
Abstract 

Pulse coupled neural network (PCNN) is a kind of visual cortex-inspired biological neural network, which has been proved a 

powerful candidate in the field of digital image processing due to its unique characteristics of global coupling and pulse 

synchronization. Notably, the inherent parameters estimation issue emerging in the entire system greatly affects the overall 

network performance. In this paper, a novel memristor crossbar array with its corresponding peripheral circuits is proposed, 

which is able to construct a general memristor-based PCNN (MPCNN) with variable linking coefficient. In order to verify the 

effectiveness and generality of the presented network, the single-channel MPCNN is further applied into the multi-focus image 

fusion problem with an improved multi-channel configuration. Correspondingly, a new type of MPCNN-based image fusion 

algorithm is put forward along with the design of an appropriate mapping function based on the image orientation information 

measure. Finally, a series of contrast experiments with comprehensive analysis demonstrate that the proposed fusion method has 

superior performances in terms of image quality and fusion effect compared to several existing algorithms. 
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1. Introduction

The pulse coupled neural network (PCNN) was originally developed by Eckhorn in 1990 based on the experimental

observations of synchronous pulse bursts in cat and monkey visual cortex [1, 2]. As a biologically inspired neural network model, 

the PCNN possesses numerous unique properties including pulse coupling, pulse synchronization, multiplication modulation and 

variable threshold [1-3], which makes it an efficient alternative in the field of image processing, such as image enhancement [4, 

5], image segmentation [6, 7], image denoising [8, 9], object and edge detection [10, 11], image fusion [12-16], and so forth. 

While the PCNN is definitely a parameter-controlled network system [3], the network parameters estimation issue has been 

considered as a significant factor affecting the overall performance of all the aforementioned PCNN-based image processing 

applications. Correspondingly, an appropriate remedy for addressing this inherent limitation is to constitute an adaptive PCNN 

model with flexible network parameters. However, compared with the PCNN-based application research, little work is explored 

about the establishment of the parameter-adaptive PCNN model itself. Take the linking coefficient for example, this parameter 

represents the connection strength among the neurons in PCNN and plays a key role in the specific dynamic behaviors (including 

pulse statistical characteristics, synchronous oscillation, and pulse transmission attribute [1-3]). Based on this, Li et al. present an 

adaptive parameters determination strategy to obtain the value of linking coefficient and realize the image segmentation task 

successfully [6]. In [12], the linking coefficient variation totally depends on the clarity of the input stimuli, which is beneficial 

for making full use of the surrounding information and achieving good image fusion effect. Similarly, the published literature [16] 

utilized the average gradient of each pixel as the linking coefficient for the implementation of the infrared and visible image 

fusion. Notably, all these above-mentioned adaptive parameter setting methods are realized by program simulation on computer, 

which may lead to the issues in terms of time consuming and low efficiency. Hence, the requirement for hardware 

implementation of adaptive parameters in PCNN is urgent and necessary. 

Fortunately, the recent advent of nanoscale memristors [17, 18] has opened up the potential to address the parameter 

estimation problem occurred in the existing PCNN models. The memristor was first theorized as a passive electrical element, 

which provides the ever-missing link between the electric charge and magnetic flux [17, 18]. On account of the advantages of 

nanoscale geometries, variable conductivity and nonvolatility, the memristor and relevant composite circuits have been 

demonstrated effective in many applications, including signal processing [19-21], neuromorphic system [22-24], pattern 
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recognition [25-27], nonvolatile memory [28-30], etc. Particularly, the memristor crossbar array with compact construction and 

high-speed parallel processing capability is indeed an ideal option for realizing the large-scale information processing and 

adaptive neural network [31-33]. Hence, in this paper, a specific construction strategy for the implementation of the 

memristor-based PCNN (MPCNN) with adjustable parameter (primarily refers to the linking coefficient) is investigated, and the 

main contributions are briefly concluded as follows: 

1). A novel memristor-based circuit with crossbar array configuration is designed to realize the self-adjustment linking 

coefficient in PCNN, which is expected to promote the hardware implementation of the adaptive PCNN model with advantages 

in integration scale reduction, low energy consumption, and high processing efficiency. 

2). During the entire establishment process of the MPCNN, the design of the mapping function can be flexible and diverse, 

which keeps the general MPCNN model in the optimal network state for different applications. 

