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In this paper, an unsupervised change detection method is proposed by using 

texture difference information for very-high-resolution (VHR) remote 

sensing images. First, a new local similarity based texture difference measure 

(LSTDM) is defined by using gray level co-occurrence matrix (GLCM). A 

mathematical analysis shows that LSTDM is robust with respect to noise and 

spectral similarity. Then, the unsupervised change detection problem in VHR 

remote sensing images is formulated as minimizing an energy function 

related with changed and unchanged classes in the difference image. A 

modified expectation maximization based active contour model is applied to 

the difference image for separating the changed and unchanged regions. 

Finally, two different experiments were performed with SPOT5 images and 

QuickBird images and compared with some state-of-the-art unsupervised 

change detection methods to evaluate the effectiveness of the proposed 

method. The results indicate that the proposed method can sufficiently 

increase the robustness with respect to noise and spectral similarity and 

obtain the highest accuracy among methods in this paper. 

1 Introduction 

Change detection is a process that identifies the changes occurred on the Earth surface 

by jointly observing two (or more) images acquired on the same geographical area at 

different times (Bruzzone and Prieto 2000; Lu et al. 2004; Bruzzone and Bovolo 

2013). Recently, it is more convenient to obtain a series of multi-temporal optical 

satellite images with the development of remote sensing techniques. Under this 

background, land cover change detection from remote sensing images has been 

becoming an attractive research topic. 

In the past few decades, a variety of change detection methods have been proposed. 

According to the existence of ground truth in the interesting area, the change detection 

approaches can be divided into supervised approach and unsupervised approach. Due 

to the ground truth is difficult to obtain and cost too much, the unsupervised approach 

has been more widely researched. In this paper, we focus on the unsupervised change 

detection methods. In order to separate changed pixels from unchanged pixels in the 

difference image, the most popular unsupervised change detection method is a 

thresholding technique (Prieto and Fernandez 2000; Bazi, Bruzzone, and Melgani 

2005; He et al. 2014) for its simplicity and availability. Additionally, in order to obtain 

more accurate change detection result, some literatures proposed automatic analysis 

and other new techniques for the difference image instead of a thresholding method, 
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such as support vector machine (Bovolo, Bruzzone, and Marconcini 2008), wavelet 

transform (Bovolo and Bruzzone 2005; Celik and Ma 2011), fuzzy c-means (Ghosh, 

Mishra, and Ghosh 2011), etc. 

The emergence of very high resolution (VHR) remote sensing image and the rapid 

increase in computational capabilities over the last decade have challenged the 

traditional change detection methods (Hussain et al. 2013), such as geo-referencing 

accuracy, larger reflectance variability in each class and different acquisition 

characteristics, due to VHR images include a more valuable and abundant information. 

The large volume of information presented in VHR images often results in much more 

unnecessary change detections than other kinds of images, which is known as the “salt 

and pepper” effect. Furthermore, the potential accuracy of traditional change detection 

methods would be also reduced by such characteristics of VHR. In the last years, 

some novel approaches have been developed which take the relationship between 

spatially adjacent pixels into account. Spatial-context information can be modelled by 

fixed-shape neighborhood systems for the texture information extraction(Bruzzone 

and Bovolo 2013). Under the extraction, texture-information-based change detection 

method is proved to be useful in several studies (Smits and Annoni 2000; He et al. 

2011; Klaric et al. 2013; Li and Leung 2002). Though texture information is 

commonly robust in its change detection performance, the existing texture difference 

measure is not completely suitable since most of the difference measures are 

pixel-wised and different texture features have the same weights. Therefore, the 

texture-based algorithm needs to be researched deeply and a more efficient texture 

difference measure should be presented. 

To address the aforementioned problem, a novel unsupervised change detection 

approach is proposed by utilizing local-similarity-based texture difference measure 

(LSTDM) in this paper. In LSTDM, a local similarity between two temporal gray 

level co-occurrence matrix (GLCM) (Haralick, Shanmugam, and Dinstein 1973) 

texture images is defined to identify the changes. In addition, the coefficient of 

variation method (Liu 2015) is applied to define the weight among different GLCM 

texture features. In order to generate a more accurate resulting change map, the 

unsupervised change detection problem in VHR remote sensing images is formulated 

as minimizing an energy function related with changed and unchanged classes in the 

difference image. A modified expectation maximization based Chan-Vese active 

contour model (C-V) (Chan and Vese 2001) is applied to the difference image for 

separating the changed and unchanged regions. As shown in Fig. 1, the proposed 

approach is made up three blocks as follows. First, the GLCM texture features are 

extracted from multitemporal VHR remote sensing images, respectively. Then, the 

difference image was generated based on LSTDM. Finally, a modified 

expectation-maximization-based C-V model is applied to obtain the final change map. 

