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Abstract

Pulse coupled neural network (PCNN) is a kind of visual cortex-inspired biological neural network, which has been proved a
powerful candidate in the field of digital image processing due to its unique characteristics of global coupling and pulse
synchronization. Notably, the inherent parameters estimation issue emerging in the entire system greatly affects the overall
network performance. In this paper, a novel memristor crossbar array with its corresponding peripheral circuits is proposed,
which is able to construct a general memristor-based PCNN (MPCNN) with variable linking coefficient. In order to verify the
effectiveness and generality of the presented network, the single-channel MPCNN is further applied into the multi-focus image
fusion problem with an improved multi-channel configuration. Correspondingly, a new type of MPCNN-based image fusion
algorithm is put forward along with the design of an appropriate mapping function based on the image orientation information
measure. Finally, a series of contrast experiments with comprehensive analysis demonstrate that the proposed fusion method has
superior performances in terms of image quality and fusion effect compared to several existing algorithms.
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1. Introduction

The pulse coupled neural network (PCNN) was originally developed by Eckhorn in 1990 based on the experimental
observations of synchronous pulse bursts in cat and monkey visual cortex [1, 2]. As a biologically inspired neural network model,
the PCNN possesses humerous unique properties including pulse coupling, pulse synchronization, multiplication modulation and
variable threshold [1-3], which makes it an efficient alternative in the field of image processing, such as image enhancement [4,
5], image segmentation [6, 7], image denoising [8, 9], object and edge detection [10, 11], image fusion [12-16], and so forth.
While the PCNN is definitely a parameter-controlled network system [3], the network parameters estimation issue has been
considered as a significant factor affecting the overall performance of all the aforementioned PCNN-based image processing
applications. Correspondingly, an appropriate remedy for addressing this inherent limitation is to constitute an adaptive PCNN
model with flexible network parameters. However, compared with the PCNN-based application research, little work is explored
about the establishment of the parameter-adaptive PCNN model itself. Take the linking coefficient for example, this parameter
represents the connection strength among the neurons in PCNN and plays a key role in the specific dynamic behaviors (including
pulse statistical characteristics, synchronous oscillation, and pulse transmission attribute [1-3]). Based on this, Li et al. present an
adaptive parameters determination strategy to obtain the value of linking coefficient and realize the image segmentation task
successfully [6]. In [12], the linking coefficient variation totally depends on the clarity of the input stimuli, which is beneficial
for making full use of the surrounding information and achieving good image fusion effect. Similarly, the published literature [16]
utilized the average gradient of each pixel as the linking coefficient for the implementation of the infrared and visible image
fusion. Notably, all these above-mentioned adaptive parameter setting methods are realized by program simulation on computer,
which may lead to the issues in terms of time consuming and low efficiency. Hence, the requirement for hardware
implementation of adaptive parameters in PCNN is urgent and necessary.

Fortunately, the recent advent of nanoscale memristors [17, 18] has opened up the potential to address the parameter
estimation problem occurred in the existing PCNN models. The memristor was first theorized as a passive electrical element,
which provides the ever-missing link between the electric charge and magnetic flux [17, 18]. On account of the advantages of
nanoscale geometries, variable conductivity and nonvolatility, the memristor and relevant composite circuits have been
demonstrated effective in many applications, including signal processing [19-21], neuromorphic system [22-24], pattern
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recognition [25-27], nonvolatile memory [28-30], etc. Particularly, the memristor crossbar array with compact construction and
high-speed parallel processing capability is indeed an ideal option for realizing the large-scale information processing and
adaptive neural network [31-33]. Hence, in this paper, a specific construction strategy for the implementation of the
memristor-based PCNN (MPCNN) with adjustable parameter (primarily refers to the linking coefficient) is investigated, and the
main contributions are briefly concluded as follows:

1). A novel memristor-based circuit with crossbar array configuration is designed to realize the self-adjustment linking
coefficient in PCNN, which is expected to promote the hardware implementation of the adaptive PCNN model with advantages
in integration scale reduction, low energy consumption, and high processing efficiency.

2). During the entire establishment process of the MPCNN, the design of the mapping function can be flexible and diverse,
which keeps the general MPCNN model in the optimal network state for different applications.

3). For the sake of verification, the presented MPCNN is further applied to the multi-focus image fusion problem. The contrast
experiments demonstrate that the MPCNN-based fusion method is not only able to achieve a satisfactory fusion result both in the
visual effect and the objective assessment, but also fill the gaps related to the parameter estimation and efficiency enhancement.

4). The entire scheme provides a novel path for implementing PCNN-based applications on the hardware platform, instead of
program simulations on computer.

The outline of the paper is organized as follows. Section 2 describes the TiO2/TiO.x memristor model and its basic
characteristics with formula derivation. Section 3 briefly reviews the classical PCNN model and provides the hardware
implementation scheme of the adaptive linking coefficient in PCNN. Following that, the relevant multi-focus image fusion
strategy is investigated in Section 4. Furthermore, several contrast experiments with the comprehensive analysis are conducted to
illustrate the superiority of the presented algorithm in Section 5. Finally, Section 6 concludes the entire work.

