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Abstract 20 

Understanding temporal variability of sea surface temperature (SST) patterns plays a crucial 21 

role in providing insights into the mechanisms causing extreme weather and climate events as 22 

well as oceanic and atmospheric teleconnections. This study presents an in-depth analysis of 23 

the SST patterns of the Arctic Ocean and its marginal seas on interannual and seasonal 24 

timescales from 1982 to 2018. The results reveal potential relationships between SST and 25 

climatic variables in order to improve our understanding of underlying physical mechanisms 26 

influencing the SST variations in a changing climate. Our findings disclose that the Arctic 27 

Ocean shows an overall warming trend, and the Nordic Seas have the highest SST compared 28 

to its neighboring seas. The Barents Sea shows spatially varying seasonal trends due to ice 29 

cover changes and warm water circulation within the Nordic Seas. Correlation analysis was 30 

also performed to facilitate further understanding of climate-induced SST changes. It reveals 31 

that climate variables interact differently with the Arctic Ocean SST on a regional scale and 32 

vary with different degrees of influence. Notable relationships between SST and climate 33 

variables improve understanding of differing trends on spatial and temporal scales. In addition, 34 

the wavelet coherence speculates that a significant in-phase relationship exists between SST 35 

and Greenland Blocking Index (GBI), which facilitates further studies exploring the complex 36 

mechanisms causing teleconnection patterns related to the Arctic Ocean. 37 

 38 

 39 

 40 
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1. Introduction 43 

The global average sea surface temperatures (SSTs) have been increasing since the 44 

beginning of the 20th century, where the rates of increase are higher near the surface of the 45 

ocean (greater than 0.1 °C per decade in the upper 75m) (IPCC, 2014). This key factor helps 46 

in understanding the air-sea interaction and its role in global climate studies (Tang, 2012). The 47 

ocean’s thermal inertia that translates to SST is communicated to the atmosphere via air-sea 48 

fluxes and the exchange of energy (Deser et al., 2010a). The global oceans are known to be 49 

taking up at least 90% of the heat present in the atmosphere, which has affected the ocean 50 

temperature and currents (Zanna et al., 2019). 51 

Climate change in the Arctic and subarctic have been highlighted in global warming 52 

impacts. The Arctic Ocean and adjacent land masses are experiencing intense climate change. 53 

As evidenced by paleo (Miller et al., 2010) and observational data (Serreze et al., 2009), the 54 

temperature changes in these regions are 3-4 times greater than the average for the Northern 55 

Hemisphere, and is termed as the Arctic amplification (Manabe and Stouffer, 1980; Simmonds, 56 

2015). This phenomenon “amplifies” or makes the Arctic climate change driven by any global 57 

radiative forcing greater than in other climate zones, and is caused by the ice-albedo feedback 58 

mechanisms, atmospheric and ocean heat advection, as well as changes in water vapor (Serreze 59 

and Barry, 2011; Lee et al., 2017). Arctic Ocean SST is strongly influenced by sea ice and 60 

related melt water, brine rejection, continental runoff and upward heat fluxes from the deeper 61 

warm ocean (Stroh et al., 2015). A number of studies on the SST warming have been conducted 62 

in the recent decades. Comiso (2003) used the thermal infrared data from the Advanced Very 63 

High Resolution Radiometer (AVHRR) sensor carried on-board the National Oceanic and 64 

Atmospheric Administration (NOAA) satellites, and concluded an increasing SST trend for the 65 

period of 1981-2001. Chepurin and Carton (2012) used the Pathfinder SST data and operational 66 

SST products from NOAA and UK Meteorological Office to investigate connections between 67 
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Arctic SST variations and sub polar gyres in the “Atlantic” sector and further north of the Arctic 68 

Ocean.  69 

SST has been one of the most important measured variables of the ocean which affects 70 

the climate system and has attracted much scientific attention (Reynolds et al., 2007; Deser et 71 

al., 2010a; Carvalho and Wang, 2019). In the recent past, Arctic amplification and consequent 72 

warming have been studied using climate models, and are proved to be a result of 73 

anthropogenic global warming (Holland and Bitz, 2003). The Arctic Ocean warming caused 74 

by ice-albedo effects and atmosphere-ocean dynamics have also been studied to identify 75 

relationships with climate change (Deser et al., 2010b; Chepurin and Carton, 2012; Steele and 76 

Dickinson, 2016). In order to improve knowledge of climate change impacts on the Arctic 77 

Ocean SST, it is desired to derive a comprehensive outlook on the SST variability in the Arctic 78 

Ocean and to compare the trends between its marginal seas. In addition, previous studies have 79 

indicated that the ice-albedo feedbacks and heat fluxes have been closely associated with the 80 

Arctic Ocean. It is necessary to further explore the atmosphere-ocean interactions by analyzing 81 

various variables such as air temperature, water vapor, wind speed, and total cloud cover on 82 

different spatial and temporal scales. 83 

Specifically, this study aims to analyze the spatial and temporally varying SSTs of the 84 