 

Insert Fig.1 here. 

 

2 Proposed change detection approach 

Let X1 and X2 be two VHR remote sensing images acquired in same geographical area 

at times t1 and t2, which have been co-registered and radiometrically corrected and 

have the same size of M×N. 



2.1 Local similarity based texture difference measure 

In previous research, a distance between two GLCM texture image pixels was applied 

as the difference measure (Smits and Annoni 2000) and it was proved to be robust for 

misregistration. However, the distance-based texture difference measure is a 

pixel-based method and ignores the spatial relationship of texture features. As shown 

in Fig. 2(a) and 2(b), two texture image chips were acquired at times t1 and t2 

respectively. The target pixel is labelled by P. In the previous texture difference 

measure, the pixel P will be directly classified as unchanged pixels. However, the 

change detection result is not completely reasonable because the two temporal texture 

image chips are not coincident as can be seen in Fig. 2. In addition to the 

aforementioned problem, it is not completely reasonable that the different texture 

feature has the same weight. 

 

Insert Fig. 2 here. 

 

To address the two problems, LSTDM is proposed in this paper. First, a local 

similarity measure between two temporal GLCM texture image chips is defined. This 

measure translates the difference of the target pixel P at times t1 and t2 into the 

similarity of the pixels in its neighbours (as shown in the square frame of Fig. 2). The 

local similarity measure, which represented by  1 2,fS t t , can be formulated as 
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In which,  1 2,fd t t  denotes the Euclidean distance of the local texture feature at 

times t1 and t2,  ,f u v  is the feature value at the position  ,u v , and   means the 

3×3 neighborhood centered at P. n presents the number of pixels in the neighbours.  

Then, in order to discriminate the contribution of different texture features, the 

coefficient of variation method is utilized. This method has already proved effectively 

in weight determination (Liu 2015). The weight of the feature f , which represented 

by Wf , can be calculated using the following equation,  
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where fV  denotes the coefficient of variation of feature f , f  and f  are the 

mean value and the variance of feature f , respectively. 

Finally, LSTDM, which represented by  1 2,D t t , can be formulated as  
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where F is the total number of the GLCM features extracted in VHR images. 

2.2 Expectation maximization based level set method 

After obtaining the difference image X calculated by LSTDM, a change detector is 

acquired to generate the resulting change map. Considering texture information is 

regional, the threshold-based change detection methods are not completely suitable. In 

recent years, level set based method is successively proved to be an effective 

region-based change detection method (Bazi, Melgani, and Al-Sharari 2010; Hao et al. 

2014). In this method, the selection of the initial contour is crucial to the result. To 

this end, an expectation maximization based C-V model (EMCVM), is introduced to 

generate the change map in this paper. In EMCVM, a suitable initial contour can be 

generated by EM and morphology operation. The details are described in the 

following sections. 

2.2.1 Generation of the initial change map by EM 

In this paper, it is assumed that the difference image X calculated by LSTDM can be 

seen as a Gaussian mixture density distribution consisting of two density components 

associated with changed and unchanged class, i.e., 

          1 1 2 2/ /p X p X W P W p X W P W    (5) 

Where  p X ,  1/p X W  and  2/p X W  are the probability density functions of 

the difference image X, changed pixels 1W  and unchanged pixels 2W , and  1p W  

and  2p W  are the a priori probabilities of changed pixels and unchanged pixels, 

respectively. The probability density functions  / kp X W , where  1,2k , can be 

calculated by Gaussian model. 

Step1. Initialize the means k , variance 2

k  and a priori probability  kP W . The 

initial value of the estimates can be determined by exploiting the intrinsic 

characteristics of the difference image obtained with the LSTDM. A k-means cluster 

algorithm was utilized to obtain the initial changed and unchanged pixels. The value 

of k , 2

k  and  kP W  can then be computed from the classified pixels and 

regarded as the initial values to EM. 

Step2. Expectation step. Equation (5) is used to evaluate the posterior probability 

 /k iP W x  with (6), as follows: 
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Here, 1 i MN   and ix  is the i th pixel of the difference image. 

Step 3. Maximization step. Re-estimate the parameters using the following equations. 
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where the superscripts t and t+1 are the current and next iterations, respectively. The 

parameters are estimated by the steps above, and then checked for convergence. If the 

convergence criterion is not satisfied, repeat steps 2 and 3 until convergence is 

achieved. 

