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Abstract: Rapid urbanization has resulted in a great amount of anthropogenic heat emissions, which 14 

is closely related to economic growth, human health, and micro-climate. The lack of long-term 15 

anthropogenic heat emissions estimation data is of great concern to climate and urban fluxes 16 

research. This study estimated annual average anthropogenic heat fluxes in Beijing-Tianjin-Hebei 17 

region of China between 1995 and 2015 based on the multi-sources of remote sensing images and 18 

ancillary data. The anthropogenic heat emissions from different sources (including industries, 19 

buildings, traffics and human metabolism) were also estimated to analyze the composition of 20 

anthropogenic heat fluxes. And the spatiotemporal dynamics of the long-term AHF with high spatial 21 

resolution (500-m) were estimated by the Refined Anthropogenic Heat Flux model and then 22 

analyzed using trend analysis and standard deviation ellipse analysis. The results showed that values 23 

in the region increased significantly from 0.15 W·m-2 in 1995 to 1.46 W·m-2 in 2015. The heat 24 

emissions from industries, traffics, buildings and human metabolism accounted for 64.1%, 17.0%, 25 

15.5% and 3.4% of the total anthropogenic heat emissions, respectively. Industrial energy 26 

consumption was the dominant contributor to the anthropogenic heat emissions in the region. 27 

During this period, the industrial heat emissions presented unstable variation, but overall showed a 28 

growing trend. Heat emissions from the buildings had increased linearly. The spatial distribution 29 
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was extended with an increasing tendency of the difference between the maximum and the minimum, 30 

and it was generally dominated by the "northeast-southwest" directional pattern. Based on the 31 

aforementioned results, the spatiotemporal distribution patterns and trends of anthropogenic heat 32 

fluxes could provide vital support on management decision in city planning and environmental 33 

monitoring. 34 

 35 
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1 Introduction 38 

Anthropogenic heat is the heat released to the atmosphere as a result of human activities. 39 

Sources of anthropogenic heat include industrial activities, heating and cooling of buildings, human 40 

metabolism, and vehicle exhausts (American Meteorological Society, 2018). Urbanization and 41 

economic development in China has been accelerating over the past 30 years which draws 42 

increasing attentions of scientific community (Bai et al., 2014). The amount of energy consumed 43 

has considerably increased with population growth and economic growth, and almost all the energy 44 

consumption for human activities can eventually transform into anthropogenic heat fluxes (Taha, 45 

1997, Feng et al., 2014). In the statistics of International Energy Agency (IEA), China’s energy 46 

consumption increased from 1,045 million tonnes oil equivalent (Mtoe) (in 1995) to 2,976 Mtoe (in 47 

2015) (IEA 2016). The increasing human activities release more and more anthropogenic heat to the 48 

atmosphere with the rapid urbanization. Urbanization and anthropogenic heat are crossly-interacted, 49 

e.g. growth of population, increased energy consumption for economy, and expansion of built-up 50 

areas would lead to a growth of anthropogenic heat emissions (Feng et al., 2012; Iamarino et al., 51 

2012; Wong et al., 2015). At the same time, the anthropogenic heat released into the atmosphere 52 

have important implications on urbanization by affecting city micro-climate, human health, and air 53 

quality (Block et al., 2004; Xie et al., 2016; Nie et al., 2017). As such, anthropogenic heat is a 54 

representative urban energy forcing, and is playing an important role as input into weather/climate 55 

models. Anthropogenic heat flux (AHF) is defined as a measurement of the heat released into the 56 

environment by human activities, i.e., anthropogenic heat emissions generated per unit time and 57 



3 

area (Taha, 1997). Hence, accurate and reliable estimation of AHF is a need for meteorological 58 

modeling, heat-related public health study, and thus characterizing of spatiotemporal dynamics of 59 

AHF is crucial for understanding both the impacts and mechanisms of AHF, and its interactions with 60 

urbanization. 61 

Previous studies have estimated AHF at different scales, such as block scale (Kłysik, 1996; 62 

Zhao et al., 2011; Sun et al., 2018), city scale (Hamilton et al., 2009; Hu et al., 2012; Lee et al., 63 