3). For the sake of verification, the presented MPCNN is further applied to the multi-focus image fusion problem. The contrast 

experiments demonstrate that the MPCNN-based fusion method is not only able to achieve a satisfactory fusion result both in the 

visual effect and the objective assessment, but also fill the gaps related to the parameter estimation and efficiency enhancement.  

4). The entire scheme provides a novel path for implementing PCNN-based applications on the hardware platform, instead of 

program simulations on computer. 

The outline of the paper is organized as follows. Section 2 describes the TiO2/TiO2-x memristor model and its basic 

characteristics with formula derivation. Section 3 briefly reviews the classical PCNN model and provides the hardware 

implementation scheme of the adaptive linking coefficient in PCNN. Following that, the relevant multi-focus image fusion 

strategy is investigated in Section 4. Furthermore, several contrast experiments with the comprehensive analysis are conducted to 

illustrate the superiority of the presented algorithm in Section 5. Finally, Section 6 concludes the entire work.  

2. Memristor basics 

Memristor is a nonlinear circuit element satisfying Ohm’s law with a time-varying resistance M(t) whose value depends on the 

amount of the charge or flux flowing through it [17, 18]. Among the various memristor models, Hewlett Packard (HP) TiO2 / 

TiO2-x memristor (as shown in Fig. 1) is one of the most widely used models owing to its simple physical configuration and 

mathematical expression.  
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Fig. 1: The HP TiO2 / TiO2-x memristor. (a) The physical model of HP memristor. (b) The corresponding equivalent circuit 

Actually, this device can be deemed as a thin TiO2 double-layer structure with the total width of D sandwiched between a pair 

of platinum (Pt) electrodes. Specifically, the oxygen-deficient layer TiO2-x with high conductivity is defined as the doped region, 

while the other layer TiO2 with insulating property is named as the undoped region. A voltage applied to the device can drive the 

doping front between these two layers, and the resistance variation of the memristor can be achieved. Then, the overall resistance 

of HP memristor, i.e., memristance M(t), can be mathematically expressed by 
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where RH and RL denote the highest and lowest resistance state respectively. w(t) is the time-independent length of the doped 

region. x(t) is the internal state variable with the range of [0, 1] and its differential equation is given by 
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where i(t) is the current passing through the memristor, fp(x) is the so-called window function which is able to model the 

inevitable nonlinear ionic drift phenomenon near the boundaries of nanoscale devices [34], and parameter µv is the average ion 

mobility with the approximate value of 10-14 m2s-1V-1. 

In particular, when the window function is set as f(x) = 4x-4x2 which is a special case of the Joglekar function with the 

subscript p=1, the memristor model is closer to the real memristive device and the relevant memristance can be rewritten as [35] 
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where A=(RH-M0)/(M0-RL) is a constant and M0 is the initial memristance with t=0. ΔR denotes the difference of the two limit 

memristances, i.e., ΔR=RH-RL. 

  After the differential operation, Eq. (1) leads to 
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where the variables a=4k/-ΔR, b=RL+RH and c=-RLRH are all constants. 

  Furthermore, by integrating both sides of Eq. (4) and assuming the initial condition q0=0, the total quantity of electric charge 

required for memristance variation from the initial value M0 to the objective value MObj can be calculated by 
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where the extra coefficient ε is an extremely small constant. It is utilized to make sure that Eq. (5) is valid in any case. 

  When the switching time required for memristance variation is a fixed time slice ΔTq, the corresponding current I can be 

obtained by 

( ) /Obj qI q M T=                                            (6) 
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Fig. 2: The relationship between the log10(ε) and the applied direct current under different switching time (ΔTq =[0.17, 0.18, 0.19], Unit: Second), and the 

parameter setting is provided as below, RL=100Ω, RH=16kΩ, M0=200Ω, MObj=15 kΩ and D=10nm.  

Especially, when the coefficient ε is sufficiently small (ε≤10-2), the switching time for memristance variation ΔTq keeps a 

stable one-to-one correspondence with the amplitude of the current I, as shown in Fig. 2. Meanwhile, it is noted that the small 

time slice leads to a large current, which means when the ΔTq is small enough, the input stimulus can be deemed as a current 

pulse with large amplitude. 