2. Memristor basics

Memiristor is a nonlinear circuit element satisfying Ohm’s law with a time-varying resistance M(t) whose value depends on the
amount of the charge or flux flowing through it [17, 18]. Among the various memristor models, Hewlett Packard (HP) TiO; /
TiO2x memristor (as shown in Fig. 1) is one of the most widely used models owing to its simple physical configuration and
mathematical expression.
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Fig. 1: The HP TiO, / TiO,.xmemristor. (a) The physical model of HP memristor. (b) The corresponding equivalent circuit

Actually, this device can be deemed as a thin TiO, double-layer structure with the total width of D sandwiched between a pair

of platinum (Pt) electrodes. Specifically, the oxygen-deficient layer TiO.x with high conductivity is defined as the doped region,

while the other layer TiO2 with insulating property is named as the undoped region. A voltage applied to the device can drive the

doping front between these two layers, and the resistance variation of the memristor can be achieved. Then, the overall resistance
of HP memiristor, i.e., memristance M(t), can be mathematically expressed by

M () =Ry, +(R.—R)x(t)

1
X(t) = @ €(0,1) )

where Ry and R denote the highest and lowest resistance state respectively. w(t) is the time-independent length of the doped
region. x(t) is the internal state variable with the range of [0, 1] and its differential equation is given by

dx . MR
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where i(t) is the current passing through the memristor, fy(x) is the so-called window function which is able to model the
inevitable nonlinear ionic drift phenomenon near the boundaries of nanoscale devices [34], and parameter L is the average ion
mobility with the approximate value of 1014 m?s?v-1,

In particular, when the window function is set as f(x) =4x-4x? which is a special case of the Joglekar function with the
subscript p=1, the memristor model is closer to the real memristive device and the relevant memristance can be rewritten as [35]
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where A=(Rn-Mg)/(Mo-RyL) is a constant and Mg is the initial memristance with t=0. AR denotes the difference of the two limit
memristances, i.e., AR=Ru-RL.
After the differential operation, Eq. (1) leads to

M () =R, +AR-
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where the variables a=4k/-AR, b=R_+Ry and c=-R_Rn are all constants.
Furthermore, by integrating both sides of Eq. (4) and assuming the initial condition gqo=0, the total quantity of electric charge
required for memristance variation from the initial value Mg to the objective value Moy; can be calculated by
-Mg, +R +&)(-M,+R, +¢
Aoy )= o[ (M * R +)(M +R, )
aAR (-Mgy; + Ry +&) (=M +R_+¢)
where the extra coefficient ¢ is an extremely small constant. It is utilized to make sure that Eq. (5) is valid in any case.

When the switching time required for memristance variation is a fixed time slice AT,, the corresponding current | can be
obtained by
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Fig. 2: The relationship between the logio(¢) and the applied direct current under different switching time (AT, =[0.17, 0.18, 0.19], Unit: Second), and the
parameter setting is provided as below, R =100Q, Ry=16kQ, M=200Q2, Moy=15 kQ and D=10nm.

Especially, when the coefficient ¢ is sufficiently small (£<107?), the switching time for memristance variation AT, keeps a
stable one-to-one correspondence with the amplitude of the current I, as shown in Fig. 2. Meanwhile, it is noted that the small
time slice leads to a large current, which means when the AT, is small enough, the input stimulus can be deemed as a current
pulse with large amplitude.

3. Design of memristor-based pulse coupled neural network

In this section, the previously discussed HP memristor is applied to the classical PCNN model for the implementation of the
variable linking coefficient. The specific description with relevant circuit analysis is provided as follows.

3.1 Classical PCNN model

According to the literature [1-3], PCNN is a kind of self-organizing feedback network with numerous integrate-and-fire
neurons. And the basic structure of the PCNN neuron is actually a dynamic nonlinear system, as shown in Fig. 3.

AT r T T T T T VT T !

v

Receptive field

Modulation field Pulse generator
Fig. 3: The concrete composition of PCNN neuron

From Fig. 3, the neuron is composed of three subsections, where the leftmost dashed box is the receptive field, whose primary
function is to receive input signals from the neighboring neurons and external stimulus, corresponding to linking inputs L and
feeding inputs F respectively. The feeding inputs are multiplied with the biased and the multiplied linking inputs; to create the
total internal activity item U which constructs the modulation field (the central part). Moreover, the remaining part, namely the
pulse generator, is made up of a step function generator and a threshold signal generator. After the comparison between the
internal activity item U and the dynamic threshold 6, the response of the neuron can be acquired. Specifically, when U > 6, the
neuron is in the firing state, the pulse generator is switched on and the relevant output Y is set to 1. Otherwise, when U < 0, the



neuron turns into the non-firing state, the pulse generator is switched off and the output Y is consequently reset to 0. The
corresponding mathematical description is given by [3]