2015), regional scale (Lindberg et al., 2013; Lu et al., 2016; Koralegedara et al., 2016) and global 64 

scale (Flanner, 2009; Allen et al., 2011; Yang et al., 2017). For the AHF estimation at regional scale 65 

or global scale, the top-down inventory-based methods are the most useful and frequently used 66 

method (Sailor et al., 2004; Sailor et al., 2011). Energy consumption data used in this method always 67 

collected at administrative units. Thus, to estimate AHF at a finer scale, aggregated spatial 68 

information is used, such as population density, pollutant emissions and nighttime light (NTL) data. 69 

For example, Lindberg and Grimmond (2013) estimated the AHF in Europe between 1995 and 2015 70 

based on population density data. Dong et al. (2017) used a population dataset adjusted by NTL data 71 

to estimate global AHF with a high spatial resolution of 30 arc-seconds. In addition, in order to 72 

simplify the estimation method, regression analysis was always adopted (Chen et al., 2012; Lee et 73 

al., 2014; Koralegedara et al., 2016). 74 

The Refined Anthropogenic Heat Flux (RAHF) model is another method to simulate the annual 75 

average gridded AHF based on a new generation Suomi-NPP VIIRS NTL data and a top-down 76 

inventory-based method (Chen and Hu, 2017). Compared with existing global AHF datasets of 77 

Flanner (2009) and the large scale urban energy consumption model (LUCY) developed by Allen 78 

et al. (2011), the AHF results of RAHF model have significant merits in the representation of spatial 79 

details. The results of this model can depict the spatial details of AHF in administrative units. NTL 80 

data is one of the spatial proxy data of socioeconomic statistics and energy consumption data (Li et 81 

al., 2012; Li et al., 2013; Coscieme et al., 2014; Zhou et al., 2015). It can detect low intensity light 82 

emitted by the residents and has a unique superiority in the monitoring of human activities at 83 

nighttime. In this paper, in order to estimate and model the long-term AHF, DMSP/OLS NTL data 84 

were adopted and used in RAHF model since the new generation NTL data were only available 85 

since 2012. However, there are some discrepancies between DMSP/OLS NTL data and Suomi-NPP 86 
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VIIRS NTL data due to different satellite platforms (Elvidge et al., 2013; Shi et al., 2014). 87 

Consequently, to obtain continuous and comparable long-term annual average AHF, we need to 88 

minimize the discontinuity effect between years caused by different platforms/sensors. 89 

Despite the numerous estimation of AHF in different cities, there is a lack of research on AHF 90 

in Beijing-Tianjin-Hebei (BTH) region at high spatial resolution, and covers a study period for a 91 

decade (Hu et al., 2012; Wang et al., 2016; Sun et al., 2018). Some historical studies and research 92 

projects have focused on the influence of anthropogenic heat on the urban environment and 93 

development (Ichinose et al., 1999; Sailor et al., 2004; Narumi et al., 2009; Chrysoulakis et al., 94 

2018). The impact of anthropogenic heat emission comes from the continuous evolution of human 95 

activities in both time and space. Therefore, the analysis of urban environment and development 96 

also requires the evolution process of anthropogenic heat from two dimensions of “time” and 97 

“space”. BTH region is the capital economic region in China. Under the political importance of 98 

BTH region, the spatial-temporal distribution of AHF in this region can provide auxiliary 99 

information for decision-making of city planning and environmental monitoring. However, existing 100 

literature and study in this topic of BTH region is still sparse and rudimentary (Nie et al., 2014). 101 

Therefore, it is essential to conduct a comprehensive study by investigating the long-term 102 

spatiotemporal dynamics of AHF in this region. 103 

The main objectives of this study are (1) to calculate the anthropogenic heat emissions during 104 

the past two decades based on prefectural-level statistics and to analyze the composition of 105 

anthropogenic heat emissions in BTH region; (2) to estimate the long-term AHF using RAHF model 106 

and multi-source remote sensing data, and then parameterize pixel-based AHF between 1995 and 107 

2015; (3) to evaluate spatiotemporal dynamics of AHF in BTH region using trend analysis and 108 

standard deviation ellipse analysis for providing holistic information related to urban heat island 109 

study. 110 

2 Study area and Data 111 

2.1 Study area 112 

The Beijing-Tianjin-Hebei region (BTH region) was selected as the study area, due to a long 113 
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winter period, thus lots of energy such as coal and natural gas were consumed during winters. 114 

