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An Empirical Analysis of Public Transit Networks Using Smart Card 

Data in Beijing, China 

Most existing studies on public transit network (PTN) rely on either small-scale 

passenger flow data or small PTN, and only traditional network parameters are used to 

calculate the correlation coefficient. In this work, the real smart card data (SCD) (when 

passenger tap in and tap out a station) of over eight million users is used as a proxy of 

passenger flow to dynamically explore and evaluate the structure of large-scale PTNs 

with tens of thousands of stations in Beijing, China. Three types of large-scale PTNs 

are generated, and the overall network structure of PTNs are examined and found to 

follow heavy-tailed distributions (mostly power law). Further, three traditional 

centrality measures (i.e., degree, betweenness and closeness) are adopted and modified 

to dynamically explore the relationship between PTNs and passenger flow. Our findings 

show that, the modified centrality measures outperform the traditional centrality 

measures in estimating passenger flow. 

Keywords: Smart Card Data (SCD), Public transport systems, Network Centrality, 

Correlation analysis, Passenger Flow. 

1 Introduction 

With urbanisation accelerates, there are increasing challenges for the public transportation 

system (PTS), such as traffic congestion, air pollution and energy consumption. A high 

percentage of people in the city heavily relies on PTS, of which the efficiency plays an 

important role in people’s travel behaviour, especially in the developing areas such as China 

that associated with huge population migrated to cities (Si et al. 2016; Dimitrov & Ceder 2016; 

Shanmukhappa et al. 2018; T. Zhang et al. 2018; Yan et al. 2018). Public Transit Networks 

(PTNs), i.e., stations and lines of subway and bus, are one of the most important 

infrastructures in PTS, and a better understanding of the structure and efficiency of PTNs, in 

particular, its relationship with passenger flow, will potentially benefit decision-makers, 

transportation planners and related urban studies (Gao et al. 2013; Tang et al. 2013; Zhao et 

al. 2017). There are many existing studies dedicated to the analysis of PTNs from different 

perspectives, and one of the basic assumptions underlying most current work is the passenger 

flow can reveal and reconstruct the urban structure. Besides, the evolution of PTNs is strongly 

linked to the process of urbanisation, which can be delineated by the passenger flow on PTNs 

(Von Ferber et al. 2009; Xu et al. 2016; Zhang et al. 2016; H. Zhang et al. 2018). The complex 

network theory has been widely applied in different fields, such as social science work, and 

transportation is one of the most important applications (Scott 1988; Kim & Hastak 2018). 

Most existing studies on PTNs and its relationship between traffic flow can be generally 

characterized into two groups. In the first group, complex network theory is used to model 

PTN and examine the structure from the perspective of network analysis. For example, (Von 

Ferber et al. 2005) found that the degree distributions of the three PTNs of Berlin, Düsseldorf, 

and Paris demonstrated a power law distribution (scale-free network). (Sienkiewicz & Hołyst 

2005) carried out fundamental research to analyse the statistics of PTNs and investigated the 
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topology of the network structure based on space L and space P (refer to (Dimitrov & Ceder 

2016) for more detail). They analysed the clustering, assortative characteristics and 

betweenness of PTNs of 22 cities, each of which comprises bus stations from minimum 152 

to maximum 2,881. The assessment findings for the network topology indicate that the degree 

distribution in space L was followed a power law, while degree the distribution for space P 

was presented as an exponential function. Meanwhile, (Feng et al. 2016) examined directed 

and weighted bus transit networks from a view of complex networks. The empirical properties 

of the bus transit of Harbin were reported that the cumulative distributions of weighted degree, 

degree, number of routes that connect to each station, and node weight (peak-hour trips at a 

station) uniformly follow the exponential law. (Li et al. 2018) have evaluated the vulnerability 

of PTSs from the perspective of topological properties of the PTNs and attack tolerance. The 

abovementioned studies either suffers from small scale (e.g., 152 stations) or do not use real 

traffic flow to examine the relationship between the structure of PTNs.  

In the second group, the relationship between PTNs and passenger flow is examined. 

For instance, (Luo et al. 2019) conducted a regression models to reveal the correlative 

relationship between passenger flow distribution and the conventional network properties for 

the train system in Hague and Amsterdam cities. In Luo’s study, the conventional network 

centrality measures were computed based on two topologies of the network, namely, space L 

and space P. The conventional network centrality is based on the topology of the network 

only. However, one of the limitations is the passenger flow is collected based on survey data, 

which suffers from being small scale and not representative in terms of real passenger flow, 

this is all implicit in the low-frequency city. The high- and low-frequency are introduced in 

(Batty 2018). 

With the advent of GPS-enabled floating cars such as taxis and buses, the road traffic 

data become more wide coverage, which provides opportunities to evaluate and analyse the 

traffic flow (Kerner et al. 2005; Tang et al. 2015; Liu et al. 2018). Regarding the relationship 

between traffic flow and traffic network (mainly road network), there are many studies as 

well. There are many studies dedicated to examining the structure of traffic networks using 

different models, e.g., (Jiang et al. 2011; Mukherjee 2012; Tian et al. 2016; Wang et al. 2017). 