Arctic Ocean and its marginal seas, as well as to reveal relationships between SST and climatic 85 

variables including air temperature (T2m), total column water vapor, wind speed, total cloud 86 

cover (TCC), ozone, sea level pressure (SLP), and sea ice concentration (SIC). This will help 87 

characterize the dynamics of SST and deduce the local covariance between SST and climatic 88 

variables. Furthermore, the relationships, trends and periodicities between the Arctic SST and 89 

the Greenland Blocking Index (GBI) will be uncovered to reveal the influence of 90 

teleconnections on the Arctic Ocean SSTs. The NOAA Optimum Interpolation SST dataset 91 
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will be used to reveal the spatiotemporal variability of the Arctic Ocean SST in a global 92 

warming perspective for the period from January 1982 to December, 2018.  93 

This paper will be organized as follows. Section 2 will introduce data sources and 94 

methods. Section 3 will present a thorough analysis on spatial and temporal distributions of the 95 

Arctic Ocean SST and its correlations with climatic variables and GBI. Section 4 will provide 96 

a detailed and in-depth discussion on the Arctic Ocean SST characteristics and underlying 97 

mechanisms causing the SST variability, as well as potential linkages between ocean 98 

temperatures and regional climate indices. Finally, Section 5 will provide conclusions and main 99 

findings of this study.  100 

 101 

2. Data and methods 102 

2.1. Data sources 103 

To analyze the SST characteristics of the Arctic Ocean and its marginal seas (as shown in 104 

Figure 1), the NOAA Optimum Interpolation SST (OI SST Version 2) dataset was used for the 105 

period from January 1982 to December 2018, and was obtained from the NOAA/Oceanic and 106 

Atmospheric Research/Earth Science Research Laboratory/Physical Sciences Division 107 

(NOAA/OAR/ESRL/PSD), Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/). The 108 

analyses were designed by combining multiple observations from different platforms 109 

(satellites/ships/buoys) on a complete regular grid. The dataset has undergone bias adjustments 110 

of satellite and ship observations to compensate for platform differences and sensor biases 111 

(Reynolds et al., 2007). The dataset contains monthly SST fields derived by averaging daily 112 

values for each month. The analysis uses satellite SST values and simulated SSTs using sea ice 113 

cover data. This improved analysis is independent of satellite biases (Reynolds and Marsico, 114 

1993).  The dataset has been regridded to a spatial resolution 0.25°, which was used to examine 115 
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the variability in SSTs. Sea ice data is also sourced from the same dataset and is recorded as 116 

monthly sea ice concentration values.  117 

The gridded data from 1982–2018 for surface level meteorological parameters and air-sea 118 

heat fluxes (0.25° × 0.25° spatial grid) were extracted from the ERA-Interim full resolution 119 

database (https://www.ecmwf.int/). The ERA-Interim project serves as a fundamental 120 

improvement in stratospheric properties, hydrological cycles and effective timely records of 121 

climate parameters (Dee et al., 2011; Wang et al., 2018; Wang and Wang, 2019; Zhang et al., 122 

2019; Chen et al., 2020). These data were correlated with the SST data to investigate the effects 123 

on the SST variability. In addition, GBI data were downloaded from the NOAA Climate 124 

Prediction Center (https://www.cpc.ncep.noaa.gov/). GBI is defined as the mean 500 hPa 125 

geopotential height for the 60-80°N and 20-80°W region in the Northern Hemisphere (Hanna 126 

et al., 2016). Cross-wavelet analysis was used to analyze the time series and space-time 127 

relationships with the Arctic Ocean SST for the period of 1982–2018. The spatial and temporal 128 

distribution of SST data obtained from NOAA were used to study interannual and seasonal 129 

variability on a geographical scale. Annual and seasonal SST trends were calculated for each 130 

grid and for the entire study area. Linear trends were calculated on the basis of least squares 131 

method using the climate data toolbox developed by Greene et al. (2019). The mentioned 132 

toolbox contains various mathematical functions that can be used in Earth sciences and climate 133 

change studies.  Seasons are defined as Winter (December-January-February), Spring (March-134 

April-May), Summer (June-July-August) and Autumn (September-October-November). In 135 

order to study the interannual variability, the dataset was first detrended and then a measure of 136 

standard deviation was calculated. The monthly effects of climate parameters on the Arctic 137 

Ocean SST were tested using the correlation coefficient (R) at 95% confidence levels. To 138 

identify significant correlation ranges, the p-value of 0.05 was used as significance levels. 139 
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Spatial correlation coefficients with p-values less than 0.05 are considered statistically 140 

significant (Fisher, 1992).  141 

 142 

2.2. Wavelet analyses 143 

The techniques of wavelet analysis have become gradually popular with time series 144 

examinations. Here, we use the Matlab software package developed by Grinsted et al. (2004) 145 

to perform wavelet coherence and cross wavelet analysis, and apply the wavelet methodology 146 

adopted by Torrence and Compo (1998) to analyze the time-frequency relationship between 147 