Meanwhile, energy consumption used for heating in winters and cooling in summers account for 115 

about 19% of energy demand in China (Wang, 2002). The BTH region is an economic development 116 

center in the northern China, includes Beijing municipality, Tianjin municipality and eleven 117 

prefecture-level cities of Hebei Province (Fig. 1(a)). 118 

In 2015, the resident population (RP) of BTH region was about 110 million people, and the 119 

regional GDP was about 6.94 trillion yuan (Fig. 1(b), (c)). The total energy consumption was about 120 

445.08 million tons of standard coal. The anthropogenic heat is mainly from the heat discharges of 121 

automobile exhaust emissions, the energy consumption of industrial production, and the various 122 

energy consumptions of buildings (e.g., winter heating and summer air-conditioning/refrigeration). 123 

2.2 Data 124 

The socioeconomic data and energy consumption data for energy-consumption inventory 125 

approach were collected from the China Statistical Yearbooks, China Energy Statistical Yearbooks 126 

and corresponding City Statistical Yearbooks, including GDP of the three industries (GDPⅠ, GDPⅡ, 127 

GDPⅢ), RP, acreage, and the amount of civil automobile at provincial and prefectural level and so 128 

on. Considering the availability of data in BTH region and the energy-consumption inventory, we 129 

sorted out the index needed and estimated the missing individual data by the ratio of the same type 130 

of index using linear regression. In order to facilitate comparison and calculation, the physical 131 

quantity of energy was converted into energy standard consumption according to each energy type 132 

and the corresponding conversion factor (Council et al., 1999). 133 

MOD13A1 Level-3 16-day 500-m NDVI products from April 2000 to October 2015 were 134 

acquired from LAADS web. These products have been used to monitor the Earth’s terrestrial 135 

photosynthetic vegetation activity in many other studies (Anderson et al., 2005; Tomar et al., 2014; 136 

Hajiloo et al., 2018). The quality control was performed based on the QC subset of NDVI images. 137 

The annual composites nighttime light (NTL) data were used to detect spatiotemporal dynamics of 138 

AHF in this study. A summary and the source of data used in this study are illustrated in 139 

supplementary materials (S1). 140 
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3 Methodology 141 

3.1 Estimating prefectural-level heat emissions from different sources 142 

According to the emission sources of anthropogenic heat, anthropogenic heat emissions are 143 

divided into four major components: the energy consumption from industry (labeled as EI), 144 

buildings (EB), transportation (EV), and human metabolism (EM). Total anthropogenic emission (EF) 145 

is equal to the sum of the four parts: 146 

 EF = EI + EB + EV + EM (1) 147 

 EI
𝑖 =

GDP
Ⅱ
𝑖 +GDP

Ⅲ
𝑖

∑ (GDP
Ⅱ
𝑖 +GDP

Ⅲ
𝑖 )𝑛

𝑖=1

× EI × C (2) 148 

 EB
𝑖 = [

GDP
Ⅲ
𝑖

∑ (GDP
Ⅲ
𝑖 )𝑛

𝑖=1

× EBc +
RP𝑖

∑ (RP𝑖)
𝑛
𝑖=1

× EBr] × C (3) 149 

 EV
𝑖 = 𝑑 × FE × ρ × NHC × 𝑉𝑖 (4) 150 

 EM
𝑖 = (P1t1 + P2t2) × RP𝑖 × 3600 × 365 (5) 151 

EI
𝑖  is the industrial energy consumption of prefectural-level city i, the prefectural-level heat 152 

emission from industries is distributed based on the proportion of the second GDP (GDP
Ⅱ
𝑖 ) and third 153 

industrial GDP (GDP
Ⅲ
𝑖 ) of each city. RP represents the resident population. C is standard coal heat, 154 

equal to 29,306 kJ·kg-1; EBc, EBr are the energy consumption from residential and commercial 155 

buildings respectively. d is the annual average driving distance per vehicle (unit: km); FE is the 156 

combustion efficiency (unit: L·km-1); ρ is the combustion density (unit: kg·L-1); NHC is the net heat 157 

combustion (unit: kJ·g-1). V is the amount of civil automobile. P1, P2 are the metabolic rate of 158 

sleeping and active state respectively. t1, t2 are hours of sleeping (7:00~23:00) and active time 159 