Further, the relationship between traffic flow and urban traffic network is explored (Kazerani 

& Winter 2009a; Kazerani & Winter 2009b; Ye et al. 2016). Among these studies, traffic flow 

is collected by several methods, including Annual Average Daily Traffic (AADT), street 

survey, video images, roadside detectors, and GPS trajectory data. Although the 

abovementioned studies focused on the road network instead of PTNs with fixed routes, the 

methods can be applied to PTNs in this study. For example, a regression model proposed by 

(Pun et al. 2019) by combining five centrality measures. Meanwhile, with the rapid 

development of technology and the emergence and use of smart cards in the payment of 

transportation fees, smart card data offers an unprecedented opportunity to analyse and 

evaluate passenger flow and to understand travel behaviour with high accuracy, as compared 

to data collected by surveying. Besides, the smart card data can be used to detect the 

movement of the passengers within the high-frequency city (Batty 2018). In the high-

frequency city, estimating and predicting the passenger flow is one of the most critical issues 

due to its crucial role in transportation planning and management.  

https://context.reverso.net/translation/english-arabic/Meanwhile
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We argue that, 1) most existing studies rely on either small-scale passenger flow data or small 

PTN; 2) only traditional network parameters (e.g., degree, betweenness, closeness, etc.) are 

used to calculate the correlation. In this study, the passenger flow is derived from smart card 

data (SCD) in Beijing, China. There are three types of PTNs are modelled in the study area: 

subway network, bus network, and the integration between subway and bus networks based 

on transfer relations that are called the PT network. Besides, the PTNs are modelled in two 

different representations, namely, station-based and line-based representations. It is worth to 

be noted that we used a large-scale network in comparison with previous studies (see Table1). 

The structure of the PTNs in the study area is examined from the perspective of a complex 

network. Then the correlation between passenger flow and the PTNs as mentioned earlier, are 

examined on an hourly basis using conventional centralities (degree, closeness, and 

betweenness) in the network analysis based on the topological properties. To better 

understand the high-frequency city, we proposed the modified centrality measurements 

considering both the topological and geometrical properties of PTNs to investigate further the 

relation between PTNs and passenger flow, of which the correlation analysis demonstrates 

acceptable performance. 

Table 1: An illustration of the element of the generated Networks 

Network Representation 

Type 

Network 

Element 

Subway System Bus System PT (Bus + Subway) 

System 

Station-based network Nodes 278 35674 35952 

Edges 700 903813 935551 

Line-based network Nodes 36 1574 1610 

Edges 428 281874 306422 

This paper is organized as follows. The overview of the methodological framework, network 

modelling and network analysis are presented in section 2. Section 3 describes the study area, 

experimental data, results and discussion, followed by the conclusion in the last section.  

2 Methodology 

In this study, three traditional and modified network centralities (degree, closeness and 

betweenness) for analysing the relationship between structural features of PTN and passenger 

flow are proposed as shown in Figure 1. 

The framework consists of three main stages, as follows: 

• Modelling Public Transit Network: The primary stage is to create networks from the PTN 

individually and collectively, namely bus system, subway system and the two systems 

together. Each PTN was modelled as station- and line-based network. 

• Analysis of network parameters: In this stage, both traditional and modified centrality 

measures of each network are computed for station- and line-based network of bus, subway 

and merged network.  

• Analysing passenger flow: In this stage, the passenger flow was computed based on the 

smart card data for each network and the relationship between PTN is analysed. 
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Figure 1:The adopted framework for network analysis 

2.1 Modelling Public Transit Networks 

In this paper, each of the PTNs is translated into a directed graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the 

set of vertices (nodes), and 𝐸 is the set of edges (links) as demonstrated in Figure 2. In the 

current work, considering the spatial and transfer attributes of the nodes, a graph 𝐺 is 

represented by 𝐺 = (𝑉(𝑋, 𝑌, 𝑇), 𝐸) where 𝑉 and 𝐸 are described as: 

 𝑉 = {𝑣𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖): 𝑖 = 1 , 2, . . . , 𝑝;  𝑥𝑖 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑦𝑖 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑡𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑒𝑑𝑔𝑒𝑠} 
  (1) 

 
𝐸 = {𝑒𝑖𝑘 → (𝑣𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖) , 𝑣𝑘(𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘)) ∀ (𝑣𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖) , 𝑣𝑘(𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘))  ∈ 𝑉: 𝑖 = 𝑘 = 1 , 2, . . . , 𝑝} 

  (2) 

Where 𝑝 is the number of nodes in the network. In the next term, 𝑣𝑖(𝑥𝑖, 𝑦𝑖, 𝑡𝑖) is represented 

as a particular node and determined by its longitude, latitude and number of transfer edges at 

the node. 𝑒𝑖𝑘 is a specified edge that connected two nodes 𝑣𝑖 and 𝑣𝑘.  

 

The transforming PTSs into the two representations of the graph described below in more 

detail. 

2.1.1 Station-based network’s structure 

In this network, the nodes represent the subway station, bus stops or both of them together in 

the subway network, bus network, subway with bus (PT) network respectively as shown in 

Figures 2B, 2C, 2D successively. This representation is only the L-space representation in the 

literature, but the name is different. 

 

Subway stations-based network’s structure 

As mentioned early, the nodes of the subway stations-based network are the subway stations. 

Further, the edges are located between every two successive nodes if they are on the same 
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line, called connected edges, and additional edges are linking each pair of different 

intersection lines of the transfer station, called within-station transfer edges. Figure 2C 

presents the corresponding subway stations-based network representations. So, this directed 

graph consisted of 278 nodes and 700 edges. 

Bus stations-based network’s structure 

This Network comprised of 35674 nodes and 903813 edges, where the nodes are the bus stops. 