Arctic Ocean SST and GBI. Wavelet transforms (CWT) expand time series into time frequency 148 

domains and can be studied for trends and local intermittent periodicities. Wavelets are 149 

characterized by how localized it is in time (Δt) and frequency (Δω) or bandwidth (Grinsted et 150 

al., 2004). The Morlet wavelet (ω=6) is an appropriate choice providing a good balance 151 

between time and frequency localization. The CWT of a time series d with respect to the 152 

wavelet ψ is defined as  153 

𝑊𝑑,ψ(𝑠, 𝑡) = (𝑑(𝑡) ∗  ψ𝑠(𝑡))         (1) 154 

where t is time, ψ is the wavelet and s is the scale (which is linearly related to the characteristic 155 

period of the wavelet). The wavelet power is defined as |𝑊𝑑,ψ|2. Wavelet transforms are 156 

affected by edge artifacts due to time bounds in data d(t), and hence a Cone of Influence (COI) 157 

is introduced so that edge effects can be ignored (Torrence and Compo, 1998). The COI is the 158 

area in which a wavelet power caused by a discontinuity at the edge is dropped to e-2 of the 159 

value at the edge.  160 

The cross wavelet transform (XWT) of two time series xn and yn is defined as WXY = 161 

WXWY*, where * indicates complex conjugation. Furthermore, the cross wavelet power is 162 



8 
 

defined as |𝑊𝑋𝑌|. As defined by Torrence and Compo (1998), the theoretical distribution of 163 

two time series with background power spectra 𝑃𝑘
𝑋 and 𝑃𝑘

𝑌 is given as  164 

𝐷 (
|𝑊𝑛

𝑋(𝑠)𝑊𝑛
𝑌∗(𝑠)|

𝜎𝑋𝜎𝑌
< 𝑝) =  

𝑍𝑣(𝑝)

𝑣
 √𝑃𝑘

𝑋𝑃𝑘
𝑌       (2) 165 

where Zv(p) is the confidence level associated with probability p for a probability density 166 

function (pdf) defined by the square root of the product of two χ2 distributions. To assess the 167 

phase difference between the two different time series, the mean and confidence interval of the 168 

phase difference are estimated. The circular mean set of angles (ai, i=1…n) is given by (Zar, 169 

1999): 170 

am=arg(X, Y) with 𝑋 =  ∑ cos (𝑎𝑖)
𝑛
𝑖=1  and 𝑌 =  ∑ sin (𝑎𝑖

𝑛
𝑖=1 ),    (3) 171 

The cross wavelet phase angle is calculated as a scatter of the angles around the mean. Hence, 172 

the circular standard deviation is defined as: 173 

𝑠 =  √−2ln (𝑅
𝑛⁄ ),          (4) 174 

where 𝑅 =  √𝑋2 + 𝑌2. 175 

The circular standard deviation is analogous to linear standard deviation and varies from 176 

zero to infinity. Another useful measurement in wavelet analysis is to understand the degree of 177 

coherency of the CWT in time and space. Torrence and Webster (1999) define wavelet 178 

coherence of two time series as: 179 

𝑅𝑛
2(𝑠) =  

|𝑆(𝑠−1𝑊𝑛
𝑋𝑌(𝑠))|

2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
).𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2

)
,        (5) 180 

where S is a smoothing operator. The smoothing operator can also be defined as: 181 

𝑆(𝑊) =  𝑆𝑠𝑐𝑎𝑙𝑒 (𝑆𝑡𝑖𝑚𝑒(𝑊𝑛(𝑠))),        (6) 182 
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where Sscale denotes smoothing along the wavelet scale axis and Stime is smoothing in time.  183 

The histograms (pdfs) of both time series were checked to observe for normality. Both time 184 

series have near normal distributions and hence were not converted into log or percentile scales. 185 

This is an essential step in statistical analysis of time series. CWTs of geophysical time series 186 

that are far from normal produce unreliable and non-significant results (Grinsted et al., 2004). 187 

From the two CWTs, the XWT is calculated which determines regions of high common power 188 

and phase relationships between two time series (Grinsted et al., 2004).  189 

 190 

--------------------------- 191 

Place Figure 1 here 192 

--------------------------- 193 

 194 

3. Results 195 

3.1. Spatial and temporal distribution of Arctic Ocean SST 196 

The Arctic Ocean SST and seasonal means are used to characterize the dynamics of SST. The 197 

annual average SST of the Arctic Ocean is 1.32 ± 1.5 ℃ (Figure 2a). The hottest areas of 6 ℃ 198 

and above cover 3.5% of the Arctic Ocean, most of which is present in the Norwegian Sea. As 199 

shown in Figure 2, the Chukchi Sea has an average SST of 0.86 ℃. Relatively higher 200 

temperatures of 4 − 7 ℃ and −1−5 ℃ are noticed in the Nordic Seas (Norwegian Sea and 201 

Greenland Sea respectively) and the Barents Sea shows values between 0.2 – 3 ℃. Here, the 202 

Nordic Seas were defined according to Furevik et al. (2007). Most of the Arctic Ocean that 203 

borders Russia and Canada are of low temperatures. As it goes poleward from 78°N, smaller 204 
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positive values of <1 ℃ are seen. This connects well with the studies carried out by Serreze et 205 

al. (2009) for the study period of 2003-2007. In the given time period, the annual trend 206 

distribution varies locally in the seas belonging to the Arctic Ocean (Figure 2b). The Arctic 207 