(23:00~7:00) respectively. 160 

3.2 Parameterizing pixel-based AHF from nighttime light data  161 

RAHF model was used to obtain pixel-based AHF which can clearly demonstrate the spatial 162 

distribution of AHF. The details of RAHF model building can be found in supplementary materials 163 

(S3) (Chen and Hu, 2017). Using the strong correlation between annual mean AHF and mean human 164 
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settlement index (HSI), it introduces an effective approach for linking incomplete statistical socio-165 

economy data with NTL data (Lu et al., 2008). 166 

For a long-time series AHF parameterization, the difference between DMSP/OLS NTL data 167 

and Suomi-NPP VIIRS NTL data should be considered. Owing to the limitation of the OLS itself, 168 

there are always saturated in the center of the city where the light intensity is high. Saturation of 169 

NTL data limits the range difference in actual light intensity within the saturated region, which in 170 

turn affects the accuracy of AHF estimation. It is, therefore, worthwhile to diminish the saturation 171 

values so that the spatiotemporal dynamics of AHF can be modeled accurately. The Vegetation 172 

Adjusted NTL Urban Index (VANUI) proposed by Zhang et al (2013) was used to minimize the 173 

discontinuity effect between years and reduce the saturation effect of NTL data considering the 174 

highly negative correlation between vegetation and human activities. The formula is as follows: 175 

 VANUI = (1 − NDVI) × NTL𝑛𝑜𝑟 (6) 176 

which NDVI is the value between 0 to 1 of MOD13A1 NDVI product, and NTLnor is the normalized 177 

NTL data. 178 

Three main procedures were undertaken to derive time-series annual average AHF using the 179 

NTL data: firstly, estimating prefectural-level heat emissions based on statistical data, and the results 180 

were used as samples for RAHF modeling; secondly, inter-calibration the NTL data using the 181 

VANUI; and thirdly, estimating pixel-based AHF using the inter-calibrated NTL data and RAHF 182 

model. 183 

3.3 Evaluation of spatiotemporal dynamics of AHF 184 

3.3.1 Trend analysis of change in AHF 185 

Trend analysis is commonly used in temporal dynamic analysis to explore inter-annual 186 

variation characteristics. A linear slope analysis was used to evaluate the spatiotemporal dynamics 187 

of AHF between 1995 and 2015, which has been suggested as effective means to detect the trend in 188 

time-series data (He et al., 2012; Peng et al., 2016). The formula of the slope is listed below: 189 

 slope =
𝑛∗∑ 𝑖∗𝐴𝐻𝐹𝑖−(∑ 𝑖𝑛

𝑖=1 )(∑ 𝐴𝐻𝐹𝑖
𝑛
𝑖=1 )𝑛

𝑖=1

𝑛∗∑ 𝑖2−(∑ 𝑖𝑛
𝑖=1 )2𝑛

𝑖=1

 (7) 190 

where AHFi is the pixel-based AHF. n is the time span, and i is the time unit. A positive slope was 191 
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indicated that there was an increasing change trend in AHF. If the slope was near zero, the category 192 

was a stable type. A negative slope indicated an obvious decreasing trend in AHF. 193 

Then, the Natural Break method was applied to classify the spatial distribution of AHF 194 

differencing map. The map was classified into five grades: no-obvious-growth (<0.30 W·m-2), low-195 

growth (0.30-1.13 W·m-2), moderate-growth (1.13-2.41 W·m-2), relatively-high-growth (2.41-4.14 196 

W·m-2) and high-growth (4.14-5.65 W·m-2). The Natural Break method was selected and aimed to 197 

investigate statistical variations in different areas, and it provided the smallest variances between 198 

categories, without the influence of artificial factors (Brewer et al., 2015; Shi et al., 2016). 199 

3.3.2 Standard deviation ellipse analysis on the spatial pattern of AHF 200 

Standard Deviation Ellipse (SDE) is one of the classical methods for analyzing directional 201 

features of spatial distribution. It can express the main distribution direction of a set of points and 202 

the degree of dispersion in every direction; these two features are usually used to describe the overall 203 

characteristics of a geospatial distribution (Peng et al., 2016). In this study, SDE of pixel-based AHF 204 

results was utilized for characterizing the spatial pattern of AHF in BTH region. Some parameters 205 

are used to describe the characteristics of SDE, including deflection angle, radius of primary axis 206 

and auxiliary axis. The radius of primary and auxiliary axis reflects the concentrated density of the 207 

overall elements of the spatial pattern, and the declination angle reflects the dominant direction of 208 

the pattern. The formulas for these parameters are presented in the studies of David (1999) and 209 