Fy[n]=s, (7a)

Lij [n] =VL Z\Nijlekl [n _1] (7b)
U; [n] = Fy[n](1+ 8L, [n]) (7c)
6;[n]=e6; [n-1]+V,Y, [n-1] (7d)

Y, [n] =step(U; [n]-4,

LU, [n]>6,[n]
[n])= ) N 7e
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where Fj[n] and Li[n] are the feeding inputs and linking inputs of (i, j) neuron at the n™ iteration. U;[n], 85[n] and Yj;[n] are the
internal activity item, dynamic threshold, and output of the neuron respectively. Sj is the external stimulus, g represents the
linking coefficient, wij is the constant synaptic weights, V. and V, are the magnitude scaling terms, and oy is the attenuation time
constant of the threshold 6&;[n].

3.2 Combination of the memristor crossbar array and PCNN

In this section, a memristor-based circuit with the crossbar array configuration is utilized to constitute an adaptive memristive
pulse coupled neural network (MPCNN) with the adjustable linking coefficient £ (as shown in Fig. 4). And the relevant hardware
implementation scheme is further provided in Fig. 5, it is beneficial to deal with the inherent parameter estimation issue occurred
in traditional PCNN.
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Fig. 4: The diagram of memristive PCNN (MPCNN) neuron

From Fig. 4, the modulation field is reconstituted by adding a concrete memristor-based circuit and a programmable current
source. As the input of the memristive circuit, the variable current source | mainly depends on the input stimuli Si and the
relevant mapping function f. Generally, the input stimuli is the relevant information related to the feeding inputs F, and the
mapping function can be adjusted properly for different applications, which is conducive to achieve the optimal network
performance. Consequently, the corresponding output of the memristor-based circuit can be obtained as the variable linking
coefficient $ in the MPCNN.

The specific implementation scheme of the adaptive linking coefficient g, based on the memristor crossbar array is designed
and presented in Fig. 5(a). The fallow dashed box is the memristor crossbar array and the current-controlled memristor is formed
at each crosspoint. The two pale blue boxes denote the necessary peripheral circuits and the specific implementations are
demonstrated through two red ellipses in Fig. 5(b). Furthermore, the current sequence I; (j=[1, n]) denotes the input of the circuit,
which is determined by the input stimuli and the relevant mapping function. As a result, the linking coefficient $ for each neuron
can be obtained in the form of the output voltage, and the essential circuit analysis is illustrated as below.
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Fig. 5: The realization scheme of the adjustable linking coefficient . (a) The specific hardware implementation block diagram. (b) The corresponding circuit
composition.

For the sake of convenience, a general case is discussed in Fig. 5(b), where the Inajj, Inb;j and Inc;; are the corresponding 1/0
ports. Specifically, the M(i, j) denotes the memristive device installed at the crosspoint (i, j), and I(i, j) is the corresponding input
current. According to the nodal voltage method, the circuit can be mathematically expressed as

|(|’J) (I J)+ ( ) ( )

R, +R, M (i, j) (8)
Vz(i,j)—V3(i,j)_Vl(i,j)—Vz(i,j)_l_ R V | J Vz(llj (I J)) Vz(irj) (8b)
R M) (R,+R,) Re R+R R,
LAURAC J) Vs (1.J) (8)
R Ry,
Assuming the R, n=[3, 10] are all identical resistors, the node voltage V(i, j) can be computed by

(R1+R14)( (i, )+3R )+ (M (i, J)+2R,)R,
Moreover, Rs is set at a much larger value than that of other circuit components in Eq. (9); all the node voltages Vi(i, j), Vi, j)
and Vs(i, j) can be further calculated by

Vy(i,§)=(M (i, j)+ R +Ry,)- 1 (i, j)
Vo (i,1) = (R+Ru)- 10, ) (10)
Vs (i J) =Ry 1(i J)

As the output of the entire circuit, the linking coefficient 5(i, j) can be given by

R12 _Vl(i’ j)—Z\/Z(i, j)+V3(i1 J)

Al j)= — (11)
K- R11 V3 ('l J)
where constant K is the amplification factor. Substituting Eq. (10) into Eq. (11), we can get
- M(i, j)-R,
pli.j) - MO 12)
K- R11 R14
Based on Eq. (3), if the value of R is set to the lowest memristance (namely, R1=R.), Eq. (12) can be rewritten as
. AR
A(i. )= (13)

where k=KR11R14 /R12 is a constant. Notably, when the initial memristance Mo goes up to the largest value Ry, the constant A
changes to zero and the linking coefficient g is a fixed value AR/x, irrespective of the electric charge variation.