Ocean shows an overall warming trend of 0.036 ± 0.03 ℃/year. The Barents Sea has a wide 208 

trend (spatially) and is −0.01 − 0.05 ℃/year. Similarly, Greenland Sea shows a wider range of 209 

trends between −0.03 and 0.02 ℃/year is noticed and varies spatially. The Norwegian Sea has 210 

a warming trend of 0.04 − 0.07 ℃/year. All other marginal seas show relatively weak warming 211 

trends (−0.01 – 0.01 ℃/year). To supplement further analysis in terms of magnitude, the 212 

decadal SST means (Figure 2c) show similar spatial patterns as the annual means, where the 213 

Norwegian Sea has the highest values ranging from 6.5 to 8.2 ℃. The Chukchi Sea shows 214 

decadal mean values of −0.8 – 2 ℃ in contrast to the annual mean ranging between −0.5 and 215 

0.2 ℃. The decadal trends also vary spatially; Barents Sea values range between a weak cooling 216 

trend of −0.02 and a warming trend of 1.04 ℃/decade. The Chukchi Sea shows a lower decadal 217 

trend (as compared to annual trends) ranging from 0.01 to 0.04 ℃/decade, indicating weak 218 

warming signals. In addition, standard deviation of Arctic Ocean SST is approximately 0.1 – 219 

0.2℃ in the Chukchi Sea (Figure 3). Barents Sea and Greenland Sea show a standard deviation 220 

of 0.4 – 0.7 ℃ and 0.2 – 0.8 ℃, respectively. This indicates high variability where these seas 221 

warm up greatly in the summer and cool (freeze) in the winter. Marginal seas of East Siberian 222 

and Laptev Seas show low standard deviations of less than 0.12 ℃. 223 

 224 

--------------------------------- 225 

Place Figures 2 and 3 here 226 

--------------------------------- 227 

 228 
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The spatiotemporal distribution of mean winter SST is similar to the annual mean SST for 229 

the Arctic Ocean in the Nordic Seas which is between 0.4 − 2 ℃ for Greenland Sea and 4.5 – 230 

6.4 ℃ in the Norwegian Sea which is the highest. The Barents Sea shows an average weak 231 

mean SST of 0.8 ℃ while the values of its western region range from 1 and 1.6℃ (Figure 4). 232 

The relatively highest temperatures (greater than 6 ℃) covers 2.8% of the Arctic Ocean. Colder 233 

areas of 0 − 1 ℃ cover more than 80 % of the study area, notably the Beaufort, East Siberian 234 

and Laptev Seas. The winter SST trend is highest in the Norwegian Sea and Barents Sea at 0.03 235 

– 0.05 ℃/year; typical regions are off the coasts of Scandinavia and northwestern Russia that 236 

show higher values of 0.07 ℃/year. The Greenland Sea has a unique overall winter trend of –237 

0.2 to 0.02 ℃/ year on a spatial scale, thereby showing warming and cooling trends with time 238 

in different parts of the sea. Mean spring SST is found to have a similar spatiotemporal 239 

variation as the winter mean SST where the Greenland Sea shows a spatially varying trend and 240 

the other Nordic Seas have the highest trend.  241 

The spatiotemporal distribution of mean summer temperature shows a high of 7 − 11 ℃ 242 

in the Norwegian Sea and followed by 4 − 7 ℃ in the Barents Sea and 2 − 5 ℃ in Greenland 243 

Sea. This exemplifies previous findings where the Nordic Seas are found to have maximum 244 

summer SST means (Chepurin and Carton, 2012). Chukchi Sea summer SSTs are higher than 245 

preceding seasons at 2.4 − 4 ℃. Compared to winter and spring mean SSTs, Baffin Bay (west 246 

of Greenland) shows relatively higher SST means in the summer calculated at 3 ℃ unlike the 247 

preceding seasons of 0 − 0.5 ℃. The same is observed for Kara Sea, Laptev Sea and the East 248 

Siberian Sea which are relatively warmer than previous seasons. The Beaufort Sea has a mean 249 

SST of 2 ℃ in the summer whereas the mean SST in other seasons is below 1 ℃. Cooling 250 

summer trends can be seen in the Laptev Sea (off the coast of Sakha Republic in Russia). It 251 

should be noted that while the northern Barents Sea show a relative cooling trend of –0.03 252 

℃/year, the southern parts show a warming trend, particularly near the coasts. The cooling 253 
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summer trend in the Barents Sea can be due to oceanographic properties (e.g., salinity, density, 254 

and depth). Salinity variations on a spatial scale can also be considered a primary factor in SST 255 

variability. Brine rejection which is a phenomenon in colder waters may cause comparatively 256 

colder trends in certain parts of the Barents Sea; Stroh et al. (2015) mentioned in their paper of 257 

brine rejection being an agent of Arctic Ocean SST changes. The northern region has seen a 258 

relative sea ice decrease in the past decades coupled with reduced sea-surface albedo. Spatial 259 

variations in the summer trends in the Barents Sea are due to sea ice extent being comparatively 260 

higher near Novaya Zemlya (north) than the rest of the sea (Jakowczyk and Stramska, 2014). 261 

