the ground truth is difficult to obtain and cost too much, the unsupervised approach
has been more widely researched. In this paper, we focus on the unsupervised change
detection methods. In order to separate changed pixels from unchanged pixels in the
difference image, the most popular unsupervised change detection method is a
thresholding technique (Prieto and Fernandez 2000; Bazi, Bruzzone, and Melgani
2005; He et al. 2014) for its simplicity and availability. Additionally, in order to obtain
more accurate change detection result, some literatures proposed automatic analysis
and other new techniques for the difference image instead of a thresholding method,



such as support vector machine (Bovolo, Bruzzone, and Marconcini 2008), wavelet
transform (Bovolo and Bruzzone 2005; Celik and Ma 2011), fuzzy c-means (Ghosh,
Mishra, and Ghosh 2011), etc.

The emergence of very high resolution (VHR) remote sensing image and the rapid
increase in computational capabilities over the last decade have challenged the
traditional change detection methods (Hussain et al. 2013), such as geo-referencing
accuracy, larger reflectance variability in each class and different acquisition
characteristics, due to VHR images include a more valuable and abundant information.
The large volume of information presented in VHR images often results in much more
unnecessary change detections than other kinds of images, which is known as the “salt
and pepper” effect. Furthermore, the potential accuracy of traditional change detection
methods would be also reduced by such characteristics of VHR. In the last years,
some novel approaches have been developed which take the relationship between
spatially adjacent pixels into account. Spatial-context information can be modelled by
fixed-shape neighborhood systems for the texture information extraction(Bruzzone
and Bovolo 2013). Under the extraction, texture-information-based change detection
method is proved to be useful in several studies (Smits and Annoni 2000; He et al.
2011; Klaric et al. 2013; Li and Leung 2002). Though texture information is
commonly robust in its change detection performance, the existing texture difference
measure is not completely suitable since most of the difference measures are
pixel-wised and different texture features have the same weights. Therefore, the
texture-based algorithm needs to be researched deeply and a more efficient texture
difference measure should be presented.

To address the aforementioned problem, a novel unsupervised change detection
approach is proposed by utilizing local-similarity-based texture difference measure
(LSTDM) in this paper. In LSTDM, a local similarity between two temporal gray
level co-occurrence matrix (GLCM) (Haralick, Shanmugam, and Dinstein 1973)
texture images is defined to identify the changes. In addition, the coefficient of
variation method (Liu 2015) is applied to define the weight among different GLCM
texture features. In order to generate a more accurate resulting change map, the
unsupervised change detection problem in VHR remote sensing images is formulated
as minimizing an energy function related with changed and unchanged classes in the
difference image. A modified expectation maximization based Chan-Vese active
contour model (C-V) (Chan and Vese 2001) is applied to the difference image for
separating the changed and unchanged regions. As shown in Fig. 1, the proposed
approach is made up three blocks as follows. First, the GLCM texture features are
extracted from multitemporal VHR remote sensing images, respectively. Then, the
difference 1image was generated based on LSTDM. Finally, a modified
expectation-maximization-based C-V model is applied to obtain the final change map.

Insert Fig.1 here.

2 Proposed change detection approach

Let X1 and X2 be two VHR remote sensing images acquired in same geographical area
at times t; and t2, which have been co-registered and radiometrically corrected and
have the same size of M X N.



2.1 Local similarity based texture difference measure

In previous research, a distance between two GLCM texture image pixels was applied
as the difference measure (Smits and Annoni 2000) and it was proved to be robust for
misregistration. However, the distance-based texture difference measure is a
pixel-based method and ignores the spatial relationship of texture features. As shown
in Fig. 2(a) and 2(b), two texture image chips were acquired at times t; and t;
respectively. The target pixel is labelled by P. In the previous texture difference
measure, the pixel P will be directly classified as unchanged pixels. However, the
change detection result is not completely reasonable because the two temporal texture
image chips are not coincident as can be seen in Fig. 2. In addition to the
aforementioned problem, it is not completely reasonable that the different texture
feature has the same weight.

Insert Fig. 2 here.