The edges of this graph consisted of connected edges and foot transfer edges. Where the 

connected edge is a link exists between two nodes if they are on the same line. The foot 

transfer edge exists between two stops if the distance based on the walkable street network 

less than a bus threshold distance. The bus threshold distance is the maximum allowable 

walking distance for transferring between bus stops and equivalent to 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 walking 

time with assuming the walking speed 70 𝑚/𝑚𝑖𝑛 for transferring between bus stops. An 

example of this graph is shown in Figure 2B. 

PT stations-based network’s structure 

All of the subway stations and the bus stops are one of the basic units for the PT network, 

which are represented the nodes. The edges of this network comprised of connected edges, 

within-station transfer edges and foot transfer edges. All components of the edges of this 

graph are described above, but there is a little difference related to foot transfer edges. Since 

the density of subway station is considerably lower than bus stops, the threshold for 

transferring between subway stops and bus stops is equivalent to 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 walking time 

with assuming the walking speed 70 𝑚/𝑚𝑖𝑛 for transferring between bus stops. This directed 

graph consists of 35952 nodes and 935551 edges. A sample of this graph is given in Figure 

2D. 

2.1.2 Line-based network’s structure 

The representation of line-based network represents lines in each system as nodes and a 

relationship between lines as edges. This way, the transfer edge between lines establish links 

between the nodes. The corresponding line-based network representations are also shown in 

Figures 2E, 2F, 2G.  

Subway line-based network’s structure 

In the subway line-based network, the subway lines are considered the nodes. The edges are 

located between the lines that have a shared transfer station. This network comprises 36 nodes 

and 428 edges. This network is shown in Figure 2F. 

Bus line-based network’s structure 

This Network comprised of 1,574 nodes and 281,874 edges, where the nodes are the bus lines. 

The edges of this graph are links exist between two nodes if they have foot transfer edges. An 

example of this graph is illustrated in Figure 2E. 

PT line-based network’s structure 

All of the subway lines and the bus lines are represented the nodes. The edges of this network 

are links that exist between two nodes if they have foot transfer edges or common transfer 



6 

 

station. There are 1610 nodes and 306422 edges in this network. Figure 2G shows a sample 

of this network. 

 

 
Figure 2: Modelling the graphs based on different representations 

2.2 Analysis of the structure of PTNs 

In this section, the directed graph for each system is analysed with station-based network and 

line-based network representations for Beijing. An extensive discussion of both traditional 

and modified techniques for three of network parameters, namely degree, closeness and 

betweenness are given in this section. These centrality measures contribute to illustrate the 

fundamental properties of networks by characterising the relative importance of a node within 

the graph. These three centrality measures were selected because each of these measures gave 

different values that can be distinguished for all nodes compared to the other centrality 

measures (eigenvector, page rank, and clustering), which have a very slight difference in their 

values. Furthermore, the degree centrality represents the number of adjacent nodes, so it 

suitable to analyse the correlation between the degree centrality and the passenger flows. It is 

likely that the higher number of nearest stations the greater passenger flow. Moreover, the 

betweenness and closeness centrality measures are to express the proximity of a node to their 

counterparts so that it represents the shortest path. Thus, it is best suited to represent the 

transfer stations, which are also likely to attract more passengers. 

2.2.1 Traditional network centrality measures 

Centrality is essential to understand the structural properties of the public transit network. 

There are three widespread centrality measures, namely degree, betweenness, and closeness.  

Degree 

Degree centrality is the most basic yet crucial parameter in network analysis. Degree centrality 

is a local measure and is also called connectivity in space syntax (Huang et al. 2016). As 
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above mentioned, the network is represented as a connectivity graph 𝐺(𝑉, 𝐸). Let 𝑣𝑖 and 𝑣𝑘 

are any two nodes of 𝐺 . If 𝑣𝑖  and 𝑣𝑘  are connected by an edge directly, they considered 

adjacent. The number of edges adjacent to the node is indicated the degree centrality of the 

node. The nodes with higher degree are more central. The degree centrality of 𝑣𝑘 is defined 

by: 

𝑐𝐷(𝑣𝑘) = ∑𝑝
𝑖=1 𝑎(𝑣𝑖, 𝑣𝑘)         where  𝑎(𝑣𝑖, 𝑣𝑘) = {

1,   𝑖𝑓 𝑣𝑖 , 𝑣𝑘 𝑎𝑟𝑒 𝑎𝑑𝑎𝑗𝑐𝑒𝑛𝑡
0,   otherwise 

 (3) 

The maximum possible size of 𝑐𝐷(𝑣𝑘) is 𝑝 − 1 (Hage & Harary 1996). Therefore, a node’s 

degree centrality 𝑐𝐷
, (𝑣𝑘) is the ratio 

 𝑐𝐷
, (𝑣𝑘) =

∑
𝑝
𝑖=1 𝑎(𝑣𝑖,𝑣𝑘)

𝑝−1
 (4) 

Closeness 

Closeness centrality indicates the nearness of a node to all other nodes. The closeness is the 

sum of the lengths of the shortest paths between one node and all other nodes of a connected 

graph. The closeness centrality of 𝑣𝑘 is determined as follows:  

 𝑐𝐶(𝑣𝑘)−1 = ∑𝑝
𝑖=1 𝑑(𝑣𝑖, 𝑣𝑘) (5) 

Where 𝑑(𝑣𝑖, 𝑣𝑘)  is the shortest-path distance between 𝑣𝑖  and 𝑣𝑘 . As (Freeman 1978) 

indicates, the closeness measure is effectively a measure of inverse centrality, since it grows 

as nodes become more distant. (Beauchamp 1965) has already solved this problem; closeness 

is normalised by the sum of minimum possible distances 𝑝 − 1. Hence the closeness centrality 

of the node is defined by:  

 𝑐𝐶
, (𝑣𝑘) =

𝑝−1

∑
𝑝
𝑖=1

𝑑(𝑣𝑖,𝑣𝑘)
 (6) 

So, by implementing the Equation (6), higher values of closeness indicate higher centrality.  