3. Design of memristor-based pulse coupled neural network 

In this section, the previously discussed HP memristor is applied to the classical PCNN model for the implementation of the 

variable linking coefficient. The specific description with relevant circuit analysis is provided as follows. 

3.1 Classical PCNN model 

According to the literature [1-3], PCNN is a kind of self-organizing feedback network with numerous integrate-and-fire 

neurons. And the basic structure of the PCNN neuron is actually a dynamic nonlinear system, as shown in Fig. 3. 
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Fig. 3: The concrete composition of PCNN neuron 

From Fig. 3, the neuron is composed of three subsections, where the leftmost dashed box is the receptive field, whose primary 

function is to receive input signals from the neighboring neurons and external stimulus, corresponding to linking inputs L and 

feeding inputs F respectively. The feeding inputs are multiplied with the biased and the multiplied linking inputs; to create the 

total internal activity item U which constructs the modulation field (the central part). Moreover, the remaining part, namely the 

pulse generator, is made up of a step function generator and a threshold signal generator. After the comparison between the 

internal activity item U and the dynamic threshold θ, the response of the neuron can be acquired. Specifically, when U > θ, the 

neuron is in the firing state, the pulse generator is switched on and the relevant output Y is set to 1. Otherwise, when U ≤ θ, the 



neuron turns into the non-firing state, the pulse generator is switched off and the output Y is consequently reset to 0. The 

corresponding mathematical description is given by [3] 
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where Fij[n] and Lij[n] are the feeding inputs and linking inputs of (i, j) neuron at the nth iteration. Uij[n], θij[n] and Yij[n] are the 

internal activity item, dynamic threshold, and output of the neuron respectively. Sij is the external stimulus, β represents the 

linking coefficient, wijkl is the constant synaptic weights, VL and Vθ are the magnitude scaling terms, and αθ is the attenuation time 

constant of the threshold θij[n]. 

3.2 Combination of the memristor crossbar array and PCNN 

  In this section, a memristor-based circuit with the crossbar array configuration is utilized to constitute an adaptive memristive 

pulse coupled neural network (MPCNN) with the adjustable linking coefficient β (as shown in Fig. 4). And the relevant hardware 

implementation scheme is further provided in Fig. 5, it is beneficial to deal with the inherent parameter estimation issue occurred 

in traditional PCNN. 
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Fig. 4: The diagram of memristive PCNN (MPCNN) neuron 

From Fig. 4, the modulation field is reconstituted by adding a concrete memristor-based circuit and a programmable current 

source. As the input of the memristive circuit, the variable current source I mainly depends on the input stimuli Sti and the 

relevant mapping function f. Generally, the input stimuli is the relevant information related to the feeding inputs F, and the 

mapping function can be adjusted properly for different applications, which is conducive to achieve the optimal network 

performance. Consequently, the corresponding output of the memristor-based circuit can be obtained as the variable linking 

coefficient β in the MPCNN. 

  The specific implementation scheme of the adaptive linking coefficient β, based on the memristor crossbar array is designed 

and presented in Fig. 5(a). The fallow dashed box is the memristor crossbar array and the current-controlled memristor is formed 

at each crosspoint. The two pale blue boxes denote the necessary peripheral circuits and the specific implementations are 

demonstrated through two red ellipses in Fig. 5(b). Furthermore, the current sequence Ij (j=[1, n]) denotes the input of the circuit, 

which is determined by the input stimuli and the relevant mapping function. As a result, the linking coefficient β for each neuron 

can be obtained in the form of the output voltage, and the essential circuit analysis is illustrated as below.  
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Fig. 5: The realization scheme of the adjustable linking coefficient β. (a) The specific hardware implementation block diagram. (b) The corresponding circuit 

composition.