To address the two problems, LSTDM is proposed in this paper. First, a local
similarity measure between two temporal GLCM texture image chips is defined. This
measure translates the difference of the target pixel P at times t1 and to into the
similarity of the pixels in its neighbours (as shown in the square frame of Fig. 2). The

local similarity measure, which represented by S (tl, t, ) , can be formulated as
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In which, d, (tl,tz) denotes the Euclidean distance of the local texture feature at

times t and tp, f (U,V) is the feature value at the position (U,V) ,and @ means the

3x3 neighborhood centered at P. n presents the number of pixels in the neighbours.

Then, in order to discriminate the contribution of different texture features, the
coefficient of variation method is utilized. This method has already proved effectively
in weight determination (Liu 2015). The weight of the feature f , which represented

by Wy, can be calculated using the following equation,
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where V, denotes the coefficient of variation of feature f, x4, and o, are the

mean value and the variance of feature f , respectively.

Finally, LSTDM, which represented by D (tl,tz) , can be formulated as
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where £ is the total number of the GLCM features extracted in VHR images.
2.2 Expectation maximization based level set method

After obtaining the difference image X calculated by LSTDM, a change detector is
acquired to generate the resulting change map. Considering texture information is
regional, the threshold-based change detection methods are not completely suitable. In
recent years, level set based method is successively proved to be an effective
region-based change detection method (Bazi, Melgani, and Al-Sharari 2010; Hao et al.
2014). In this method, the selection of the initial contour is crucial to the result. To
this end, an expectation maximization based C-V model (EMCVM), is introduced to
generate the change map in this paper. In EMCVM, a suitable initial contour can be
generated by EM and morphology operation. The details are described in the
following sections.

2.2.1 Generation of the initial change map by EM

In this paper, it is assumed that the difference image X calculated by LSTDM can be
seen as a Gaussian mixture density distribution consisting of two density components
associated with changed and unchanged class, i.e.,

p(X)zp(X/Wl)P(W1)+ p(X/Wz)P(Wz) Q)
Where p(X), p(X/W,) and p(X/W,) are the probability density functions of
the difference image X, changed pixels W, and unchanged pixelsW,, and p(Wl)
and p(Wz) are the a priori probabilities of changed pixels and unchanged pixels,

respectively. The probability density functions p(X IW, ) , where K e (l, 2), can be
calculated by Gaussian model.
Stepl. Initialize the means g, , variance o and a priori probabilityP(Wk). The

initial value of the estimates can be determined by exploiting the intrinsic
characteristics of the difference image obtained with the LSTDM. A k-means cluster
algorithm was utilized to obtain the initial changed and unchanged pixels. The value

of i, , o/ and P(Wk) can then be computed from the classified pixels and

regarded as the initial values to EM.
Step2. Expectation step. Equation (5) is used to evaluate the posterior probability

P(W, /%) with (6), as follows:
P(W,)p(x /W,)
P(x)
Here, 1<i<MN and X isthe ith pixel of the difference image.
Step 3. Maximization step. Re-estimate the parameters using the following equations.

P(W, /%)=

(6)

MN
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Pt+1 (Wk ) — i=1 MN (7)
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where the superscripts t and t+1 are the current and next iterations, respectively. The
parameters are estimated by the steps above, and then checked for convergence. If the
convergence criterion is not satisfied, repeat steps 2 and 3 until convergence is
achieved.

Step 4. Get the initial change map. On the basis of the estimates of the statistical terms
obtained by the EM algorithm, the optimum threshold value can be estimated by
solving the following equation with respect to the variable X . In the end, using the
threshold method, the initial change map can be generated.

P(W,) B p(X /W,)

= (10)
PW,) p(X/W,)

2.2.2 Morphology operation

Despite the effectiveness of the EM method, it is not completely reasonable that the
EM method is developed under the assumption that pixel values are independent of
one another. For this reason, there are still many errors presented inside and outside
the change map. To improve the performance, two morphology operations are applied
in this paper.

(1) Morphological opening operation: This operation is a filter based on geometric
operation, which can remove isolated points. Using this operation, errors outside the
changed class can be removed.

(2) Morphological closing operation: This operation is a filter by filling the image
concave, which can be used to fill the hole in the image. Using this operation, those
holes inside changed class can be filled. In this way, a much better initial contour is
obtained.