Lauren et al. (2010). 210 

4 Results 211 

4.1 Heat emissions from different sources 212 

Anthropogenic heat emissions from different sources in the cities of BTH region from 1995 to 213 

2015 are shown in Fig. 2. It shows the anthropogenic heat emissions vary over time. The heat 214 

emissions from the industry were varied during the period between 1995 and 2015, but overall, the 215 

cities except Beijing municipality showed a growing trend. Industrial heat emissions were affected 216 

by the land use planning and the urban economic orientation. The heat emissions from industry in 217 

Beijing grew rapidly between 1995 and 2000, but it had gradually decreased since 2000, which was 218 
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closely related to the economic orientation of Beijing municipality in BTH region. Beijing issued a 219 

policy of industrial relocation to protect the environment and improve air quality in year 2006. The 220 

results show that Tianjin municipality, Tangshan and Shijiazhuang cities are the main sources of 221 

industrial heat emissions in BTH region. More details about the change of the heat emissions from 222 

different sources were shown in supplementary materials (S2). 223 

The anthropogenic heat emissions in 2015 were taken as an example to analyze the 224 

composition of anthropogenic heat emissions in BTH region. The results are shown in Fig. 3(a). 225 

The composition of anthropogenic heat emissions in other years were shown in supplementary 226 

materials (S2). From the overall perspective of BTH region, the heat emissions were mostly coming 227 

from industry, followed by the traffic and building heat emissions, and finally the human metabolic 228 

heat emissions. The heat emissions from industry, transportation, buildings and human metabolism 229 

accounted for 64.1%, 17.0%, 15.5% and 3.4% of the total anthropogenic heat emissions, 230 

respectively. The anthropogenic heat emissions in Hebei Province and Tianjin municipality were 231 

mainly from industry, and the anthropogenic heat emissions in Beijing municipality were mainly 232 

from buildings. Specifically, the anthropogenic heat emissions in Hebei Province, Beijing 233 

municipality, and Tianjin municipality were 9.96×1018 J, 1.68×1018 J, and 2.38×1018 J respectively. 234 

The heat emissions from industry, buildings, transportation and human metabolism were 235 

summed up in order to obtain the total amount of anthropogenic heat emissions of the 236 

cities/municipalities in BTH region, as shown in Fig. 3(b). The total anthropogenic heat emission in 237 

BTH region increased steadily during this period, from 3.78×1018 J in 1995 to 1.4×1019 J in 2015. 238 

The results show that the anthropogenic heat emissions in Tianjin municipality and the cities of 239 

Hebei Province showed an overall growth trend, while for the anthropogenic heat emissions in 240 

Beijing municipality, except for the rapid growth in 1995-2000, its growth rate had gradually 241 

decreased since 2000. The change of anthropogenic heat emission is largely influenced by the 242 

development policy of the city and the development of technology to improve energy 243 

consumption efficiency. 244 

4.2 Time-series AHF parameterization results 245 

The spatial and temporal distribution of AHF in BTH region between 1995 and 2015 were 246 
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modeled using the method described in Section 3.2. The statistical regression relationships between 247 

the average HSI and the AHF of the districts and counties of Beijing and Tianjin municipalities from 248 

1995 to 2015 are shown in supplementary materials (S4). RAHF model is a mature method to 249 

estimate AHF in BTH region (Chen and Hu, 2017). It is based on the official statistics, and the 250 

estimation accuracy of RAHF model has been verified in two aspects. One is for the prefectural-251 

scale AHF estimation modelling. The other one is for the grid-scale AHF results. Therefore, the 252 

long-term spatiotemporal analysis of AHF in this study is based on the belief that the AHF results 253 

estimated by the RAHF model are credible. The comparison between RAHF results and other AHF 254 

products is shown in supplementary materials (S5). 255 

The pixel-based AHF results at 500-m resolution of BTH region in 1995, 2000, 2005, 2010 256 