The comparatively higher coastal trends (warming) can be ascribed to increased freshwater 262 

run-off from the nearby coastal land. This is because the ice extent does not play a significant 263 

role in summer SSTs (Pavlova et al., 2014). All other regions show notable warming summer 264 

trends. Mean autumn SST shows similar spatiotemporal characteristics as the previous season 265 

(summer); the only difference is Laptev Sea that shows a decreased mean at 1℃.  Most of the 266 

Arctic Ocean show uniform warming Autumn trends. The Barents Sea shows a warming trend 267 

(Kola Peninsula and Kolguyev Island) and a cooling trend further north (near Novaya Zemlya 268 

(Russia)). This is also attributed to spatial changes in sea ice due to the refreeze season in 269 

autumn. This conclusion is based on the inverse relationship between SST and SIC in the 270 

northern Barents Sea (Figure 6g). Greenland Sea has an autumn warming trend of 0.02 ℃/year, 271 

and the Chukchi Sea has a slightly higher trend of 0.04 ℃/year. Figure 5 and Table 1 272 

summarizes interannual and seasonal statistics of the Arctic Ocean SSTs. 273 

 274 

------------------------- 275 

Place Figure 4 here 276 

------------------------- 277 
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 278 

-------------------------------------- 279 

Place Figure 5 and Table 1 here 280 

-------------------------------------- 281 

 282 

3.2. Correlation between Arctic Ocean SST and atmospheric variables 283 

There is a highly positive correlation (R > 0.75) between SST and air temperature (T2m) 284 

over more than 70% of the study area, indicating that air temperature has a noticeable effect on 285 

the SST of the Arctic Ocean (Figure 6a). As it goes poleward from 75°N, the positive 286 

correlation is ambiguous due to ice cover. And Laptev and Kara Seas have a comparatively 287 

lower positive correlation of 0.6 as compared to other marginal seas of the Arctic Ocean. In 288 

addition, a significant correlation exists between SST and water vapor over 81% of the study 289 

area (Figure 6b). The relatively high correlations (R > 0.7) are found in the Nordic Seas, Kara 290 

Sea, Chukchi Sea and Beaufort Sea. The high correlation between SST and water vapor can 291 

cause an increase in surface air temperatures as well (Figures 6a and b), thereby proving a 292 

strong link between the three variables. Such an interactive system coupled with increase in 293 

downward infrared radiation has also been hinted as one of the underlying causes of the Arctic 294 

warming (Lee et al., 2017; Luo et al., 2017; Yao et al., 2017). A phenomenon of “moisture 295 

intrusions” which has been met with great attention, can also be attributed to increases in Arctic 296 

temperatures (Screen et al., 2018). A strong relationship between SST, air temperature and 297 

water vapor can thereby affect atmospheric circulation patterns and fuel polar cyclones as an 298 

additional consequence. A significant negative correlation between SST and Ozone (R < −0.4) 299 

is found over 65% of the Arctic Ocean (Figure 6c). In comparison, the Chukchi Sea has a higher 300 
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negative correlation (R < −0.7), indicating that the decrease in ozone greatly affects (and 301 

increases) the Arctic Ocean SST in the Chukchi region. Other seas such as Greenland Sea, 302 

Barents Sea and Chukchi Sea show the R values between −0.5 and −0.3.  303 

The spatial distribution of correlation coefficients between SST and wind speed shows a 304 

wide range from −0.6 to 0.4 (Figure 6d). It can be seen that a significant correlation exists over 305 

52% of the entire study area. Specifically, a high negative correlation (R < −0.5) between SST 306 

and wind speed is found in Norwegian Sea. This is due to the fact that the relationship between 307 

SST and wind speed tends to be negative in general (Hurrell, 1995). The theory behind this is 308 

that the increasing wind speed would tend to lower the SST by breaking down the stratification 309 

of the surface water, thereby leading to the upwelling of colder water to the subsurface. All 310 

other marginal seas have low to negligible relationships between SST and wind speed. The 311 

Arctic Ocean shows a negligible correlation between SST and SLP (Figure 6e). However, there 312 

is a small negative correlation (R < −0.4) between SST and SLP over northern Chukchi Sea 313 

and Beaufort Sea. Approximately 42% of the study area shows a significant correlation 314 

between SST and TCC. And a low negative correlation (R = −0.2) between SST and TCC 315 

exists in Barents Sea, Kara Sea and Beaufort Sea (Figure 6f). This suggests that TCC changes 316 

do not greatly affect the variations in SST. A positive correlation (R = 0.5) between SST and 317 

TCC is found in parts of Baffin Bay (off the western coast of Greenland).  318 

There is a significant negative correlation between SST and SIC over 89% of the study 319 

area (Figure 6g). This can be connected to the polar amplification in the northern hemisphere 320 