For the sake of convenience, a general case is discussed in Fig. 5(b), where the Inaij, Inbij and Incij are the corresponding I/O 

ports. Specifically, the M(i, j) denotes the memristive device installed at the crosspoint (i, j), and I(i, j) is the corresponding input 

current. According to the nodal voltage method, the circuit can be mathematically expressed as 
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Assuming the Rn, n=[3, 10] are all identical resistors, the node voltage V1(i, j) can be computed by 
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  Moreover, R3 is set at a much larger value than that of other circuit components in Eq. (9); all the node voltages V1(i, j), V2(i, j) 

and V3(i, j) can be further calculated by 
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  As the output of the entire circuit, the linking coefficient β(i, j) can be given by 
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where constant K is the amplification factor. Substituting Eq. (10) into Eq. (11), we can get 
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  Based on Eq. (3), if the value of R1 is set to the lowest memristance (namely, R1=RL), Eq. (12) can be rewritten as 
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where κ=KR11R14 /R12 is a constant. Notably, when the initial memristance M0 goes up to the largest value RH, the constant A 

changes to zero and the linking coefficient β is a fixed value ΔR/κ, irrespective of the electric charge variation. 

According to the aforementioned description, two types of time-dependent currents are applied to the memristor M(i, j) 

embedded within the presented circuit, and the corresponding linking coefficients can be illustrated in Fig. 6. The specific 

parameter setting is given as follows: I1(t)={-0.5, -0.95, -1.8, -3.5, -6.8, -13.0, -94.0 Unit: mA} and the corresponding time 

interval is ΔTj={1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/256 Unit: Second}, j=[1, 8], I2(t)=(0.5t-1)/1000 within the interval of t=[0, 4], 
RL=100Ω, RH=16kΩ, M0=100Ω, D=10nm, R3~10=2500kΩ, R2=R13=R14=R12=1Ω, K=1. 
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Fig. 6: The input-output characteristics of the presented circuit. (a) The obtained linking coefficients under different direct currents. (b) The relationship between 

the linking coefficient β and the linear time-variant current I under the different κ, here R11=[2ΔR, ΔR, 0.5ΔR]. 

In Fig. 6(a), the height of each colored histogram denotes the specific value of the linking coefficient under a given direct 

current. Especially, when the time interval is small enough (ΔT=1/256s), the direct current can be deemed as a current pulse and 

the linking coefficient can be obtained rapidly. Meanwhile, when a linear time-variant current is applied into the circuit, the 

linking coefficient β exhibits the unique threshold feature with the variation of the input current as shown in Fig. 6(b), and the 

ratio between the ΔR and the adjustment factor κ determines the upper boundary of the linking coefficient, i.e., βmax=ΔR/κ. 

Specifically, when the linking coefficient changes to its minimum value, i.e., β≈0 (the gray region), the presented MPCNN is 

kept in an uncoupled state, which means the interconnected neurons are relatively isolated rather than regionally coupled with 

each other. As for any single neuron, it only receives the external stimulus S (in general S>0). When t=0, assuming the initial 

threshold θ(0)=0, we can obtain U(0)>θ(0) based on Eq. (7c), which demonstrates the corresponding output Y(0) is kept at the 

high level (firing state). According to Eq. (7d), the dynamic threshold θ(t) varies to Vθ (generally Vθ>S) rapidly, and the output of 

the neuron returns to the low level. Notably, during the period that the dynamic threshold θ(t) exponentially decays to S, the 

output remains at a low level. Until θ(t)=S, the output of the neuron will return to the high level. Hence, the relevant oscillating 

period T1(S) can be calculated by 
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Similarly, when the linking coefficient β>0 (namely, the yellow and lavender regions), the interconnected neurons are 

regionally coupled with each other. Note that the red, blue, and green solid lines exhibited in the lavender region maintain the 

steady state, which indicates that the presented network is indeed a traditional PCNN with the fixed linking coefficient during 

this period. As for the yellow regions, where the linking coefficient changes with the electric charge variation, it essentially 

provides the possibility for the implementation of the adaptive neural network with the variable linking coefficient. For clarity 

and convenience, we further discuss the dynamic behaviors of the double-coupled neurons with the variable positive linking 

coefficient. Specifically, the external stimulus of the two neurons Nij and Nkl are expressed as Sij and Skl (satisfying Sij>Skl) 

respectively. Without loss of generality, the initial thresholds of the two neurons are set to zero, i.e., θij(0)=θkl(0)=0, which are 

smaller than the current internal activity items, and the two neurons are both in the firing state. The dynamic thresholds will 

increase to the given constant Vθ suddenly, and the corresponding internal activity items Uij= Fij(1+ βLij) and Ukl= Fkl(1+ βLkl) 

will also grow due to the pulse stimulation generated from the two neurons themselves. Notably, because Vθ is larger than the 

internal activity items (Uij and Ukl), when one of the two neurons fires for the first time, the output state of the other neuron will 

not be affected. Furthermore, based on Sij>Skl, the firing frequency of neuron Nij is larger than that of neuron Nkl, namely, fij>fkl. 