Betweenness 

Betweenness centrality is one of the essential centrality measures for analysing network 

structure and defines as the sum of the fraction of all-pairs shortest paths that pass through 𝑣𝑘:  

 𝑐𝐵(𝑣𝑘) = ∑𝑠,𝑡∈𝑉
𝜎(𝑠,𝑡|𝑣𝑘)

𝜎(𝑠,𝑡)
 (7) 

Where 𝑠 is the source node, 𝑡 is the target node, 𝜎(𝑠, 𝑡) is the number of shortest (𝑠, 𝑡)-paths, 

and 𝜎(𝑠, 𝑡|𝑣) is the number of those paths passing through some node 𝑣𝑘 other than 𝑠, 𝑡. As 

all network is directed graph, the maximum possible betweenness value of a node, 𝑐𝐵(𝑣𝑘), is 

(𝑝 − 1)(𝑝 − 2) = 𝑝2 − 3𝑝 + 1 . The betweenness 𝑐𝐵
, (𝑣𝑘)  is the ratio of 𝑐𝐵(𝑣𝑘)  to this 

maximum expression, so that:  

 𝑐𝐵
, (𝑣𝑘) =

𝑐𝐵(𝑣𝑘)

𝑝2−3𝑝+1
 (8)  

Equations 4, 6, and 8 are used as a conventional technique for centrality measures. The 

conventional technique is used to capture the topological properties of PTNs only. 
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Furthermore, the topological and geometric attributes of the PTNs are considered in the 

developed modified technique for centrality measures. 

2.2.2 modified technique for centrality measures 

Modified centrality measures for station-based representation is developed and achieved by 

combining the conventional centrality measures and the transfer attribute related to a station 

(node). As for line-based representation, modified centrality measures are attained by 

integrating the conventional centrality measures and the transfer attribute attached to each line 

(node). Where the transfer attribute for both representations is the transfer edges at a node, 

refer to Equation 1. Because of the passenger flow is affected by the number of transfer edges 

that linked to the station (More transfer edges in the station, more people commute through 

this station), a modified centrality measure for 𝑣𝑘, 𝑐𝑣𝑘
𝑚𝑜𝑑, can be calculated using the following 

formula:  

 𝑐𝑣𝑘
𝑚𝑜𝑑 = 𝑐𝑣𝑘

𝑐𝑜𝑛𝑣 ∗ (𝑡𝑣𝑣𝑘)𝛼 (9) 

Where 𝑐𝑣𝑘
𝑐𝑜𝑛𝑣 is the conventional centrality measures, 𝑡𝑣𝑘

 is the number of transfer edges at a 

node 𝑣𝑘, and 𝛼 is an influencing factor. To obtain ideal value for 𝛼, the optimisation method 

proposed in (Zhao et al. 2017) is implemented. The objective function, which used in the 

optimisation method, is used to maximise the sum of correlation coefficients between 

centrality measures and the passenger flow at each time slot, where the day is divided to a 24-

time slot.  

3 Study area and data processing   

3.1 Study area 

The Beijing metropolitan region is a municipality situated in the north of China, as shown in 

Figure 3A. It is one of the most important capitals of countries in the world, one of the oldest 

countries in the world and one of the most important centres in the world in various disciplines 

at present. Beijing Municipality consists of 16 districts with an area of approximately 16,500 

(Figure 3B). The Population at the end of 2016, according to the Beijing Municipal Bureau 

of Statistics and NBS Survey Office in Beijing, is 21.72 million residents with a growth rate 

of 0.1% (Beijing Municipal Bureau of Statistics and NBS Survey Office in Beijing 2017). 

Thus, the density of the population exceeds 1,300 residents per square kilometre. Beijing is 

China’s largest hub of transportation. Its metropolitan and micropolitan regions have a well-

designed system of transport. A total of 8.25 billion commuters using Urban Public Transit in 

2016, a slight decrease of 2% compared with last year. Where 3.69 billion passengers were 

transported by Buses transit; Subway transit completed 3.66 billion passenger traffic, an 

increase of 10.2% on the same year (Beijing Transportation Research Centre 2017). In 2016, 

there were 18 operating lines for the subway network, 334 operating stations, 53 transfer 

stations, 554 kilometres of operating mileage, and 5,024 vehicles. Figure 3C shows the spatial 

distribution of subway system where the station points are coloured in dark green in a circular 

shape, and the subway lines are coloured in different colours, in which the label of each line 

are included in the figure. As for Bus Network, there were 876 operating lines in the city, 

which was the same as last year. The number of vehicles operated was 22,688 bus (Beijing 
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Transportation Research Centre 2017). (Figure 3D) describes the spatial distribution of stops 

and lines for public bus service respectively, in dark red in square shape and blue.  