(Holland and Bitz, 2003). Decreasing sea ice concentration exposes much of the oceans to 321 

sunlight and oceans, having a lower albedo, absorb more of the incoming solar radiation. This 322 

can lead to more ice melting and the chain goes on, which is commonly referred to as the sea-323 

ice albedo effect. Besides the spatiotemporal relationships between these two variables, there 324 

is no significant relationship between the Greenland and Norwegian Seas. It should be noted 325 
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that sea ice concentration simulations using climate models are ice free in these regions 326 

(Chepurin and Carton, 2012), and hence its relationship with SST is impossible to comprehend. 327 

 328 

-------------------------- 329 

Place Figure 6 here 330 

-------------------------- 331 

 332 

3.4. Cross wavelet and coherence analysis 333 

The CWT for the Arctic Ocean SST has stable periodic characteristics (see the horizontal 334 

band) with high power oscillations in the 9- to 15-month period band throughout the study 335 

period. This can imply a considerable power spread in the yearly (12 month) bands (Figure 7). 336 

High power oscillations are scattered in the CWT plot for GBI (Figure 8). However, significant 337 

peaks are noticed in the months from 2008 to 2014 in the 12-month and 36-month bands.  338 

 339 

--------------------------------- 340 

Place Figures 7 and 8 here 341 

--------------------------------- 342 

 343 

In the XWT plot (Figure 9), there are considerable links between GBI and the Arctic 344 

Ocean SST in regions indicated by black contours. Common power is seen in the 12-month 345 

band where the GBI and SST have an in-phase relationship and SST is leading in the period of 346 

2006–2015. Similarly, a positive correlation is also seen in the period of 1988–1994, which 347 

infers that an increase in GBI causes an increase in the Arctic Ocean SST (positive correlation). 348 

On the contrary, regions outside the areas of significant power show a chaotic relationship 349 

between SST and GBI, and thus phase relationships cannot be easily deciphered in these 350 
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regions. The XWT average phase angle for significant regions is 19.48 ± 3.6 (where 3.6 is the 351 

circular standard deviation). The XWT helps to understand the phase spectrum. The WTC plot 352 

(Figure 10) can be used to decipher frequency bands and time intervals in which the two 353 

different time series co-vary. In the WTC, significant correlations can be seen in the periods of 354 

1988–1994 and 2012–2014 in the 12-month period; in the second period the Arctic Ocean is 355 

found to lead GBI. Another interesting inference is the positive correlation in the 60-month 356 

period band from 1988 to 1993, where the Arctic Ocean SST leads GBI. Wavelets are unique 357 

which can differentiate between different relationships occurring at the same time but at 358 

different frequencies. 359 

 360 

----------------------------------- 361 

Place Figures 9 and 10 here 362 

----------------------------------- 363 

 364 

4. Discussion 365 

4.1. Arctic Ocean SST characteristics 366 

The Arctic Ocean SST characteristics were analyzed on spatial and temporal scales. The 367 

maximum SST for the Arctic Ocean was recorded at 1.9 ℃ as compared to the mean of 1.3 ℃ 368 

in the year 2016; in the same year, spring, summer and autumn seasons also experienced 369 

maximum temperatures. From a global warming perspective, these results postulate that 2016 370 

was the hottest year for the Arctic Ocean. And the winter SST was highest in 2017. Colder 371 

years existed in the 1980s and early 1990s, which implies that SSTs have increased since the 372 

20th century and the recent past has been characterized by relatively high SSTs. It is worth 373 

mentioning that increasing SSTs can have significant effects on heat storage feedbacks and the 374 

Arctic cryosphere in general (Overland et al., 2019). 375 
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It can be seen that the Nordic Seas and the Chukchi Sea are characterized by high SST 376 

means and trend variations. The seas of the Arctic Ocean such as the Greenland Sea, Norwegian 377 

Sea, Barents and Chukchi Sea show particularly high temperature means and trends for the 378 

period from January 1982 to December 2018. This can be attributed to the advection of warm 379 

water from the North Atlantic (affecting Greenland Sea, Norwegian Sea and Barents Sea) and 380 

North Pacific Oceans (affecting Chukchi Sea) by their respective currents. Intrusion of warmer 381 

waters and consequently, ocean heat has impacted the marginal seas of the Arctic. This ocean 382 

heat transport is responsible for variations in Arctic Ocean temperatures and sea-ice variability, 383 

two closely linked variables whose effects have been exemplified in the Barents Sea (Årthun 384 

et al., 2019; Wang et al., 2019). The Greenland Sea shows a comparatively smaller SST means 385 

and variations. This can be explained by the flow of cold polar waters from the Arctic towards 386 

lower latitudes via the Fram Strait, and is characterized by the East Greenland Current (EGC). 387 

The EGC flows along the eastern coast of Greenland and enters the Atlantic Ocean via the 388 

Fram Strait (Furevik, 2000). In the southern Greenland Sea near Iceland, the SST values are 389 

higher than further north. This can be a most likely case of air-sea interactions off the coast of 390 

Iceland that dominates the SST (Figure 6a). This conclusion is arrived at since the correlation 391 

between SST and air temperatures are found to increase southward along the coast of 392 