Step 4. Get the initial change map. On the basis of the estimates of the statistical terms 

obtained by the EM algorithm, the optimum threshold value can be estimated by 

solving the following equation with respect to the variable X . In the end, using the 

threshold method, the initial change map can be generated. 

 
 

 

 

 
1 2

2 1

/

/

P W p X W

P W p X W
   (10) 

 

2.2.2 Morphology operation 

Despite the effectiveness of the EM method, it is not completely reasonable that the 

EM method is developed under the assumption that pixel values are independent of 

one another. For this reason, there are still many errors presented inside and outside 

the change map. To improve the performance, two morphology operations are applied 

in this paper. 

(1) Morphological opening operation: This operation is a filter based on geometric 

operation, which can remove isolated points. Using this operation, errors outside the 

changed class can be removed. 

(2) Morphological closing operation: This operation is a filter by filling the image 

concave, which can be used to fill the hole in the image. Using this operation, those 

holes inside changed class can be filled. In this way, a much better initial contour is 

obtained. 

2.2.3 Generation of the final change map by level set 

The changed pixels in the difference image can be seen as the object and extracted by 

finding an optimal contour C  by the energy functional  E C  given as, 
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where C  is the evolving contour,  I C  represents the area inside the evolving 

contour and can be seen as changed pixels,  O C  denotes the area outside the 

evolving contour and can be regarded as unchanged pixels, ix  denotes the i th pixel 



value of the difference image, 1c  and 2c  denote the mean value of inside and 

outside the evolving contour respectively. 

To solve the minimal partition problem, the level set method is utilized. In the level 

set method,   represents the image domain and the curve C  is represented by the 

zero level set of Lipchitz function  , such that 
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The energy function can be described using level set function   instead of unknown 

variable C , and (11) can be written as 
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where   means the gradient of  ,  H   denotes the Heaviside function and 

formulated as follows, 
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On the basis of the above, the next steps are implemented iteratively until the optimal 

  is obtained. 

Step1. Initialize 
n  by the contour created by EM and morphology operation step, 

n=0. 

Step2. Compute  1

nc   and  2

nc  . Keep   fixed, the energy functional is 

minimized with respect to 1c  and 2c , and they can be generated by 

 

 
 

 
1

ix H dxdy
c

H dxdy













  (15) 

 

 
  

  
2

1

1

ix H dxdy
c

H dxdy

















  (16) 

Step3. Solve the partial differential equation (PDE) in   from (17), to obtain 
1n 
. 

Keep 1c  and 2c  fixed, the PDE with respect to   is given as follows, 
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Check whether the solution is stationary. If not, n=n+1 and repeat step 2 and step 3. 

In this way, the final result change map can be obtained. 



3 Experiments and results 

To evaluate the performance of the proposed change detection method, two temporal 

VHR remote sensing image data sets were tested. For quantitative evaluation, the 

change maps generated by the two data sets are respectively compared with the 

ground truth images, which were produced by manual digitization, using three 

evaluation indices. 

(1) Miss detection Nm is the number of unchanged pixels in the change detection 

result, which were classified in the changed class in the ground truth image. The miss 

detection rate PM can be formulated as PM=Nm/Nc, where Nc is the total number of 

changed pixels counted in the ground truth image. 

(2) False Alarm Nf is the number of changed pixels in the change detection result, 

which were classified in the unchanged class in the ground truth image. The false 

alarm rate PF can be formulated as PF= Nf /Nu, where Nu is the total number of 

unchanged pixels counted in the ground truth image. 

(3) Total Error Nt is the number of incorrectly detected pixels, which include miss 

detection and false alarm. The total error rate PT can be formulated as PT= (Nm+Nf)/ 

(Nc+Nu). 

In order to verify the effectiveness of the proposed method, it is compared with the 

state-of-the-art methods, such as fuzzy C-means (FCM) (Ghosh, Mishra, and Ghosh 

2011), expectation maximization (EM) (Bruzzone and Prieto 2000), markov random 

field (MRF) (Bruzzone and Prieto 2000), C-V model (Chan and Vese 2001) and 

expectation maximization based level set (EMLS) (Hao et al. 2014), respectively. The 

parameter values used in the experiments are given as follows: the size of the window 

is 3×3 for GLCM,  =3 for LSTDM,  =0.1 and the step t =0.1 for level set. 

3.1 Feature selection 

Because it is not a truth that “the more features integrated, the better the performance”, 

and different features’ contribution for change detection are inconsistent. Feature 

selection is needed in LSTDM. In order to further explore the impacts of different 

features, we arranged and built different feature-fusion data sets, performed change 

detection using the proposed method to analyse and compare the experimental results. 