and 2015 were shown in Fig. 4. It can be seen that the AHF was gradually increasing and the high 257 

value range of AHF was also increasing over the past two decades. The areas with high AHF values 258 

were situated in city centers and the spatial extents of AHF was also spread over the past two decades 259 

with an increasing tendency of the difference between the maximum and the minimum. In order to 260 

quantitatively analyze the changes, the mean, maximum and standard deviations of AHF were 261 

calculated, and more details are provided in supplementary materials (S6). 262 

4.3 Spatial dynamics of AHF between 1995 and 2015 263 

Fig. 5 plots the spatial distribution and areal percentage of five grades of AHF growth in BTH 264 

region from 1995 to 2015. During the past two decades, the AHF growth rate shows a decreasing 265 

trend from urban areas to suburbs. The high-growth category of AHF growth was concentrated in 266 

each city center of BTH region, especially in airports, central business districts and industrial areas. 267 

These places are also the regions of high AHF value at each time node (Fig. 4). The growth of AHF 268 

was concentrated in 50.13% of the total area of BTH region, with no-obvious-growth, low-growth, 269 

moderate-growth, relatively-high-growth, and high-growth accounting for 47.59%, 1.51%, 0.54%, 270 

0.26%, and 0.24% of the total area, respectively (Fig. 5(b)). 271 

Fig. 5(c) illustrates the areal percentage of each AHF type in Beijing, Tianjin and Hebei. The 272 

no-obvious-growth type was concentrated in suburban and mountainous area, accounting for 273 

60.89%, 63.52% and 82.33% of each area of Beijing, Tianjin and Hebei respectively. Of the total 274 
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area of Beijing, the low, medium and relatively-high types account for 20.45%, 9.82%, and 5.26%, 275 

respectively. The growth pattern of Tianjin is similar to that of Beijing. But, it should be pointed out 276 

that the high-growth grade was mainly located in Tianjin, covering 5.28% of its total area. In 277 

addition, Hebei was dominated by no-obvious-growth type (>80%). The AHF growth of the cities 278 

in Hebei Province is relatively slow. In summary, the spatiotemporal variations of AHF were mainly 279 

identified in Beijing and Tianjin municipalities, with no-obvious variations of AHF found in the 280 

cities of Hebei Province. 281 

The distribution of mass center and motion trajectory of AHF in BTH region are shown in the 282 

lower right corner of Fig. 6. From 1995 to 2015, the mass center was located between Beijing and 283 

Tianjin municipalities. The motion trajectory was gradually shifted to the southeast from the south 284 

of Beijing municipality, and then shifted to the northeast since 2010. It indicates that the AHF in the 285 

southeast increased rapidly in the early stage and later in the northeast, but overall was shifted to 286 

eastward, which means that the AHF in the east of BTH region increased rapidly during this period. 287 

In addition, the magnitude of the mass center movement during 2000 to 2010 is significantly greater 288 

than that during the other time period. The change of AHF has obvious directionality during 2000 289 

to 2010, while the change of AHF was multidirectional in other periods. The relevant parameters of 290 

the standard deviation ellipse of each year are shown in supplementary materials (S7). 291 

5 Discussion 292 

5.1 Implications of long-term AHF results for environmental application  293 

Many past studies have already studied the effects of single-period AHF on urban heat island 294 

(UHI), air pollution, shallow groundwater temperatures and urban climate (Narumi et al., 2009; Nie 295 

et al., 2014; Boehme et al., 2015; Du et al., 2016; Yang et al., 2016; Benz et al., 2018; Adelia et al., 296 

2019). AHF may influence the form and intensity of urban heat island by modifying the urban 297 

boundary layer structure through increased turbulence (Chow et al., 2014). The distribution of AHF 298 

in time and space is determining the local and overall contribution to the UHI (Kato et al., 2005). 299 

Current micrometeorological models (including urban canyons), which assume certain levels of 300 

homogeneity and wind phenomena in the planetary boundary layer (PBL), might not be applicable 301 

in tropical and high-dense cities. The long-term AHF results enable UHI research to identify critical 302 
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grid cells in simulations and could be applied for better accuracy (Boehme et al., 2015). AHF is 303 

considered as an important component of the urban representation in numeric weather prediction 304 

models and should be carefully accounted for when considering the urban surface energy balance. 305 