 
Figure 3: Location of the study area (Beijing) within China (A), Beijing Metropolitan Area (B), Spatial Distribution of 

subway Network in Beijing (C), and Spatial Distribution of Bus Network in Beijing (D)   

3.2 Data processing 

In this work, a network dataset of the public transit system in Beijing (Subway and Bus) and 

Smart card Data (SCD) are used to identify the extent to which the passenger flows are 

affected by the centrality measures of the network. The Subway network is developing 

appreciably every year with the opening of several new stations when completed in recent 

years. In 2016, The subway system consisted of 18 lines, 278 operating stations. It should be 

noted that the stations at the intersection of multiple lines, stations are referred to as several 

nodes. For instance, station (Jiangoumen) is a transfer station between line 1 and line 2, so 

this station considered as two nodes in the PTNs. Thus, the number of subway stations become 

334 rather than 278 stations where there are 53 transfer stations. Beijing’s Bus network is one 

of the city’s largest, most used and cost-effective forms of urban and suburban transportation. 

In the used network dataset, the public bus service comprised of 803 and 1574 lines with 

considering and without considering the direction of travel respectively. Additionally, the bus 

system includes 42024 bus stations, considering that the transfer station represents the number 

of intersections, where the number of distinct stations is 35674. A sample of the available 

original and modified PTNs dataset is illustrated in Table 2 and Table 3 successively. The 

dataset includes the following main fields: 
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• DATASOURCE: The transit modes that passengers take where the AFC and DoubleIC 

indicate Subway and bus system respectively.  

• LINE: The unique number of Public transit lines.  

• DIR: The direction of travel (DOT) for Public transit line. In the original network 

dataset, there are three distinct value 0, 1, and 2, in which both 1 and 2 represent the 

going and returning direction in sequence for the bus network. However, at the same 

time, the DOT for the subway system is not defined; it was referred to as 0 as presented 

in Table 2. Therefore, the Dot of the subway was modified as existed in the bus network. 

The loop lines were taken into consideration in modifying the DOT, as shown in Table 

3.  

• STATION NAME: The station’s name.  

• STATIONNUM: The sequence number of stations per the direction of travel.  

• LAT: The latitude coordinates of stations.  

• LON: The longitude coordinates of stations.  

Table 2: A sample of original Beijing’s subway and bus network dataset 

 

Table 3: A sample of modified Beijing’s subway and bus network dataset 

 

Beijing Transportation Smart Card, known as Yikatong Card, was first issued on May 2006. 

It is a contactless smart card that can be applicable to almost all means of transport in the city 

of Beijing. Because of the smart cardholders could receive a high discount rate (i.e., 75% fare 

reductions for students and 50% fare reduction for regular passengers) and save time queuing 

at either ticket machines or ticket window, more than 90% of the ridership paid their trips by 

the smart card (Ma et al. 2017).  

The Public transit smart card records provide for one week from Monday, April 11 to 

Sunday, November 17, in 2016. In this week there are four weekdays and two days on the 

weekend. This week is the week after the Qingming Festival. Beijing transportation system 

has two types of AFC system, the flat fares and distance-based fare systems. Transit riders 

pay a fixed rate for flat fare by tapping their smart cards on the card reader when entering; 

only check-in scans are necessary. For the distance-based fare system, the commuters should 

DATASOURCE LINE DIR STATIONNAME STATIONNUM LAT LON 

AFC Line 1 0 Dongdan 17 116.4125 39.9070 

AFC Line 1 0 Jianguomen 18 116.4288 39.9072 

AFC Line 2 0 Jianguomen 9 116.4288 39.9072 

... ... ... ... ... ... ... 

DoubleIC 18 1 Anyuan Dongli 17 116.4046 39.9817 

DoubleIC 18 2 Anyuan Dongli 5 116.4052 39.9818 

DoubleIC 409 1 Anyuan Dongli 19 116.4046 39.9817 

DoubleIC 409 2 Anyuan Dongli 21 116.4052 39.9818 

DATASOURCE LINE DIR STATIONNAME STATIONNUM LAT LON 

AFC Line 1 1 Jianguomen 18 116.4288 39.9072 

AFC Line 1 2 Jianguomen 6 116.4288 39.9072 

AFC Line 2 1 Jianguomen 9 116.4288 39.9072 

AFC Line 2 2 Jianguomen 10 116.4288 39.9072 

... ... ... ... ... ... ... 

DoubleIC 18 1 Anyuan Dongli 17 116.4046 39.9817 

DoubleIC 18 2 Anyuan Dongli 5 116.4052 39.9818 
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tap their smart card when boarding and alighting (Ma et al. 2013). The flat fare system is 

generally used in the bus system, while most of the subway lines adopt the distance-based 

fare system (except for the Airport Line with a single fare of 25 RMB) (Zou et al. 2018). Table 

3 shows some examples of the provided smart card data. The smart card data involves the 

following main fields: 

• DATASOURCE: The transit modes that passengers take where the AFC and 

DoubleIC indicate Subway and bus system respectively.  

• LINE: The unique number of Public transit lines.  

• DIR: The direction of travel (DOT) for Public transit line, in which both 1 and 2 

represent the going and returning direction.  

• ON_TIME and OFF_TIME: The earliest and latest time of time slot.  

• ON_LON and ON_LAT: The longitude and latitude of the station that commuters 

swipe their smart cards when they are boarding (origin), respectively.  

• OFF_LON and OFF_LAT: The longitude and latitude of the station that commuters 

swipe their smart cards when they are alighting (Destination) respectively.  

• DUR: The average of the duration of the trip between the same OD stations in the 

same time slot.  

• NUM: The number of passengers who travelled from and to same OD stations in the 

same time slot (flow).  

4 Results and discussion 

4.1 Distribution of centrality measures 

Whereas normalised conventional centrality measures are determined in the station-based 

representation using Equation 4, 6, and 8, The modified centrality measures are measured 

based on Equation 9. 