With the same training samples and same parameters, different feature sets were 

tested, and the corresponding overall accuracy as shown in Fig. 3. 

 

Insert Fig. 3 here. 

 

From the results in Fig. 3, some observations can be concluded: the mean texture 

feature have the most accurate performance among eight features; as the mean, 

homogeneity, entropy and second moment features are the first four texture features in 

change detection. Therefore, the four texture features were used in LSTDM to obtain 

the texture difference image. 



3.2 Experiment 1 

The first data set used in the experiments includes two VHR images of size 508×508 

pixels acquired by Satellite Probatoire d’Observation de la Terre 5 (SPOT5) collected 

on the city of Tianjin province of China on April 2008 and February 2009, 

respectively, and they were generated by fusing panchromatic and multispectral 

images, which had three bands. The spatial resolution of this data set is 2.5 m. the 

ground truth of the change detection map shown in Fig. 4(c) was manually created 

based on the input images shown in Fig. 4(a) and Fig. 4(b). 

 

Insert Fig. 4 here. 

 

First, the GLCM features including mean, homogeneity, entropy and second moment 

were extracted, Then LSTDM was applied to obtain the texture difference image. To 

compare with LSTDM, the traditional difference image was generated by CVA using 

the spectral information from the first data set. The histograms of the two difference 

images are shown in Fig. 5. As can be seen from Fig. 5(a), the separation between the 

changed and unchanged classes is not very clear. This makes it difficult to partition 

the difference image into two such classes. On the other hand, one can observe two 

peaks in Fig. 5(b), and they are far apart from each other. This makes it much easier to 

separate the difference image into two classes for conducting the change detection. 

 

Insert Fig. 5 here. 

 

The modified C-V model was utilized to detect changes from the difference image of 

LSTDM at the basis of the generation of initial contour, which was obtained by EM 

method and morphology operation. The change map generated by proposed method 

was shown in Fig. 6(f). Fig. 6(a)-(e) show the change maps resulted from FCM, EM, 

MRF, C-V, EMLS, respectively. 

 

Insert Fig. 6 here. 

 

As shown in Fig. 6(a) and (b), EM and FCM method produce much “salt and pepper” 

noise without considering contextual information as presented in the A region of Fig. 

6(a) and 6(b). MRF method decrease such influence while another problem, namely 

over-smooth, and was introduced simultaneously as shown in Fig.6 (c). C-V model 

not only yields more homogenous regions but preserves detailed change information 

while MRF produces over-smooth result as shown in the B region of Fig. 6(c) and 

6(d). However, a suitable initial contour should to be prepared in C-V model. EMLS 

also have the advantage with C-V model, but it is sensitive with the changed and 

unchanged class centres. As shown in the C region of Fig. 6, the proposed method can 

preserve detailed change information and decrease over-smooth without pre-setting 

initial contour. The reason is that LSTDM includes more abundant detailed 

information and the modified C-V model can generate more accurate change map. 

Table 1 presents the accuracy comparisons of Nm, Nf and Nt among FCM, EM, MRF, 

C-V, EMLS and proposed method. It is found that the proposed method generates the 

most accurate result than other methods, because LSTDM include more detailed 



information by integrate texture features and the modified region based C-V model 

can identify the changed and unchanged class accurately. 

 

Insert table 1 here. 

 

3.3 Experiment 2 

The second data set contains two VHR images (778×544 pixels) of the city of Wuhan, 

China, which were acquired on April 1, 2002 (Fig. 7(a)) and July 16, 2009 (Fig. 7(b)) 

by the QuickBird satellite. The instrument’s pixel resolution is 2.4 m. The ground 

truth map shown in Fig. 7(c) was manually created based on the input images. 

 

Insert Fig. 7 here. 

 

On the basis of the above, four texture features (mean, homogeneity, entropy and 

second moment) were generated by GLCM. Then LSTDM was applied to obtain the 

texture difference image. To demonstrate the LSTDM outstanding performance for 

change detection to other measures, the traditional difference image was generated by 

CVA using the spectral information of the data set. Histograms of the difference 

images resulted from two test images are shown in Fig. 8. As can be seen from Fig. 

8(a), the grey value distribution of the CVA difference image is not balanced. 

Therefore, it is difficult to separate the changed and unchanged classes. On the 

contrary, the grey value distribution of LSTDM shown in Fig. 8(b) obeys a Mixed 

Gaussian distribution. This makes it much easier to separate the difference image into 

two classes for conducting the change detection. 

 

Insert Fig. 8 here. 