According to the aforementioned description, two types of time-dependent currents are applied to the memristor M(i, j)
embedded within the presented circuit, and the corresponding linking coefficients can be illustrated in Fig. 6. The specific
parameter setting is given as follows: I1(t)={-0.5, -0.95, -1.8, -3.5, -6.8, -13.0, -94.0 Unit: mA} and the corresponding time
interval is ATj={1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/256 Unit: Second}, j=[1, 8], I2(t)=(0.5t-1)/1000 within the interval of t=[0, 4],
RLZIOOQ, RH=l6kQ, MOZIOOQ, D=10nm, R3~1o=2500kQ, R2=R13=R14=R12:IQ, K=1.
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Fig. 6: The input-output characteristics of the presented circuit. (a) The obtained linking coefficients under different direct currents. (b) The relationship between
the linking coefficient 4 and the linear time-variant current | under the different «, here R11=[2AR, AR, 0.5AR].

In Fig. 6(a), the height of each colored histogram denotes the specific value of the linking coefficient under a given direct
current. Especially, when the time interval is small enough (AT=1/256s), the direct current can be deemed as a current pulse and
the linking coefficient can be obtained rapidly. Meanwhile, when a linear time-variant current is applied into the circuit, the
linking coefficient f exhibits the unique threshold feature with the variation of the input current as shown in Fig. 6(b), and the
ratio between the AR and the adjustment factor x determines the upper boundary of the linking coefficient, i.e., fmax=AR/k.
Specifically, when the linking coefficient changes to its minimum value, i.e., f~0 (the gray region), the presented MPCNN is
kept in an uncoupled state, which means the interconnected neurons are relatively isolated rather than regionally coupled with
each other. As for any single neuron, it only receives the external stimulus S (in general S>0). When t=0, assuming the initial
threshold 6(0)=0, we can obtain U(0)>6(0) based on Eg. (7c), which demonstrates the corresponding output Y(0) is kept at the
high level (firing state). According to Eqg. (7d), the dynamic threshold 6(t) varies to Vy (generally V¢>S) rapidly, and the output of
the neuron returns to the low level. Notably, during the period that the dynamic threshold 6(t) exponentially decays to S, the
output remains at a low level. Until 8(t)=S, the output of the neuron will return to the high level. Hence, the relevant oscillating

period T1(S) can be calculated by
T.(5) :iln(\%j

a&

Similarly, when the linking coefficient >0 (namely, the yellow and lavender regions), the interconnected neurons are
regionally coupled with each other. Note that the red, blue, and green solid lines exhibited in the lavender region maintain the
steady state, which indicates that the presented network is indeed a traditional PCNN with the fixed linking coefficient during
this period. As for the yellow regions, where the linking coefficient changes with the electric charge variation, it essentially
provides the possibility for the implementation of the adaptive neural network with the variable linking coefficient. For clarity
and convenience, we further discuss the dynamic behaviors of the double-coupled neurons with the variable positive linking
coefficient. Specifically, the external stimulus of the two neurons Njj and Ny are expressed as Sij and Sy (satisfying Sij>Sk)
respectively. Without loss of generality, the initial thresholds of the two neurons are set to zero, i.e., 8;(0)=6u(0)=0, which are
smaller than the current internal activity items, and the two neurons are both in the firing state. The dynamic thresholds will
increase to the given constant V, suddenly, and the corresponding internal activity items U;= F;(1+ L) and U= Fu(1+ Slu)
will also grow due to the pulse stimulation generated from the two neurons themselves. Notably, because Vyis larger than the
internal activity items (U;; and Uw), when one of the two neurons fires for the first time, the output state of the other neuron will
not be affected. Furthermore, based on S;;>Sy, the firing frequency of neuron N; is larger than that of neuron N, namely, fij>fq.
After the two neurons both release the pulses for the first time, the neuron Nj;will attain the firing state again at the time t=T(S;).
Then the neuron Ny receives the linking inputs generated from Nj;owing to the mutual coupling, and the relevant internal state
changes from Sy to Su(1+ fLu). At this moment, if Su(1+ SLw)> B, the neuron Ny will be in the firing state as well. The entire
process can be described by the fact that the neuron Ny is captured by the neuron Nj;, and the synchronous firing state of the two
neurons will be kept. On the contrary, if Su(1+ fLu)< G, the specific capture behavior will not happen, which means the two
neurons (Nij and Ni) will generate the pulses with their respective frequencies.

Due to L=V (VL is usually set to 1), and 6k= Sij, the range of the linking coefficient 5 for successful capture can be computed

by

(14)

Sij - Skl

B>——— (15)
SkI
Moreover, based on Eq. (13) and Eg. (15), the electric charge for successful capture satisfies
Sy (AR+x)-S.
g<~ i S0 (AR+£) - Syx (16)

4k AK'(Sij _Skl)

In addition, when the presented adaptive MPCNN is applied into the specific image processing, an appropriate mapping
function between the input stimuli (usually the information of the input source image) and the input current I should be further



built up. Particularly, different applications lead to different mapping functions, which is beneficial for guaranteeing that the
presented neural network can always perform in an effective way. Meanwhile, the diversity of the mapping function makes the
MPCNN a general adaptive model.