2.2.3 Generation of the final change map by level set

The changed pixels in the difference image can be seen as the object and extracted by

finding an optimal contour C by the energy functional E (C) given as,

E(C) = J.I(C)|Xi _C1|2dXdy+_[o(c)|Xi _Cz|2dXdy+V|C| (11)

where C is the evolving contour, |(C) represents the area inside the evolving

contour and can be seen as changed pixels, O(C) denotes the area outside the

evolving contour and can be regarded as unchanged pixels, X, denotes the ith pixel



value of the difference image, ¢, and C, denote the mean value of inside and

outside the evolving contour respectively.
To solve the minimal partition problem, the level set method is utilized. In the level

set method, ) represents the image domain and the curve C is represented by the
zero level set of Lipchitz function ¢, such that

(x,y)eQ:p(x,y)>0,if (x,y)el(C)
(x,y)eQ:p(x,y)=0,if (x,y)eC (12)

(x,y)eQ:p(x,y)<0,if (x,y)eO(C).

The energy function can be described using level set function ¢ instead of unknown
variable C, and (11) can be written as

E(p)= .UXi —c1|2H (go)dxdy+jg|xi —cz|2 (1-H (¢))dxdy
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where V¢ means the gradient of ¢, H ((0) denotes the Heaviside function and

formulated as follows,
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On the basis of the above, the next steps are implemented iteratively until the optimal

@ 1s obtained.

Stepl. Initialize ¢" by the contour created by EM and morphology operation step,
n=0.
Step2. Compute cl(go”) and Cz(go”). Keep ¢ fixed, the energy functional is

minimized with respect to ¢, and C,, and they can be generated by

.o J'Q xH (o) dxdy )
LH (@) dxdy
(1-H dxd
Z:J.QXI< (w)) xdy (16)
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Step3. Solve the partial differential equation (PDE) in ¢ from (17), to obtain ¢"*.
Keep ¢, and ¢, fixed, the PDE with respectto ¢ is given as follows,

%—gto =3, ((p)[vdiv(V(p/W(pD—(Xi —Cl)2 +(x —Cz)z] a7

Check whether the solution is stationary. If not, n=n+1 and repeat step 2 and step 3.
In this way, the final result change map can be obtained.



3 Experiments and results

To evaluate the performance of the proposed change detection method, two temporal
VHR remote sensing image data sets were tested. For quantitative evaluation, the
change maps generated by the two data sets are respectively compared with the
ground truth images, which were produced by manual digitization, using three
evaluation indices.

(1) Miss detection N is the number of unchanged pixels in the change detection
result, which were classified in the changed class in the ground truth image. The miss
detection rate Pv can be formulated as PM=Nm/N., where N is the total number of
changed pixels counted in the ground truth image.

(2) False Alarm Nr is the number of changed pixels in the change detection result,
which were classified in the unchanged class in the ground truth image. The false
alarm rate Pr can be formulated as Pr= Nr /N,, where N, is the total number of
unchanged pixels counted in the ground truth image.

(3) Total Error MNV; is the number of incorrectly detected pixels, which include miss
detection and false alarm. The total error rate Pr can be formulated as Pr= (NmtNy)/
(NetNu).

In order to verify the effectiveness of the proposed method, it is compared with the
state-of-the-art methods, such as fuzzy C-means (FCM) (Ghosh, Mishra, and Ghosh
2011), expectation maximization (EM) (Bruzzone and Prieto 2000), markov random
field (MRF) (Bruzzone and Prieto 2000), C-V model (Chan and Vese 2001) and
expectation maximization based level set (EMLS) (Hao et al. 2014), respectively. The
parameter values used in the experiments are given as follows: the size of the window
is 3x3 for GLCM, =3 for LSTDM, v =0.1 and the step At=0.1 for level set.

3.1 Feature selection

Because it is not a truth that “the more features integrated, the better the performance”,
and different features’ contribution for change detection are inconsistent. Feature
selection is needed in LSTDM. In order to further explore the impacts of different
features, we arranged and built different feature-fusion data sets, performed change
detection using the proposed method to analyse and compare the experimental results.
With the same training samples and same parameters, different feature sets were
tested, and the corresponding overall accuracy as shown in Fig. 3.

Insert Fig. 3 here.