        Figure 4 shows subplots for degree distribution in both representations. It can be seen 

that most of the distributions of modified degree fitted by a power law, in which most nodes 

have only a few links but, by contrast, there exist some nodes which are extremely linked. 

The bus network in line-based representation described by a Gaussian function, in which the 

parameters read as: 𝜇1 = 0.19, 𝜎1 = 0.19  and 𝜇2 = 0.08, 𝜎2 = 0.22 , respectively, for 

conventional and modified degree centrality. Furthermore, the distribution of conventional 

degree follows a Gaussian function for the subway network in both representation, and PT in 

the line-based representation. The parameters of each distribution exist in the legend of each 

plot. 
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Figure 4: Degree distribution for (A) and (D) subway network, (B) and (E) bus network, and (C) and (F) PT network. Plots 

(A), (B), and (C) show the distributions in station-based representation in semi-log scale while plots (D), (E), and (F) in line-

based representation in the linear scale 

The closeness distributions are depicted in Figure 5. It can be found that all the conventional 

closeness is presented as a Gaussian function, while the most of modified centrality can be 

described by a power law except for bus network in the line-based representation, with 

parameters 𝜇 = 0.13, 𝜎 = 0.20.  

 
Figure 5: Closeness distribution for (A) and (D) subway network, (B) and (E) bus network, and (C) and (F) PT network. 

Plots (A), (B), and (C) show the distributions in station-based representation in semi-log scale while plots (D), (E), and (F) 

in line-based representation in the linear scale 

Figure 6 illustrates with the exception of the conventional betweenness in the station-based 

representation, and the power law fit for all of both conventional and modified betweenness 

for the three networks in both representations. Values of the scaling parameter of power law 

are between 1.06 to 6.3. 
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Figure 6: Betweenness distribution for (A) and (D) subway network, (B) and (E) bus network, and (C) and (F) PT network. 

Plots (A), (B), and (C) show the distributions in station-based representation in semi-log scale while plots (D), (E), and (F) 

in line-based representation in the linear scale 

4.2 Passenger flow extraction 

In this study, the smart card data is used to analysis the passenger flow. As stated before, the 

day is separated into 24-time slots. The passenger flow is computed per each time slot at each 

node for all network at both representations. The total ingoing flow is calculated through a 

station by aggregating numbers of passenger who swipe their smart card when they are 

boarding, where the outgoing flow is attained in the same way. It is expected the incoming 

flow to be equal to the outgoing flow. The correlation between ingoing and outgoing flow is 

demonstrated in Figure 7. In Figure 7A, it is quite visible that the majority of subway stations 

are located along the fitted line, which its slope parameter 𝑎 = 1.01. The fitted line for the 

subway network is compatible with the stated expectation. 

           In contrast, the incoming flow and outgoing flow for bus stops are inconsistent with 

the expectation, as presented in Figure 7B. This inconsistent is explained by the fact that the 

density of bus stations is much larger than in the subway. Thus, it is normal for most 

passengers to use the same subway stations to travel a round-trip to their homes or work while 

the behaviour in the bus network may be different, where commuters can use different stations 

when returning from their work or home and vice versa. 

         The total passenger flows at each time slot are computed for the three PTSs. It should 

be noted that the total flow at both representations is equal. Hence the total flow for station-

based representation is demonstrated in Figure 8. It can be seen that the passenger flow is a 

regular and predictable periodic mobility routine in the level of 7 days, which reflects the 

regular human activities, especially on the first four days, weekdays. It can be observed that 

sharp peaks occur in two periods between 7 am to 10 am and 5 pm to 8 pm, respectively, at 

morning and evening rush hours. On weekends, from time slot 121 to 168, the temporal 

variations show similar behaviour, but the total passenger flow on the weekends is lower than 

on weekdays. 
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Figure 7: Ingoing versus outgoing flow at each station for (A) subway network and (B) bus network 

 
Figure 8: Total flow at station-based representation for (A) subway network, (B) bus network, and (C) PT network 

The passenger flow at each node (station/line) for the 168-time slot are aggregated. The heat-

map charts in Figure 9 represent the passenger flow at each node, where each pixel in the 

chart reflects the passenger flow at a specified node in a specific time slot. In each graph, the 

time slots, 168-time slot, are represented in the 𝑥 −axis, and the 𝑦 −axis refers to the ID of 

the nodes. It can be noticed that the passenger flows for each stop/line ID in all graphs reflect 

the regularity and periodicity in the macro-level. So, this is evidence that the flow can be 

predicted at the macro-level. It can be observed that the passenger flow for subway network 

at both representations is much higher than the bus network. The passenger flow for PT 

network is only a combination of the bus network and subway. 

           Moreover, the spatial distribution of the aggregated passenger flow of 7 days for the 

six representations is computed and visualised in Figure 10 It can be seen that the high 

passenger flow existed in the downtown of Beijing. The passenger flow related to the subway 

system is higher than the bus network, as shown in Figure 10. Line 10 and Line 4 in the 

subway system have a higher incoming flow, while the airport express subway line has a 

minimum passenger flow, as illustrated in Figure 10D. 
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Figure 9: Passenger flow at different representation: (A) subway station-based representation, (B) bus station-based 

representation, (C) subway lines-based representation, and (D) bus lines-based representation  

 
Figure 10: Spatial distribution of passenger flow over seven days for (A) subway station-based representation, (B) bus station-

based representation, (C) PT station-based representation, (D) subway lines-based representation, (E) bus lines-based 

representation, and (F) PT lines-based representation 
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4.3 Correlation between passenger flow and network centrality 

4.3.1 Correlation analysis for station-based representation 

Figure 11 compares the spatial distribution of the degree centrality that measured using the 

conventional and modified techniques at station-based representation for the three networks. 