4. Multi-focus image fusion algorithm using MPCNN

As a major branch of digital image processing, image fusion is actually a process of integrating complementary information
(mainly including the edge and texture information) from all the input images to generate a relatively high-resolution (HR) image
which provides a more accurate description of the same scene than any of the individual images [12-16, 36-41]. In this section,
the proposed MPCNN is further applied to the multi-focus image fusion with a more compact network topology. Based on the
image orientation information measure, an appropriate mapping function is employed to achieve the input current I. After that,
the corresponding fusion algorithm is presented, and the specific process description is given below.

4.1 Network topology of the multi-channel MPCNN

Based on the structural composition of the presented MPCNN, the number of channels can be changed to take the good
scalability and portability into account. The single-channel model means that there exists only one external input channel for
each neuron, which is indeed a structural defect for multi-focus image fusion. In other words, a single MPCNN with only one
external input channel cannot realize the image fusion successfully. A group of MPCNNSs (at least two MPCNNS) are required to
complete the fusion task in general, which makes the fusion strategy inefficient and time-consuming. Hence, in order to tailor the
best network performance for the image fusion, an improved model with multiple external input channels is exhibited in Fig. 7,
where the number of channels is purposely adjusted and the multiple inputs can be received simultaneously.
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Fig. 7: The topology construction of the multi-channel MPCNN neuron

In Fig. 7, the multi-channel MPCNN model is a compact integration composed by the receptive and modulation fields,
information field and the pulse generator, where the superscript y within the range [1, num] represents the v channel. Compared
with the single-channel MPCNN, the additional external input channels and the information field (the pale blue ellipse) provide
desirable convenience and efficiency improvement for the implementation of the information fusion. Note that the information
field is responsible for selecting the maximum internal activity item in all symmetrical channels, and the specific mathematical
rule is given by

u,[n]= max(Fij“) [n](1+ AL, [n])..... F™ [n] 1+ B, [n]) ) (17)
Fn]=sY.y =[12,..num] (18)

It is important to note that the mathematical description of other variables (including L;[n], &;[n] and Yj[n]) is consistent with
the relevant parts expressed in Eq. (7). Particularly, we can conclude that the original single-channel MPCNN is a special case of
the improved multi-channel MPCNN with the number of channels num=1.

4.2 Appropriate mapping function for multi-focus image fusion

In image fusion, the linking coefficient S generally determines how much important information of the input source images
can be fused into the output image. In this subsection, an appropriate mapping function is designed to achieve the specific input
currents flowing through all the crosspoints in the memristive circuit, and then the corresponding outputs, i.e., the linking
coefficients, can be obtained within a controllable time. The concrete illustration is given below.

According to the existing physiological and psychological research [42, 43], the human visual system (HVS) is highly
sensitive to the image edge orientation information. The image orientation information measure proposed in [42] provides an
effective way to present the edges and texture features of the image, which is suitable for the construction of the mapping
function in image fusion. Specifically, for a given image P, P(i, j) represents the pixel value at the point (i, j). The neighborhood
Re(i, j)={(m, n)] i-r <m <i+r, j-r <n < j+r} centred at the point (i, j) is divided into a shadow region (AL) and a blank region (AR)
by a straight line Iy crossing through the central point as shown in Fig. 8. Parameter r denotes the radius of the neighborhood,
and y is the angle between ly and the horizontal line. The image orientation information is defined by [42]
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Fig. 8: The diagram of the orientation information measure

For simplicity, the mapping function between the input stimuli (i.e., the image orientation information) and the input current is
briefly defined as

1(i.§) = (S4(i.1)) = £O(P(i. ])) (21)
where parameter ¢ is a negative constant.
Especially, if the time interval ATp is set to a sufficiently small value, the input current at the crosspoint (i, j) can be regarded

as a large amplitude pulsed current. The adaptive linking coefficient related to the image orientation information can be
effectively obtained by the memristor-based circuit, and its corresponding mathematical expression can be given by

L AR
ﬂ(l, J)—K(1+ Ae4k§0(P(i,J))ATp)

where EO(P(i, j)) -ATp is the electric charge variation Aq(i, j).

According to Eq. (22), when the parameters &, AR, x and A are given in advance, the large orientation information results in a
large linking coefficient g, which means the source image with abundant edge and texture information will take a relatively high
proportion in the fused image. This is consistent with the fact that the real neurons should have the different linking coefficients,
and therefore of practical significance. Meanwhile, due to the unique parallel processing capability of the crossbar array
configuration, the time required for obtaining the linking coefficient is approximately equal to ATp, in spite of the network scale.

Notably, based on the specific fusion requirement, the linear mapping function f(-) written in Eq. (21) can be further defined as
a nonlinear one with more complex expression. The image orientation information measure is not the only option for the input
stimuli, other available information related to the input source image (like contrast saliency, structure saliency, geometric
moment, sharpness, etc.) can also be utilized for the construction of the mapping function in image fusion. Both of these make
the entire design process more flexible and reasonable.