After the two neurons both release the pulses for the first time, the neuron Nij will attain the firing state again at the time t=T(Sij). 

Then the neuron Nkl receives the linking inputs generated from Nij owing to the mutual coupling, and the relevant internal state 

changes from Skl to Skl(1+ βLkl). At this moment, if Skl(1+ βLkl)> θkl, the neuron Nkl will be in the firing state as well. The entire 

process can be described by the fact that the neuron Nkl is captured by the neuron Nij, and the synchronous firing state of the two 

neurons will be kept. On the contrary, if Skl(1+ βLkl)< θkl, the specific capture behavior will not happen, which means the two 

neurons (Nij and Nkl) will generate the pulses with their respective frequencies. 

  Due to Lkl=VL (VL is usually set to 1), and θkl= Sij, the range of the linking coefficient β for successful capture can be computed 

by 
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Moreover, based on Eq. (13) and Eq. (15), the electric charge for successful capture satisfies 
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In addition, when the presented adaptive MPCNN is applied into the specific image processing, an appropriate mapping 

function between the input stimuli (usually the information of the input source image) and the input current I should be further 



built up. Particularly, different applications lead to different mapping functions, which is beneficial for guaranteeing that the 

presented neural network can always perform in an effective way. Meanwhile, the diversity of the mapping function makes the 

MPCNN a general adaptive model. 

4. Multi-focus image fusion algorithm using MPCNN 

As a major branch of digital image processing, image fusion is actually a process of integrating complementary information 

(mainly including the edge and texture information) from all the input images to generate a relatively high-resolution (HR) image 

which provides a more accurate description of the same scene than any of the individual images [12-16, 36-41]. In this section, 

the proposed MPCNN is further applied to the multi-focus image fusion with a more compact network topology. Based on the 

image orientation information measure, an appropriate mapping function is employed to achieve the input current I. After that, 

the corresponding fusion algorithm is presented, and the specific process description is given below. 

4.1 Network topology of the multi-channel MPCNN 

Based on the structural composition of the presented MPCNN, the number of channels can be changed to take the good 

scalability and portability into account. The single-channel model means that there exists only one external input channel for 

each neuron, which is indeed a structural defect for multi-focus image fusion. In other words, a single MPCNN with only one 

external input channel cannot realize the image fusion successfully. A group of MPCNNs (at least two MPCNNs) are required to 

complete the fusion task in general, which makes the fusion strategy inefficient and time-consuming. Hence, in order to tailor the 

best network performance for the image fusion, an improved model with multiple external input channels is exhibited in Fig. 7, 

where the number of channels is purposely adjusted and the multiple inputs can be received simultaneously. 
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Fig. 7: The topology construction of the multi-channel MPCNN neuron 

In Fig. 7, the multi-channel MPCNN model is a compact integration composed by the receptive and modulation fields, 

information field and the pulse generator, where the superscript γ within the range [1, num] represents the γth channel. Compared 

with the single-channel MPCNN, the additional external input channels and the information field (the pale blue ellipse) provide 

desirable convenience and efficiency improvement for the implementation of the information fusion. Note that the information 

field is responsible for selecting the maximum internal activity item in all symmetrical channels, and the specific mathematical 

rule is given by 

                 ( )    ( )( )(1) (1) ( ) ( )max 1 ,..., 1num num

ij ij ij ij ijU n F n L n F n L n = + +                        (17) 

   ( ) ( ) , 1, 2,...ij ijF n S num  = =                                      (18) 

  It is important to note that the mathematical description of other variables (including Lij[n], θij[n] and Yij[n]) is consistent with 

the relevant parts expressed in Eq. (7). Particularly, we can conclude that the original single-channel MPCNN is a special case of 

the improved multi-channel MPCNN with the number of channels num=1. 

4.2 Appropriate mapping function for multi-focus image fusion 

  In image fusion, the linking coefficient β generally determines how much important information of the input source images 

can be fused into the output image. In this subsection, an appropriate mapping function is designed to achieve the specific input 

currents flowing through all the crosspoints in the memristive circuit, and then the corresponding outputs, i.e., the linking 

coefficients, can be obtained within a controllable time. The concrete illustration is given below. 