Long-time AHF spatial distribution results can provide evidence of the significance of AHF in urban 306 

environment and suggestions for improvement of urban module in numeric weather prediction 307 

models and to detect its effects on air quality. 308 

The rapid increase of urbanization in China means an expansion of the built-up area, an 309 

increase in the population and a growth of the economic demand. The urbanization in BTH region 310 

between 1995 and 2015 was described in supplementary materials (S8). Anthropogenic heat is one 311 

of the products of urbanization. It is the heat released into the earth system in the form of external 312 

energy, which affects climate change, human health, urban water resources and air quality, and have 313 

an important impact on urban development. Conversely, continued urbanization associated with 314 

increasing energy demanding accelerates the switch to modern fuels, the rise in appliance and 315 

vehicle use, and demand for construction materials (International Energy Agency, 2017). The 316 

accelerating urbanization and the increasing frequency of human activities also influence 317 

anthropogenic heat emissions. Understanding the leading causes of the increase of anthropogenic 318 

heat emission during urbanization is helpful to propose solutions for AHF mitigation and design 319 

administrative functions for policy makers.  320 

Theoretically, the growth of population, economy and built-up area inevitably lead to more 321 

anthropogenic heat. There is a positive correlation between them. But in fact, the results show that 322 

there is no absolute positive relationship between AHF and economic level, built-up area except for 323 

the relationship between population and AHF. Higher economic levels do not correspond to more 324 

anthropogenic heat emissions (Fig. 1, Table S4). It is related to the new low-energy, low-emission 325 

industries that have been conducted in some cities. These new energy-saving measures effectively 326 

control the generation of anthropogenic heat and also create economic value for cities. Beijing is a 327 

typical example with high economic level, but the AHF is not the highest in BTH region (Fig. 3(b)). 328 

The built-up area of Beijing increased from 477 km2 in 1995 to 1401 km2 in 2015. Among this, 329 

the built-up area increased greatly from 2000 to 2005, but the increase of anthropogenic heat 330 

emissions during the corresponding period was not the most intense (Fig. 3(b)). In contrast, the 331 
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growth of built-up area in 1995-2000 was slower, while the increase of anthropogenic heat emissions 332 

during the corresponding period was most dramatic. It can be seen that although the increase of 333 

built-up area has a certain promoting effect on anthropogenic heat emissions, it is not the main cause 334 

of the change of anthropogenic heat emissions, however the human activities occurring within the 335 

city are the main causes of the increase of anthropogenic heat emissions.  336 

The spatial distribution is mainly consistent with the expansion direction of built-up areas. This 337 

finding is consistent with previous studies (Lu et al., 2016; Dong et al., 2017). Another finding from 338 

the long-term AHF results is that anthropogenic heat emissions are mainly affected by the 339 

population size and the intensity of human activities such as industrial production, residential life 340 

and transportation within the city. Starting from the urbanization that has a positive effect on 341 

anthropogenic heat emissions, it can effectively control anthropogenic heat emissions from the 342 

aspects of improving efficiency of industrial energy use and household appliance, advocating the 343 

concept of energy conservation and emission reduction, developing renewable energy and clean 344 

energy technologies. 345 

5.2 Limitations and prospects 346 

Several studies investigated the characteristics of AHF at various spatiotemporal scales 347 

(Flanner, 2009; Allen et al., 2011; Yang et al., 2017). It is found that the AHF varies with the spatial 348 

scales, and the value increases with the increasing spatial resolution (Zhou et al., 2012; Chen and 349 

Hu, 2017). To ensure the continuity and comparability between the spatiotemporal AHF results, the 350 

VAHUI index was used to eliminate the difference of the spatial resolution and detection ability 351 

between the nighttime light data from different sensors. However, the AHF in 2015 is much larger 352 

than the rest of the year. The main reason for this growth is the increase in energy consumption 353 

and heat emissions from various sources, but for pixel-based AHF results, another reason is the 354 

significant improvement in spatial resolution, which has increased from approximately 1000m 355 

to 500m. 356 

Long-term AHF spatial distribution results can provide support for application research in 357 

many local areas, there are also some studies on regional spatiotemporal characteristics of AHF 358 

around the world at present (Iamarino et al., 2012; Nie et al., 2014; Koralegedara et al., 2016; Benz 359 

et al., 2018). However, due to the differences of regional data statistics and estimation methods, the 360 
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results are not absolutely comparable, which increases the difficulty of large-scale environmental 361 

research. Therefore, in the future, it is necessary to consider the construction of comparability 362 

methods for AHF results, such the local climate zone (LZC) established in UHI for easy comparison 363 