(22)

4.3 Description of the multi-focus image fusion algorithm

Based on the preliminary work, the specific realization process of the multi-focus image fusion is demonstrated in Fig. 9.
Notably, the input source images P? (y=[1, 2]) should be registered with the same size and resolution, and the corresponding
output is the reconstructed fused image F.. In essence, the entire input-output process is described as follows.

Step 1: Initialization. The first step is mainly for the parameter setting, including the global network parameters and the device
parameters in the memristive circuit.

Step 2: Acquisition of the variable linking coefficient. When the two spatially registered multi-focus images are given, the
relevant orientation information O(P?) can be computed based on Egs. (19) - (20). The input current I’ of the memristor-based
circuit can be derived from Eq. (21), and the corresponding output of the circuit, i.e., the linking coefficient 47, can be obtained
within a small-time interval.
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Fig. 9: The implementation block diagram of the multi-focus image fusion algorithm

Step 3: Decomposition. Specifically, the source images are decomposed into two parts after N-scale Lo gradient minimization
smoothing filtering [44], where the base layer contains the large-scale variations in intensity, and the detail layers contain the
main detail information (edge information, texture details, etc.) of the source image. Their specific expressions can be obtained
respectively by

Base/ = GMSF (Base/,, /) (23a)

Detail/ = Base/, —Base/, | =[1, N] (23b)

where Base/ and Detail/ are the base and detail image in the I layer respectively, GMSF is the so-called Lo gradient
minimization smoothing filtering with the regularized parameter 4 . Here, the initial base image Base; is set as the input image

P?, and the regularized parameter is set to 47 =0.02. Notably, the original image P”can be indistinguishably reconstructed by

synthesizing the N base image and all the detail images.
Step 4: Fusion of the base images. Due to the fact that the Sum-Modified-Laplacian (SML) proposed in [45] is able to measure
variation of pixels, the fusion rule of the N level base layers can be described as below,

ML (i, j) = |ZBaseﬁ (i, j)—Base] (i—1, j)-Base/ (i +1 j)|

(24)
+|2Base] (i, j)—Base] (i, j—1)—Base (i, j +1)
SML, (i, j) = ROZW % W(w,,wc)[MIJN (i+wr,j+wc)]2 (25)

w, =—Row w; =—Col
where ML (i,j)denotes the modified Laplacian at the location (i, j), W(wr, w¢) is a measure window with the size of
(2Row+1)x(2Col +1). In the subsequent experiments, Row=Col=2 and the measure window is set to

12321

) 2 46 42
W(W"W°):8_l 3696 3 (26)

2 46 4 2

12321

which satisfies the normalization rule * "W (w,,w; )=1.
As a result, the fused base image Fy, can be obtained by
i])- Baselg(i., i) if SML i, ) > SML, i, ) )
Basey, (i, j) otherwise

This means that the pixels with larger SML are chosen as the target pixels of the fused base image.
Step 5: Fusion of the detail images. Since the PCNN is capable of catching and detecting the image salient information
effectively, it is suitable for the implementation of the detail images fusion. The relevant fusion rule can be described as below.



1) All the detail images are transmitted into the MPCNN via their respective channels.

2) Based on the initial operation expressed in Step 1 and the variable linking coefficient obtained in Step 2, the variables L;[n],
Ui[n], @5[n], and Y;[n] in the n™ iteration can be computed according to Egs. (7), (17), and (18).

3) If n=N; is satisfied, the iteration operation stops, and the fused detail image Fq for each level can be obtained as follows

() Detaily (i, j) if Uy, (N,) =Uj, (N,)

A Detaill (i, ) if U, (N, ) =U7 (N,)

Note that the total iteration number Ns can be determined by the so-called time matrix [16], and all the interconnected neurons
are permitted for firing only once during the whole fusion process.

Step 6: Image reconstruction. The fused image Fy is obtained by integrating the fused base image F, and the fused detail
images Fa.

(28)

N
F,=F+> F, (29)
I1=1

Actually, the Step 1 and Step 2 are responsible for the parameter setting of the presented MPCNN, with the remaining steps
(i.e., Steps 3-6) are for the specific description of the multi-focus image fusion.

5. Computer simulations and analysis

In order to demonstrate the effectiveness of the presented fusion strategy, a series of contrast experiments with relevant
analysis (including subjective and objective analysis) are conducted based on the MATLAB software platform (operation
environment: CPU Core i7-4710HQ, memory 16GB). The specific parameter setting for the multi-channel MPCNN and the
memristive circuit is provided in Table 1.