Greenland (from 0.4 to 0.8).  393 

The Norwegian Sea in particular is found to have the highest mean SST of 4 – 7 ℃ and 394 

an interannual warming trend of 0.04 – 0.07 ℃/year. Such a relatively high warming trend is 395 

due to these regions being ice-free, thereby allowing more absorption of incoming solar 396 

radiation. A theory revolving around the involvement of thermal forcing of the North Atlantic 397 

Oscillation (NAO) in the evolution of SSTs in the Nordic seas can be a cause of comparatively 398 

higher SSTs in the Norwegian Sea (Flatau et al., 2003). In addition, the Arctic Ocean SST 399 

warming trends are higher in summer (0.036 ℃/year) as compared to all other seasons (with 400 
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autumn trends at 0.032 ℃/year). This relatively high summer warming trend when sea ice 401 

concentration is low, can be a result of highly amplified summer feedbacks. 402 

The spatiotemporal structure of seasonal SST highlights that the Norwegian Sea is 403 

characterized by highest mean seasonal SST (in all four seasons). This is followed by the 404 

Greenland Sea and Barents Sea which shows higher SST as compared to most parts of the 405 

Arctic Ocean. One particular sea of interest is the Chukchi Sea which shows considerable SST 406 

variations across four seasons. The Chukchi Sea exhibits high mean values in the summer at 407 

2.4 – 4 ℃ as compared to 2.2 – 3.7 ℃ in autumn and 0 − 0.5 ℃ in the winter and spring. This 408 

drastic change in SST on a seasonal basis can be linked with ocean advection dynamics and 409 

the air-sea interactions in the Northern Pacific Ocean (Yeo et al., 2014; Steele and Dickinson, 410 

2016). Throughout all seasons, the Greenland Sea has approximately similar mean SST of 2.5 411 

℃. And the Norwegian Sea and Barents Sea show high warming trends in winter and spring. 412 

However, the spatial distribution drastically changes in summer; the Norwegian Sea has an 413 

SST of 0.05 – 0.1 ℃/year while Barents Sea has the SST range between −0.01 and 0.05 ℃/year, 414 

indicating local variations in cooling and warming trends. On similar lines, it should be noted 415 

that the Barents Sea shows a warming seasonal trend for the period of 1982−2018; more than 416 

70% of the area shows the high mean warming trends. In winter at 0.035 ℃/year whereas other 417 

seasons show a trend of 0.014 ℃/year (summer trends being 0.008 ℃/year). This is interesting, 418 

since a theorized increase in ice concentrations (in winter) would naturally lead to a decreasing 419 

SST trend. We suggest that the high winter warming trend in the Barents Sea could indicate 420 

the ice-cover over this region is relatively low or may be generated within the Nordic Seas. 421 

This is theorized due to previous studies indicating a direct influence of warm North Atlantic 422 

water masses and ice retreat on the Arctic Ocean SST. Warmer areas around the Barents and 423 

Kara Seas (Figure 4) have been linked to Ural blocking events and consequent sea ice declines 424 

in the recent decades (Luo et al., 2016; Luo et al., 2019a). Greater losses in sea ice due to 425 
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increased warming trends as evident in Figure 6g can also impact climates in the Eurasian 426 

continent, thus highlighting major links between Arctic Ocean SST and midlatitude cold 427 

events. September sea ice concentrations have also declined in the beginning over the past 428 

decades (Parkinson and Comiso, 2013). This reduced sea ice could also be contributing to 429 

ocean-atmosphere heat fluxes and the subsequent warming of the sea and the atmosphere.  430 

In addition, our findings reveal a unique spatial SST gradient in the autumn trend in the 431 

Barents Sea. There is a warming trend off the coasts of Scandinavia and Russia at 0.12 ℃/year. 432 

As it moves further north towards the coast of Severny Island (Russia), there is a reversal and 433 

cooling autumn trend at −0.03 ℃/year. Thus, there is a drastic spatial/zonal variation in the 434 

autumn trend from the north to south in the Barents Sea. Moreover, the East Siberian and 435 

Laptev Seas show a cooling summer trend that can be seen along the Russian coastline (Sakha 436 

Republic).  437 

Correlation coefficients were obtained to examine the spatiotemporal correlation between 438 

the Arctic Ocean SST and climatic variables. Our findings prove that the Arctic Ocean SST is 439 

affected by air temperature (R = 0.93), water vapor (R = 0.88), wind speed (R = −0.47), ozone 440 

(R = −0.39), total cloud cover (R = −0.39) and sea ice concentration (R = −0.7). Therefore, 441 

positive relationships exist between the Arctic Ocean SST with air temperature and water vapor 442 

while a negative (or inverse) relationship exists with sea ice concentration. Notable 443 

observations in the spatiotemporal structure of correlations are: i) In comparison to other 444 

marginal seas of the Arctic Ocean where positive correlations exist between SST and Ozone 445 

(R = 0.4–0.5), the Chukchi Sea has a relatively high negative correlation coefficient of −0.8. 446 