Where the green and red points reflect the nodes with lower and higher centrality, in sequence. 

The most exciting aspect of this graph is the subway stations have the highest value of the 

conventional degree centrality, considering that the subway station has multiple transfer edges 

than bus station beside the connecting edges for PT network graph, as shown in 11C. 

Furthermore, the subway stations have the highest value of the modified centrality measure, 

both because of the previous reason and because the subway station has a higher passenger 

flow. It is also intuitive in this Figure is the nodes with higher degree centrality are located in 

the central city because the density of the station is considerably high. 

 
Figure 11: Spatial distribution of conventional degree centrality for the (A) subway network, (B) bus network, and (C) PT 

network. Spatial distribution of modified degree centrality for the (D) subway network, (E) bus network, and (F) PT network- 

all at station-based representation 

Figure 12 displays the spatial distribution of the conventional and modified closeness 

centrality at station-based representation for the three networks, in which the lowest values 

for the closeness centrality are shown in the green, and the highest values are shown in the 

red. The nodes with higher closeness centrality are situated in downtown. Because of 

considering the transfer attribute of the networks, there is a medium and high value of the 

conventional closeness centrality have been converted into low values of the modified 

closeness centrality. The spatial distribution of the betweenness centrality at station-based 

representation follow similar spatial patterns. Because of considering the transfer attribute of 

the networks, there is a medium and high value of the conventional closeness centrality have 
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been converted into low values of the modified closeness centrality. Due to the limited space, 

they are not put in the paper 

 
Figure 12: Spatial distribution of conventional closeness centrality for the (A) subway network, (B) bus network, and (C) PT 

network. Spatial distribution of modified closeness centrality for the (D) subway network, (E) bus network, and (F) PT 

network- all at station-based representation 

The correlation coefficients between passenger flow and centrality measures are computed at 

station-based representation and taken in combination with station-based passenger Flow. 

Table 4 displays the mean correlation coefficients between passenger flow and the degree 

centrality. It is apparent from the Table 4 that the conventional degree centrality and passenger 

flow, at station-based representation, reflect a low correlation. Hence, it is evidence that there 

is a shortcoming of using the conventional degree for predicting the passenger flow. Although 

there is a slight improvement in the correlation between the modified degree centrality and 

passenger flow, it is not reliable in predicting the flow.  

 Furthermore, Table 4 shows the mean correlation coefficients between passenger flow 

and the closeness centrality. As shown in Table 4, the conventional closeness centrality and 

station-based passenger flow exhibit low correlation, especially for bus and PT networks. 

Where the mean value of the correlation coefficients between conventional closeness 

centrality and passenger flow in all time slots are 0.31, 0.11, and 0.08 for the subway network, 

bus network, PT network, respectively, this shows that the use of conventional closeness to 

predict and analyse the passenger flow is weak. There is an increase of 9% in the modified 

closeness centrality for subway network compared with the conventional one, an increase of 

6% in the modified closeness centrality for bus network compared its conventional 

counterpart and, a considerable increase of 287% in modified closeness centrality For PT 

network, As presented in Table 4. Despite these increases, the correlation coefficients values 
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are small, indicating the modified closeness centrality inefficiency in predicting flow at 

station-based representation. 

Moreover, Table 4 shows the correlation coefficients between passenger flow and the 

betweenness centrality at station-based representation for the three networks. The mean value 

of the correlation coefficients between conventional betweenness centrality and passenger 

flow in all time slots are 0.31, 0.04, and 0.38 for the subway network, bus network, PT 

network, respectively. Hence, the conventional betweenness at station-based representation is 

not appropriate for analysing and predicting the passenger flow, particularly in the bus 

network. The most likely causes of inefficiency of using the conventional centrality for bus 

network only is the high density of the bus stops. However, the observed difference between 

the correlation values in PT network and the corresponding in bus network is significant, this 

because of the combination of the subway network that attracts more passenger, which 

improved the performance of the bus network.  

Table 4: The mean correlation coefficient between passenger’s flow and selected centrality measures in station 

based-representation 

 

4.3.2 Correlation analysis for line-based representation 

Moving on now to consider the centrality measures and the passenger flow at line-based 

representation. Firstly, the conventional centrality measures are computed based on the 

Equation 4, 6, and 8 at line-based representation and the modified centrality measures are 

calculated according to Equation 9 after obtaining the optimised parameter 𝛼 for a degree, 

closeness, and betweenness for three networks.  

The spatial distribution of the conventional degree centrality and the modified degree 

centrality are set out in Figure 13, where the lower and higher values of the degree centrality 

are indicated in green and red colours, respectively. What is striking about the results in this 

Figure is the subway lines have the highest value of the conventional and modified degree 

centrality. This is because most of the subway network is connected to a large number of 

different subway lines and bus lines as well, compared with bus network, as can be seen from 

Figure 13 C and F. It can be observed that Line 10 in subway network have the highest value 

of degree centrality, due to its geometric properties. Where it has 16 distinct transfer station, 

57 kilometres of operating mileage (highest operating mileage) and this line is around the line. 

Because of considering the geometric properties of the networks, there is a medium and high 

value of the conventional centrality measures have been changed into low values of the 

modified centrality measures. 