From the results in Fig. 3, some observations can be concluded: the mean texture
feature have the most accurate performance among eight features; as the mean,
homogeneity, entropy and second moment features are the first four texture features in
change detection. Therefore, the four texture features were used in LSTDM to obtain
the texture difference image.



3.2 Experiment 1

The first data set used in the experiments includes two VHR images of size 508x508
pixels acquired by Satellite Probatoire d’Observation de la Terre 5 (SPOTS5) collected
on the city of Tianjin province of China on April 2008 and February 2009,
respectively, and they were generated by fusing panchromatic and multispectral
images, which had three bands. The spatial resolution of this data set is 2.5 m. the
ground truth of the change detection map shown in Fig. 4(c) was manually created
based on the input images shown in Fig. 4(a) and Fig. 4(b).

Insert Fig. 4 here.

First, the GLCM features including mean, homogeneity, entropy and second moment
were extracted, Then LSTDM was applied to obtain the texture difference image. To
compare with LSTDM, the traditional difference image was generated by CVA using
the spectral information from the first data set. The histograms of the two difference
images are shown in Fig. 5. As can be seen from Fig. 5(a), the separation between the
changed and unchanged classes is not very clear. This makes it difficult to partition
the difference image into two such classes. On the other hand, one can observe two
peaks in Fig. 5(b), and they are far apart from each other. This makes it much easier to
separate the difference image into two classes for conducting the change detection.

Insert Fig. 5 here.

The modified C-V model was utilized to detect changes from the difference image of
LSTDM at the basis of the generation of initial contour, which was obtained by EM
method and morphology operation. The change map generated by proposed method
was shown in Fig. 6(f). Fig. 6(a)-(e) show the change maps resulted from FCM, EM,
MREF, C-V, EMLS, respectively.

Insert Fig. 6 here.

As shown in Fig. 6(a) and (b), EM and FCM method produce much “salt and pepper”
noise without considering contextual information as presented in the A region of Fig.
6(a) and 6(b). MRF method decrease such influence while another problem, namely
over-smooth, and was introduced simultaneously as shown in Fig.6 (c). C-V model
not only yields more homogenous regions but preserves detailed change information
while MRF produces over-smooth result as shown in the B region of Fig. 6(c) and
6(d). However, a suitable initial contour should to be prepared in C-V model. EMLS
also have the advantage with C-V model, but it is sensitive with the changed and
unchanged class centres. As shown in the C region of Fig. 6, the proposed method can
preserve detailed change information and decrease over-smooth without pre-setting
initial contour. The reason is that LSTDM includes more abundant detailed
information and the modified C-V model can generate more accurate change map.
Table 1 presents the accuracy comparisons of N, Nr and N; among FCM, EM, MRF,
C-V, EMLS and proposed method. It is found that the proposed method generates the
most accurate result than other methods, because LSTDM include more detailed



information by integrate texture features and the modified region based C-V model
can identify the changed and unchanged class accurately.

Insert table 1 here.

3.3 Experiment 2

The second data set contains two VHR images (778%544 pixels) of the city of Wuhan,
China, which were acquired on April 1, 2002 (Fig. 7(a)) and July 16, 2009 (Fig. 7(b))
by the QuickBird satellite. The instrument’s pixel resolution is 2.4 m. The ground
truth map shown in Fig. 7(c) was manually created based on the input images.

Insert Fig. 7 here.

On the basis of the above, four texture features (mean, homogeneity, entropy and
second moment) were generated by GLCM. Then LSTDM was applied to obtain the
texture difference image. To demonstrate the LSTDM outstanding performance for
change detection to other measures, the traditional difference image was generated by
CVA using the spectral information of the data set. Histograms of the difference
images resulted from two test images are shown in Fig. 8. As can be seen from Fig.
8(a), the grey value distribution of the CVA difference image is not balanced.
Therefore, it is difficult to separate the changed and unchanged classes. On the
contrary, the grey value distribution of LSTDM shown in Fig. 8(b) obeys a Mixed
Gaussian distribution. This makes it much easier to separate the difference image into
two classes for conducting the change detection.

Insert Fig. 8 here.