This emphasizes that ozone is a comprehensive factor in which a decrease in atmospheric ozone 447 

can greatly lead to an increase in SST; ii) Despite the overall negative correlation between wind 448 

speed and SST (R = −0.47), our findings reveal that the Nordic seas (particularly Norwegian 449 

and western Barents Sea) have an inverse relationship with wind speed. This implies that wind 450 
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speed has a considerable effect in enhancing SST in these regions; an increase in wind speed 451 

can cause a decrease in local SST and vice versa. Moreover, this inverse relationship between 452 

SST with wind speed and ozone (R values between –0.5 and –0.6) can prove as a contributing 453 

factor to annual warming trends in the southern and western Barents Sea (Figures 4, 5c and d). 454 

On the contrary, all other seas, particularly the Laptev and East Siberian Seas show a negligible 455 

R values, indicating that local SST is not influenced by changes in wind speed.  456 

 457 

4.2. Phase relationships between Artic Ocean SST and GBI 458 

This paper serves as a first attempt to examine the relationship between the Arctic Ocean 459 

SST and the GBI. The wavelet coherence and cross wavelet analyses were performed on the 460 

monthly time series between the Arctic Ocean SST and GBI. Cross wavelet analyses hinted at 461 

significant in-phase relationships as represented by “islands” of common power. Nevertheless, 462 

it is worth mentioning that cross wavelet spectrums may not be the reliable means to examine 463 

phase relationships. A limitation of the XWT is its inability to normalize two time series to a 464 

single wavelet spectrum which can be misleading. To improve robustness of our results, 465 

therefore, wavelet coherence methods were also used. Our findings indicate that a significant 466 

covariance exists between the monthly time series of the Arctic Ocean SST and GBI, 467 

particularly for the periods of 1988–1994 and 2012–2014. The GBI shows an increasing 468 

seasonal trend since the early 1900s as compared to decreasing or “troughs” from 1880 to late-469 

1980s. Positive winter GBI phases have been recorded in 2010, 2011 and 2013 (Hanna et al., 470 

2016).  471 

Potential vorticity gradients which are known to change due to warming-cooling trends 472 

have recently been identified as another climatic factor in affecting Arctic warming. Such 473 

gradients have produced regions of tropospheric blocking in Greenland and have been linked 474 

with sea ice decline and air temperatures in the Arctic (Luo et al., 2019b). Blocking indices in 475 
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Greenland, can therefore be attributed to changes in the Arctic Ocean SST which have also 476 

been linked with sea ice loss in the Arctic.  Hence, it is possible that seasonal changes in GBI 477 

can lead to changes in the Arctic Ocean SST. Furthermore, Greenland blocking anticyclones 478 

caused by warming in the high latitude regions of the North Atlantic (Baffin Bay, Davis Strait 479 

and Labrador Sea) have been linked to cold anomalies in northern Eurasia (Luo et al., 2016). 480 

Increase in SST over these regions (Figures 2 and 3) can further provoke high pressure blocking 481 

regimes in Greenland. Thus further supporting the hypothesis that a relationship is likely to 482 

exist between the Arctic Ocean and GBI. These findings are a unique contribution to 483 

understanding relationships between the Arctic Ocean SST and regional teleconnection 484 

patterns (e.g., GBI). Wavelet analyses prove that a relationship does exist between the Arctic 485 

Ocean SST and GBI, which provides a basis for linkages between ocean temperatures and 486 

regional climate indices. 487 

 488 

5. Summary and conclusions 489 

This paper provides a comprehensive and in-depth analysis of SST variability in the Arctic 490 

Ocean and its marginal seas in a changing climate. Various atmospheric variables were 491 

examined to reveal correlations with the Arctic Ocean, which provides meaningful insights into 492 

the understanding of the potential causes of the SST changes. In addition, the underlying 493 

connection between SST and GBI was disclosed through cross wavelet and coherence analysis, 494 

which facilitates further studies exploring the complex mechanisms causing extreme weather 495 

and climate events as well as teleconnection patterns related to the Arctic Ocean.   496 

In this study, the wavelet analyses were carried out on monthly time series to reveal 497 

potential relationships between the Arctic Ocean SST and GBI. A possible caveat can be the 498 

timescale/resolution that can affect results i.e. different models (Gaussian etc.) have not been 499 

considered in this study. Therefore, future studies would be undertaken to improve the 500 
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robustness of the wavelet analyses, and to further explore the long-distance teleconnections 501 

originating from the Arctic Ocean SST changes.  502 
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Table 1. The Arctic Ocean SST characteristics on different temporal scales. 659 
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Statistics 
Interannual SST 

characteristics 

Seasonal SST characteristics 

Winter Spring Summer Autumn 

Mean (℃) 1.302 ± 1.44  0.12 ± 0.18 0.11 ± 0.17 2.82 ± 0.39 2.15 ± 0.36 

Trend (℃/yr) 0.036  0.016 0.015 0.034 0.032 

Max SST (℃) 1.904  0.54  0.518  3.556  3.012  

Min SST (℃) 0.930  –0.116  –0.152  2.268  1.647  

 676 

Table 1. The Arctic Ocean SST characteristics on different temporal scales. 677 
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