According to the existing physiological and psychological research [42, 43], the human visual system (HVS) is highly 

sensitive to the image edge orientation information. The image orientation information measure proposed in [42] provides an 

effective way to present the edges and texture features of the image, which is suitable for the construction of the mapping 

function in image fusion. Specifically, for a given image P, P(i, j) represents the pixel value at the point (i, j). The neighborhood 

Rr(i, j)={(m, n)| i-r ≤ m ≤ i+r, j-r ≤ n ≤ j+r} centred at the point (i, j) is divided into a shadow region (AL) and a blank region (AR) 

by a straight line lχ crossing through the central point as shown in Fig. 8. Parameter r denotes the radius of the neighborhood, 

and χ is the angle between lχ and the horizontal line. The image orientation information is defined by [42] 
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max min
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Fig. 8: The diagram of the orientation information measure 

For simplicity, the mapping function between the input stimuli (i.e., the image orientation information) and the input current is 

briefly defined as 

( ) ( )( ) ( )( )ti, , ,= =I i j f S i j O P i j                                  (21) 

where parameter ξ is a negative constant. 

Especially, if the time interval ΔTP is set to a sufficiently small value, the input current at the crosspoint (i, j) can be regarded 

as a large amplitude pulsed current. The adaptive linking coefficient related to the image orientation information can be 

effectively obtained by the memristor-based circuit, and its corresponding mathematical expression can be given by 

( )
( )( )( )4 ,

, =
1









+ pk O P i j T

R
i j

Ae
                                   (22) 

where ξO(P(i, j)) ·ΔTP is the electric charge variation Δq(i, j). 

According to Eq. (22), when the parameters ξ, ΔR, κ and A are given in advance, the large orientation information results in a 

large linking coefficient β, which means the source image with abundant edge and texture information will take a relatively high 

proportion in the fused image. This is consistent with the fact that the real neurons should have the different linking coefficients, 

and therefore of practical significance. Meanwhile, due to the unique parallel processing capability of the crossbar array 

configuration, the time required for obtaining the linking coefficient is approximately equal to ΔTP, in spite of the network scale. 

Notably, based on the specific fusion requirement, the linear mapping function f(·) written in Eq. (21) can be further defined as 

a nonlinear one with more complex expression. The image orientation information measure is not the only option for the input 

stimuli, other available information related to the input source image (like contrast saliency, structure saliency, geometric 

moment, sharpness, etc.) can also be utilized for the construction of the mapping function in image fusion. Both of these make 

the entire design process more flexible and reasonable. 

4.3 Description of the multi-focus image fusion algorithm 

Based on the preliminary work, the specific realization process of the multi-focus image fusion is demonstrated in Fig. 9. 

Notably, the input source images Pγ (γ=[1, 2]) should be registered with the same size and resolution, and the corresponding 

output is the reconstructed fused image Fu. In essence, the entire input-output process is described as follows. 

Step 1: Initialization. The first step is mainly for the parameter setting, including the global network parameters and the device 

parameters in the memristive circuit. 

Step 2: Acquisition of the variable linking coefficient. When the two spatially registered multi-focus images are given, the 

relevant orientation information O(Pγ) can be computed based on Eqs. (19) - (20). The input current Iγ of the memristor-based 

circuit can be derived from Eq. (21), and the corresponding output of the circuit, i.e., the linking coefficient βγ, can be obtained 

within a small-time interval. 
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Fig. 9: The implementation block diagram of the multi-focus image fusion algorithm 

Step 3: Decomposition. Specifically, the source images are decomposed into two parts after N-scale L0 gradient minimization 

smoothing filtering [44], where the base layer contains the large-scale variations in intensity, and the detail layers contain the 

main detail information (edge information, texture details, etc.) of the source image. Their specific expressions can be obtained 

respectively by 

 ( )1,
  −=l l lBase GMSF Base                                     (23a) 

1 , [1, ]  

−= − =l l lDetail Base Base l N                                  (23b) 

where 

lBase and 

lDetail are the base and detail image in the lth layer respectively, GMSF is the so-called L0 gradient 

minimization smoothing filtering with the regularized parameter l . Here, the initial base image 0

Base is set as the input image 

Pγ, and the regularized parameter is set to =0.02l . Notably, the original image Pγ can be indistinguishably reconstructed by 

synthesizing the Nth base image and all the detail images. 