Centrality 

Measures 

Technique Type Subway System Bus System PT System 

Degree Conventional 0.30 0.11 0.14 

Modified 0.33 0.14 0.35 

Closeness Conventional 0.31 0.11 0.08 

Modified 0.34 0.12 0.31 

Betweenness Conventional 0.311 0.04 0.38 

Modified 0.31 0.09 0.45 
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Figure 13: Spatial distribution of conventional degree centrality for the (A) subway network, (B) bus network, and (C) PT 

network. Spatial distribution of modified degree centrality for the (D) subway network, (E) bus network, and (F) PT network- 

all at line-based representation 

Figure 14 provides the spatial distribution of the conventional closeness centrality and 

the modified closeness centrality. Red colour reflects the highest closeness centrality value, 

while the green colour stands out the lowest value of the closeness centrality. Similarly, Line 

10 in the subway network have the highest value of closeness centrality. As for the spatial 

distribution of the conventional closeness centrality and the modified betweenness centrality 

for line-based representation is compared and follow the same spatial patterns of the other 

centrality measures. The subway lines have the highest value of the conventional and modified 

betweenness centrality, especially Line 10 in the subway network. Due to the limited space, 

they are not put in the paper. 

The correlation coefficients between the passenger flows and the centrality measures are 

calculated at line-based representation. The correlation coefficients between the selected 

centrality measures and the line-based passenger flow for each period are provided in Table 

5. As can be seen in Table 5, the conventional degree and the line-based passenger flow 

exhibit a high correlation, in particular for the subway network, compared with station-based 

representation. Contrary to the station-based representation, the conventional degree 

centrality at line-based representation is appropriate for predicting and analysing the 

passenger flow. The mean values of the correlation coefficients between the modified degree 

and passenger flow at line-based representation for the subway network, bus network, and PT 

network at all time slot are 0.81, 0.30, and 0.47, consecutively. Thus, it is indicated that the 

modified degree centrality for the subway network is more convenient for analysing and 

predicting passenger flow than that for bus network and PT network. 
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Figure 14: Spatial distribution of conventional closeness centrality for the (A) subway network, (B) bus network, and (C) PT 

network. Spatial distribution of modified closeness centrality for the (D) subway network, (E) bus network, and (F) PT 

network- all at line-based representation 

Table 5: The mean correlation coefficient between passenger’s flow and selected centrality measures in line 

based-representation 

 

 

Table 5 shows the correlation coefficients between the closeness centrality and the line-

based passenger flows for each time slot at line-based representation for three networks. In 

Table 5, the conventional closeness and the line-based passenger flow demonstrates a high 

correlation, in particular for the subway network when setting against station-base 

representation. There is a significant difference between station-based representation and the 

line-based representation, in which the conventional closeness centrality at line-based 

representation is convenient to predict and analyse the passenger flow. The mean values of 

the correlation coefficients between the modified closeness and passenger flow at line-based 

representation for the subway network, bus network, and PT network at all time slot are 0.82, 

0.28, and 0.45, consecutively. Hence, relying on the modified closeness centrality for the 

subway network to analyse and predict the passenger flow is better than depending on both 

the bus network and the PT network. 

Centrality 

Measures 

Technique Type Subway System Bus System PT System 

Degree Conventional 0.77 0..29 0.31 

Modified 0.81 0.30 0.47 

Closeness Conventional 0.75 0.24 0.21 

Modified 0.82 0.28 0.45 

Betweenness Conventional 0.67 0.31 0.53 

Modified 0.68 0.31 0.54 
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Table 5 demonstrates a high correlation between the conventional line-based passenger 

flow, particularly for the subway network and PT network in comparison to station-based 

representation. The conventional betweenness centrality at the line-based representation 

differs from the corresponding at the station-based representation in that the line-based 

centrality is suitable for predicting and analysing the passenger flow. It can be noticed that 

there is a slight improvement in the correlation between the modified betweenness centrality 

and passenger flow in comparison to the conventional betweenness centrality. Consequently, 

the line-based passenger flow can be predicted by using the betweenness centrality at line-

based representation. 

5 Conclusion 

In the high-frequency city, estimating and predicting the passenger flow is one of the most 

critical issues due to its crucial role in the planning and management of the PTSs. However, 

limited research has been carried out on examining the correlation between the PTNs 

properties and the passenger flow. Through correlation coefficients value, we can identify the 

extent to which network properties can be used to predict the passenger flow. This study was 

undertaken to model PTNs from the PTSs (Bus, Subway, and Bus with subway systems) at 

two representation, namely station-based representation and line-based representation.  

Moreover, SCD was used to compute the passenger flow based on corresponding each 

PTN and its representation. The network properties were analysed based on the conventional 

and modified technique where the conventional network centrality measures were computed 

based on the topological properties of the network only. By contrary, the modified network 

centrality measures were calculated based on both topological and geometrical properties of 

the network at different representations. The degree, closeness, and betweenness centralities 

were chosen for network analysis. The results of this study indicate that the conventional and 

modified network centralities for all PTNs at the station-based representation are not 

appropriate for predicting the passenger flow. In contrast, the conventional and modified 

network centralities at the line- based representation for the subway network and the modified 

network centrality for PT network are convenient to predict the passenger flow. So, it can be 

exploited to aid the policy makers and transportation agencies to take the appropriate decision 

for cancelling or adding lines with determining its route and the transfer stations. To describe 

the urban structure, we need to explore the interrelationship between the land use and the PTN 

centralities. In the best of our knowledge, however, there are limited research that concentrate 

on the impact of PTN centrality indicators on various types of urban land use. Therefore, in 

our next work we will explore the interrelationship between the PTN centrality indicators and 

Land use pattern.  
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