 

The EM method and morphological operation were applied to generate the initial 

contour for the next step. Then the modified C-V model was utilized to detect changes 

in the difference image generated by LSTDM. The change map generated by 

proposed method was shown in Fig. 9(f). Fig. 9(a)-(e) show the change maps resulted 

from FCM, EM, MRF, C-V, EMLS, respectively. 

 

Insert Fig. 9 here. 

 

Fig. 9(a)-(c) present the change maps of three pixel-based change detection methods, 

namely EM, FCM and MRF. The first two methods produce much “salt and pepper” 

noise (as shown in the A region of Fig.9) without considering contextual information, 

and the third method can get better result by utilizing neighbourhood information. As 

shown in the B region of Fig. 9(c)-(e), C-V model and EMLS preserve detailed 

change information by gather more homogenous regions and avoid over-smooth 

results at the same time. However, the selection of initial contour has an important 

effect on the performance of C-V model. The result generated by EMLS is sensitive to 

the changed and unchanged class centres. In this paper, the proposed method not only 

preserves detailed information, but decreases over-smooth phenomenon without 



pre-setting initial contour (as shown in the C region of Fig.9). The reason is that more 

abundant texture information was generated by LSTDM and more accurate change 

map can be obtained by the modified C-V model. Table 2 presents the accuracy 

comparisons of false alarm, missed detection and total error between FCM, EM, MRF, 

C-V, EMLS and proposed method. It is found that the proposed method generates the 

most accurate result among methods used in this study, because LSTDM include more 

detailed information by integrate texture features and the modified region based C-V 

model can identify the changed and unchanged class accurately. 

 

Insert table 2 here. 

 

4 Conclusion 

In this paper, an unsupervised change detection method based on GLCM texture 

features was proposed and applied to VHR remote sensing images. The proposed 

algorithm utilized LSTDM to obtain the difference image. The EMACM then used to 

generate the final change map. Experimental results showed that the proposed method 

can sufficiently increase the robustness with respect to noise and spectral similarity, 

and it can obtain the highest accuracy compared with EM, FCM, MRF, C-V model 

and EMLS. 

Even through the proposed method can produce more accurate change detection result, 

there are still some works need to be deeply researched. In this paper, the GLCM 

texture information was applied only. Hence, other texture extraction methods should 

be utilized, and fusion based methods is worth to research. 
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Fig. 1. General scheme of the proposed approach. 
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(a) (b) 

Fig. 2. Two temporal texture image chips. 

 

 
Fig. 3. The line chart of total accuracy of different texture features. 
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(a) (b) (c) 

Fig. 4. SPOT5 data set used in experiment 1. 

 

  

(a) (b) 

Fig. 5. Histograms of the difference images which resulted from two test images of 

experiment 1. (a) Difference image generated by CVA. (b) Difference image 

generated by LSTDM. 
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(d) (e) (f) 

Fig. 6. Change detection results of data set 1 obtained by (a) FCM, (b) EM, (c) MRF, 

(d) C-V, (e) EMLS, (f) proposed. 

 



   

(a) (b) (c) 

Fig. 7. QuickBird data set used in experiment 2. 

 

  

(a) (b) 

Fig. 8. Histograms of the difference images which resulted from two test images of 

experiment 2. (a) Difference image generated by CVA. (b) Difference image 

generated by LSTDM. 
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(d) (e) (f) 

Fig. 9. Change detection results of data set 2 obtained by (a) FCM, (b) EM, (c) MRF, 

(d) C-V, (e) EMLS, (f) proposed. 



 

Table 1. Quantitative change detection results for the data set 1. 

Method 
False Alarms Miss Detections Total Errors 

pixels PF (%) pixels PM (%) pixels PT (%) 

FCM 37907 19.21 11745 19.35 49652 19.24 

EM 39732 20.13 11345 18.69 51077 19.79 

MRF 28096 14.24 14788 24.36 42884 16.62 

C-V 25541 12.94 12761 21.02 38302 14.84 

EMLS 36444 18.47 10558 17.39 47002 18.21 

Proposed 20784 10.53 11392 18.76 32176 12.47 

 

Table 2. Quantitative change detection results for the data set 2. 

Method 
False Alarms Miss Detections Total Errors 

pixels PF (%) pixels PM (%) pixels PT (%) 

FCM 41463 10.22 3559 20.27 45022 10.64 

EM 30576 7.54 4054 23.09 34630 8.18 

MRF 22210 5.47 4771 27.17 26981 6.37 

C-V 31276 7.71 3394 19.33 34670 8.19 

EMLS 30302 7.47 4091 23.30 34393 8.13 

Proposed 16963 4.18 4421 25.18 21384 5.05 

 