Step 4: Fusion of the base images. Due to the fact that the Sum-Modified-Laplacian (SML) proposed in [45] is able to measure 

variation of pixels, the fusion rule of the Nth level base layers can be described as below, 
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where ( ),
NML i j denotes the modified Laplacian at the location (i, j), W(wr, wc) is a measure window with the size of 

( ) ( )2 1 2 1+  +Row Col . In the subsequent experiments, Row=Col=2 and the measure window is set to 

( )

1 2 3 2 1

2 4 6 4 2
1

, 3 6 9 6 3
81

2 4 6 4 2

1 2 3 2 1

 
 
 
 =
 
 
 
 

r cW w w                                     (26) 

which satisfies the normalization rule ( ), =1
r c

r c

w w

W w w .  

As a result, the fused base image Fb can be obtained by 
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                            (27) 

  This means that the pixels with larger SML are chosen as the target pixels of the fused base image. 

Step 5: Fusion of the detail images. Since the PCNN is capable of catching and detecting the image salient information 

effectively, it is suitable for the implementation of the detail images fusion. The relevant fusion rule can be described as below. 



1) All the detail images are transmitted into the MPCNN via their respective channels. 

2) Based on the initial operation expressed in Step 1 and the variable linking coefficient obtained in Step 2, the variables Lij[n], 

Uij[n], θij[n], and Yij[n] in the nth iteration can be computed according to Eqs. (7), (17), and (18).  

3) If n=Ns is satisfied, the iteration operation stops, and the fused detail image Fdl for each level can be obtained as follows 

( )
( ) ( ) ( )

( ) ( ) ( )

1 1
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2 2
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,
,

,
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l ij l s ij l s

dl

l ij l s ij l s

Detail i j if U N U N
F i j

Detail i j if U N U N
                               (28) 

Note that the total iteration number Ns can be determined by the so-called time matrix [16], and all the interconnected neurons 

are permitted for firing only once during the whole fusion process. 

Step 6: Image reconstruction. The fused image Fu is obtained by integrating the fused base image Fb and the fused detail 

images Fdl. 

1=

= + 
N

u b dl

l

F F F                                        (29) 

Actually, the Step 1 and Step 2 are responsible for the parameter setting of the presented MPCNN, with the remaining steps 

(i.e., Steps 3-6) are for the specific description of the multi-focus image fusion. 

5. Computer simulations and analysis 

In order to demonstrate the effectiveness of the presented fusion strategy, a series of contrast experiments with relevant 

analysis (including subjective and objective analysis) are conducted based on the MATLAB software platform (operation 

environment: CPU Core i7-4710HQ, memory 16GB). The specific parameter setting for the multi-channel MPCNN and the 

memristive circuit is provided in Table 1. 

Table 1: The collection of the network parameters and device parameters 

Multi-channel MPCNN Memristor-based circuit 

Variable Value Variable Value 

VL 1 R1 100Ω 

Vθ 30 R2 1Ω 

αθ 0.25 Ri,[i=3,10] 2500kΩ 

w 

0.707 1 0.707

1 0 1

0.707 1 0.707

 
 
 
  

 

R12 1Ω 

R14 1Ω 

R11 19.9kΩ 

num 2 RL  100Ω 

NS 200 RH 20kΩ 

ξ -0.25 R0 100.1Ω 

ΔTP 25μs K 1 

From Table 1, the multi-channel MPCNN with the initial conditions θij(0)=0, Lij(0)=0, Yij(0)=0, and Uij(0)=0 is built up. Based 

on the two registered multi-focus bottle images in Fig. 10(a), the whole acquisition process of the variable linking coefficient is 

demonstrated step-by-step. Specifically, Fig. 10(b) denotes the corresponding orientation information of the two source images 

from Eq. (19) and Eq. (20), where the regions containing rich edge and texture information mean the corresponding orientation 

information is relatively large. For simplicity, two red rectangles (i.e., Area1 and Area2) with the size of 32x32 are labeled 