Table 1: The collection of the network parameters and device parameters

Multi-channel MPCNN Memristor-based circuit
Variable Value Variable Value
\ 1 Ry 100Q
\7 30 R, 1Q
ap 0.25 R;,[i=3,10] 2500kQ
0.707 1 0.707 Ri2 1Q
w 1 0 1 R14 1Q
0.707 1 0.707 Ru1 19.9kQ
num 2 R 100Q
Ns 200 Ru 20kQ
$ -0.25 Ro 100.1Q
ATp 25us K 1

From Table 1, the multi-channel MPCNN with the initial conditions ;(0)=0, L;(0)=0, Y;(0)=0, and U;;(0)=0 is built up. Based
on the two registered multi-focus bottle images in Fig. 10(a), the whole acquisition process of the variable linking coefficient is
demonstrated step-by-step. Specifically, Fig. 10(b) denotes the corresponding orientation information of the two source images
from Eq. (19) and Eq. (20), where the regions containing rich edge and texture information mean the corresponding orientation
information is relatively large. For simplicity, two red rectangles (i.e., Areal and Area2) with the size of 32x32 are labeled
randomly, which provides a general example to illustrate how to obtain the linking coefficients effectively. According to the
labeled regions (the enlarged versions can be seen in Fig. 10(c)) and the linear mapping function in Eq. (21), the input currents of
the memristor-based circuits can be acquired as exhibited in Fig. 10(d), where the height of the color bar denotes the specific
amplitude of single current pulse for each neuron. Similarly, the corresponding outputs (i.e., the adaptive linking coefficient) of
the memristor-based circuit are demonstrated in the Fig. 10(e) with the same 3D-histogram representation, and the higher bar
indicates the obtained linking coefficient is relatively large.
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Fig. 10. The acquisition process of the variable linking coefficient. (al) ~ (a2) The multi-focus source images (Size: 128x128). (b1) ~ (b2) The orientation
information of the multi-focus bottle images respectively. (c1) ~ (c2) The enlarged Areal and Area 2 (Size: 32x32). (d1) ~ (d2) The corresponding input currents
of the memristor-based circuits for the labeled Areal and Area 2. (el) ~ (e2) The available linking coefficients for the two labeled rectangles.

(a2) (b2) (c2)

After the 3-scale Lo gradient minimization smoothing filtering, the two source images are decomposed into twelve components
(as exhibited in Fig. 11), including three base images and three detail images for each source image. Then, in order to extract and
preserve more image edge and texture information, the generated base images and detail images are fused by using different
fusion rules as demonstrated in the algorithm description. Concretely, the SML is served as a criterion to fuse the base images,
and the MPCNN is applied in the fusion of all the detail images. The final fused image can be reconstructed by synthesizing the
fused base image and detail images effectively.

Fig. 11. The 3-scale image decomposition by L, gradient minimization smoothing filtering. (al) ~ (a3) The base images for the left-focus source image. (b1) ~
(b3) The detail images for the left-focus source image. (c1) ~ (c3) The base images for the right-focus source image. (d1) ~ (d3) The detail images for the
right-focus source image.

@ ) ( () ( 0]
Fig. 12. The fused bottle images under different algorithms. (a) Proposed algorithm. (b) Classical PCNN algorithm [12]. (c) Improved PCNN algorithm [13]. (d)
m-PCNN algorithm [14]. (e) Wavelet-based Contourlet Transform (WBCT)+PCNN algorithm [15]. (f) Non-sampled Contour Transform (NSCT)+PCNN
algorithm [16]. (g) Principal Component Analysis (PCA) algorithm [36]. (h) Discrete Wavelet Transform (DWT) algorithm [37]. (i) Averaging algorithm [38]. (j)
Ratio pyramid algorithm [39]. (k) Filter-Subtract-Decimate (FSD) pyramid algorithm [40]. (1) Gradient pyramid algorithm [41].

During the contrast experiment, the fused images generated by twelve different fusion algorithms are exhibited in Fig. 12,
where the regions labeled by the blue rectangles can be used for the subjective analysis. It is clear that all these fused images
contain some salient features extracted from the both two source images. However, the visual impact of the images shown in
Figs. 12(b), 12(d), 12(g), 12(i) ~ 12(l) is not as good as that of images based on other fusion algorithms on account of the image
ghosting artifact and edge interruption issues. In other words, the remaining fused images in Figs. 12(a), 12(c), 12(e)~12(f) and
12(h) possess relatively sharp edges and fine details.



Table 2: The image quality assessment indexes for fusion performance evaluation [46, 47]

Assessment index

Concrete meaning

Mathematical expression

Mutual information

Defining as the sum of mutual
information between the source
image and the fused image.

Per (9 T)
pG(g)pF(f)
Pue (N, T)
P (h)pF(f)

MI :ZpGF (Q, f)IOQ
g.f

+> Py (h, T)log
h, f

Mean structural
similarity

Representing the similar degree
between the source images and
the final fused image.

SsiM (G,Fu):[ 20,0, +C, ][ 26,0, +C, J‘[COVWCEJ

2 2 2 2
Uy +p;+C ) oy +o7+C, | | 0,01 +C,

MSSIM (G, H,F,)=(SSIM (G,F,)+SSIM (H,F,))/2

Spatial frequency

Indicating the overall activity in
the fused image.