(Stewart et al., 2012). And in studying the impact of AHI on UHI, it is meaningful to obtain 364 

comparable AHI products for UHI research. 365 

6 Conclusions 366 

To have thoroughly understanding of variation of anthropogenic heat is essential for city 367 

planning, environmental monitoring and climatic research. The 500-m resolution grid-scale AHF 368 

over BTH region in the year 1995, 2000, 2005, 2010 and 2015 were estimated based on RAHF 369 

model. And the spatiotemporal distribution characteristics of AHF in BTH region were analyzed for 370 

the first time. The following conclusions can be drawn: 371 

(1) The anthropogenic heat emissions continued to increase in most areas of BTH region from 372 

1995 to 2015, and the AHF increased significantly from 0.15 W·m-2 in 1995 to 1.46 W·m-373 

2 in 2015. 374 

(2) During this period, the industrial heat emissions presented unstable variation, but overall 375 

showed a growing trend. Heat emissions from the buildings had increased linearly. 376 

(3) Industrial energy consumption was identified as the dominant contributor. In 2015, the 377 

heat emissions from industries, traffics, buildings and human metabolism accounted 378 

for 64.1%, 17.0%, 15.5% and 3.4% of the total anthropogenic heat emissions, 379 

respectively. 380 

(4) Spatial variability of AHF was obvious in BTH region. The spatial distribution was 381 

generally dominated by the "northeast-southwest" directional pattern. The areas with 382 

high AHF values were identified as city centers and the spatial extend of high AHF value 383 

was also expanding over the past two decades. 384 

Overall, this study has studied and showed the detailed characteristics of changes of AHF in 385 

BTH region in recent twenty years, and developed an approach to estimate long-term AHF at high 386 

spatial resolution for a large metropolitan area. These long-term aggregated AHF data can further 387 

be used for other study e.g. micro-climatic study, environmental monitoring project, and the data 388 
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can help to pinpoint the spatial areas of Urban Heat Island in the region. 389 
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 553 

Fig. 1. Spatial distribution and urbanization of study area (a) Location of Beijing-Tianjin-Hebei region (BTH 554 

region) in China; (b) Urbanization rate (UR) and resident population (RP) from 1995 to 2015; (c) Gross district 555 

product (GDP) and secondary and tertiary industries proportion (STIP) from 1995 to 2015. 556 

 557 

 558 

Fig. 2. Anthropogenic heat emissions from different sources of the cities/municipalities in BTH region from 1995 to 559 

2015. (a) Industrial heat emissions; (b) Building heat emissions; (c) Traffic heat emissions; (d) Human metabolic heat 560 
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emissions 561 

 562 

 563 

Fig. 3. Anthropogenic heat emissions and anthropogenic heat flux (AHF) of different sources in 2015 and the 564 

anthropogenic heat emissions between 1995 and 2015 in the cities of Beijing-Tianjin-Hebei region 565 

 566 

 567 

Fig. 4. The pixel-based anthropogenic heat flux (AHF) results between 1995 and 2015 in Beijing-Tianjin-Hebei 568 
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region. (a) 1995; (b) 2000; (c) 2005; (d) 2010; (e) 2015 569 

 570 

 571 

Fig. 5. Spatial distribution of anthropogenic heat flux (AHF) change and areal percentage of each AHF growth 572 

type between 1995 and 2015. (a) Change trend of AHF in Beijing-Tianjin-Hebei (BTH) region; (b) Areal 573 

percentage of no-obvious-growth, low-growth, moderate-growth, relatively-high-growth, and high-growth AHF in 574 

BTH region; (c) Areal percentage of 5 types of AHF growth in Beijing, Tianjin and Hebei. 575 

 576 
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 577 

Fig. 6. Spatial changes in the mass center (MC) and standard deviational ellipse (SDE) of anthropogenic heat flux 578 

in Beijing-Tianjin-Hebei region between 1995 and 2015. See text for index definitions. 579 