The EM method and morphological operation were applied to generate the initial
contour for the next step. Then the modified C-V model was utilized to detect changes
in the difference image generated by LSTDM. The change map generated by
proposed method was shown in Fig. 9(f). Fig. 9(a)-(e) show the change maps resulted
from FCM, EM, MREF, C-V, EMLS, respectively.

Insert Fig. 9 here.

Fig. 9(a)-(c) present the change maps of three pixel-based change detection methods,
namely EM, FCM and MRF. The first two methods produce much “salt and pepper”
noise (as shown in the A region of Fig.9) without considering contextual information,
and the third method can get better result by utilizing neighbourhood information. As
shown in the B region of Fig. 9(c)-(e), C-V model and EMLS preserve detailed
change information by gather more homogenous regions and avoid over-smooth
results at the same time. However, the selection of initial contour has an important
effect on the performance of C-V model. The result generated by EMLS is sensitive to
the changed and unchanged class centres. In this paper, the proposed method not only
preserves detailed information, but decreases over-smooth phenomenon without



pre-setting initial contour (as shown in the C region of Fig.9). The reason is that more
abundant texture information was generated by LSTDM and more accurate change
map can be obtained by the modified C-V model. Table 2 presents the accuracy
comparisons of false alarm, missed detection and total error between FCM, EM, MRF,
C-V, EMLS and proposed method. It is found that the proposed method generates the
most accurate result among methods used in this study, because LSTDM include more
detailed information by integrate texture features and the modified region based C-V
model can identify the changed and unchanged class accurately.

Insert table 2 here.

4 Conclusion

In this paper, an unsupervised change detection method based on GLCM texture
features was proposed and applied to VHR remote sensing images. The proposed
algorithm utilized LSTDM to obtain the difference image. The EMACM then used to
generate the final change map. Experimental results showed that the proposed method
can sufficiently increase the robustness with respect to noise and spectral similarity,
and it can obtain the highest accuracy compared with EM, FCM, MRF, C-V model
and EMLS.

Even through the proposed method can produce more accurate change detection result,
there are still some works need to be deeply researched. In this paper, the GLCM
texture information was applied only. Hence, other texture extraction methods should
be utilized, and fusion based methods is worth to research.
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Fig. 1. General scheme of the proposed approach.
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0 170 340 510 680 0 170 340 510 68(
- —— _— - _—

(a) (b) (c)
Fig. 4. SPOTS5 data set used in experiment 1.

(a) (b)
Fig. 5. Histograms of the difference images which resulted from two test images of
experiment 1. (a) Difference image generated by CVA. (b) Difference image
generated by LSTDM.

(d) (e) ¢y
Fig. 6. Change detection results of data set 1 obtained by (a) FCM, (b) EM, (c) MRF,
(d) C-V, (e) EMLS, (f) proposed.
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Fig. 7. QuickBird data set used in experiment 2.

(a) (b)
Fig. 8. Histograms of the difference images which resulted from two test images of
experiment 2. (a) Difference image generated by CVA. (b) Difference image
generated by LSTDM.

(@ ©
Fig. 9. Change detection results of data set 2 obtained by (a) FCM, (b) EM, (c) MRF,
(d) C-V, (e) EMLS, (f) proposed.



Table 1. Quantitative change detection results for the data set 1.

False Alarms | Miss Detections | Total Errors
Method

pixels Pr (%) | pixels Pwm (%) | pixels Pr (%)
FCM 37907 19.21 11745 19.35 49652 19.24
EM 39732 20.13 11345 18.69 51077 19.79
MRF 28096 14.24 14788 2436 42884 16.62
C-v 25541 12.94 12761 21.02 38302 14.84
EMLS 36444 18.47 10558 17.39 47002 18.21
Proposed 20784 10.53 11392 18.76 32176 12.47

Table 2. Quantitative change detection results for the data set 2.

False Alarms | Miss Detections | Total Errors

Method
pixels Pr (%) | pixels Pwm (%) | pixels Pr (%)
FCM 41463 10.22 3559 20.27 45022 10.64
EM 30576 7.54 4054 23.09 34630 8.18
MRF 22210 5.47 4771 27.17 26981 6.37
C-v 31276 7.71 3394 1933 34670 8.19
EMLS 30302 7.47 4091 2330 34393 8.13
Proposed 16963 418 4421 25.18 21384 5.05