SF =RF? +CF?
1

Denoting the specific L, -
Information entropy information content of the final IE= —z p, log, ( pi)
fused image. i=0

Ne N

23 (Q%F (muno)w® (nun,)+Q™ (n.n,)w (n,,n,))

n=ln.=1

Np N

Yy (wo i) +w (i, )

i=1 j=1
Note: G and H are the two source images, F, is the fused image. psr and pgr are the joint histograms of the source images
and the fused image. pes, pn and peare the corresponding histograms of G, H and F.. 4 and 4 are the average value of G
and F.. g (or) and covy are the relevant standard deviation and covariance of G and F,. ¢, ¢, and ¢ are all constants. RF
and CF are the row frequency and column frequency of the fused image respectively. L. is the overall gray level and p; is
the occurrence probability of pixel i. Ng x Nc is the size of the image, Q" (Q"F) means the relative strength between the
source image and fused image, and w® (w") is the edge strength function which reflects the importance of Q°F (Q"F).

Considering the amount of edge
information transferred from the
source images to the fused image

QGH/Fu

QGH/FH _

Notably, the subjective visual analysis for image fusion mainly depends on the human visual system (HVS) which refers to
several factors, such as image category, observers’ preference, mission requirement, and so forth. Especially, for the cases when
the visual difference is small (as shown in Figs. 12(a), 12(c), 12(e) ~ 12(f) and 12(h)), it is difficult to provide the precise
analysis and sensible judgment for the final fusion effect. Hence, a series of objective image quality assessment indexes are
introduced in Table 2, and the specific objective analysis for the final fused images is described as below.

Table 3: The objective performance evaluation of the fused images under different fusion algorithms

M1 MSSIM SF 1E QEHIFu

Proposed method 5.9825 0.9089 23.1608 7.1402  0.7077
Classical PCNN 5.2313 0.9071 21.8151 7.1216 0.6567
Improved PCNN 5.1426 0.9034 23.0320 7.1237 06774
m-PCNN 4.0998 0.7479 20.4400 7.1269 0.4505
WBCT+PCNN 5.7831 0.8847 23.0103 7.1192  0.6602
NSCT+PCNN 5.1098 0.9028 23.1093 7.1328  0.6842
PCA 4.7985 0.9217 20.6202 7.0872 0.6316
DWT 4.3618 0.8896 23.1562 7.1423  0.6682
Averaging method 4.7459 0.9215 20.5814 7.0865  0.6445
Ratio pyramid 4.6211 0.9066 20.9133 7.1205  0.6398
FSD pyramid 4.2631 0.9005 21.0699 6.9577  0.6233
Gradient pyramid 4.2874 0.9031 21.0038 6.9731  0.6229

Based on Table 3, the algorithm presented in this paper has the largest mutual information (M1=5.9825) among the twelve
fusion algorithms, which means the fused image created by the proposed method acquires the most information from the two
source images. The presented method does not have the outstanding advantage in terms of mean structural similarity (only lies in
the third place MSSIM=0.9089), which illustrates that the presented method is inferior to the PCA and averaging method in the
aspect of maintaining the image luminance, image contrast ratio and image structure. Meanwhile, the specific data shows that the
presented method keeps its leading position in spatial frequency (SF). However, compared with the improved PCNN,
WBCT+PCNN, NSCT+PCNN, and DWT method, the competitive superiority is not evident. Furthermore, except for DWT
method, the fused image generated by the presented method has the largest information entropy (IE=7.1402) among the
remaining fusion algorithms, which means less information is lost during the entire fusion process. In addition, based on the
edge-preserving decomposition strategy and the adjustable linking coefficient , the presented method possesses the largest
QCHFu which denotes that more texture and edge information is effectively saved into the fused image.

6. Conclusions

In this paper, a more practical TiO2/TiO,.« memristor model with its salient features is initially investigated. According to the
specific theoretical description and formula derivation, the one-to-one correspondence between the switching time for
memristance variation and the input current can be acquired. Next, taken account of the inherent parameter estimation issues
occurred in the traditional PCNN model, a novel circuit composed of the memristor crossbar array and the relevant peripheral



circuits is designed in detail, which is able to simulate the adaptive linking coefficient § varying with the different input signals.
Particularly, due to the advantages of large-scale parallel processing, the crossbar array construction provides the benefits of
high-efficiency and time-saving. Meanwhile, the mapping function, as an important component affecting the value of the linking
coefficient 4, should be designed appropriately for the final applications, which makes the presented MPCNN a more general
network model. For the purpose of verification, the presented MPCNN is further applied into the multi-focus image fusion task
with a compact network topological structure (multi-channel configuration). An appropriate mapping function representing the
direct relationship between the input current of the memristive circuit and the input stimuli (the image orientation information) is
constructed, following by the specific illustration of an improved multi-focus image fusion algorithm. Finally, the experimental
results demonstrate the high-performance of the presented algorithm in terms of the visual effect and the objective evaluation
criteria (including M1, MSSIM, SF, 1E, QGH/FY),
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