randomly, which provides a general example to illustrate how to obtain the linking coefficients effectively. According to the 

labeled regions (the enlarged versions can be seen in Fig. 10(c)) and the linear mapping function in Eq. (21), the input currents of 

the memristor-based circuits can be acquired as exhibited in Fig. 10(d), where the height of the color bar denotes the specific 

amplitude of single current pulse for each neuron. Similarly, the corresponding outputs (i.e., the adaptive linking coefficient) of 

the memristor-based circuit are demonstrated in the Fig. 10(e) with the same 3D-histogram representation, and the higher bar  

indicates the obtained linking coefficient is relatively large. 
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Fig. 10. The acquisition process of the variable linking coefficient. (a1) ~ (a2) The multi-focus source images (Size: 128x128). (b1) ~ (b2) The orientation 

information of the multi-focus bottle images respectively. (c1) ~ (c2) The enlarged Area1 and Area 2 (Size: 32x32). (d1) ~ (d2) The corresponding input currents 

of the memristor-based circuits for the labeled Area1 and Area 2. (e1) ~ (e2) The available linking coefficients for the two labeled rectangles. 

After the 3-scale L0 gradient minimization smoothing filtering, the two source images are decomposed into twelve components 

(as exhibited in Fig. 11), including three base images and three detail images for each source image. Then, in order to extract and 

preserve more image edge and texture information, the generated base images and detail images are fused by using different 

fusion rules as demonstrated in the algorithm description. Concretely, the SML is served as a criterion to fuse the base images, 

and the MPCNN is applied in the fusion of all the detail images. The final fused image can be reconstructed by synthesizing the 

fused base image and detail images effectively. 

 
(a1)               (a2)              (a3)              (b1)               (b2)              (b3) 

 
(c1)               (c2)              (c3)              (d1)               (d2)              (d3) 

Fig. 11. The 3-scale image decomposition by L0 gradient minimization smoothing filtering. (a1) ~ (a3) The base images for the left-focus source image. (b1) ~ 

(b3) The detail images for the left-focus source image. (c1) ~ (c3) The base images for the right-focus source image. (d1) ~ (d3) The detail images for the 

right-focus source image. 

 
(a)                (b)               (c)                (d)               (e)                (f) 

 
(g)                (h)               (i)                (j)               (k)                (l) 

Fig. 12. The fused bottle images under different algorithms. (a) Proposed algorithm. (b) Classical PCNN algorithm [12]. (c) Improved PCNN algorithm [13]. (d) 
m-PCNN algorithm [14]. (e) Wavelet-based Contourlet Transform (WBCT)+PCNN algorithm [15]. (f) Non-sampled Contour Transform (NSCT)+PCNN 

algorithm [16]. (g) Principal Component Analysis (PCA) algorithm [36]. (h) Discrete Wavelet Transform (DWT) algorithm [37]. (i) Averaging algorithm [38]. (j) 

Ratio pyramid algorithm [39]. (k) Filter-Subtract-Decimate (FSD) pyramid algorithm [40]. (l) Gradient pyramid algorithm [41]. 

During the contrast experiment, the fused images generated by twelve different fusion algorithms are exhibited in Fig. 12, 

where the regions labeled by the blue rectangles can be used for the subjective analysis. It is clear that all these fused images 

contain some salient features extracted from the both two source images. However, the visual impact of the images shown in 

Figs. 12(b), 12(d), 12(g), 12(i) ~ 12(l) is not as good as that of images based on other fusion algorithms on account of the image 

ghosting artifact and edge interruption issues. In other words, the remaining fused images in Figs. 12(a), 12(c), 12(e)~12(f)  and 

12(h) possess relatively sharp edges and fine details. 

 



Table 2: The image quality assessment indexes for fusion performance evaluation [46, 47] 

Assessment index Concrete meaning Mathematical expression 

Mutual information 

Defining as the sum of mutual 

information between the source 
image and the fused image. 
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Note: G and H are the two source images, Fu is the fused image. pGF and pGF are the joint histograms of the source images 

and the fused image. pG, pH and pF are the corresponding histograms of G, H and Fu. μg and μf are the average value of G 
and Fu. σg (σf) and covgf are the relevant standard deviation and covariance of G and Fu. c1, c2 and c3 are all constants. RF 

and CF are the row frequency and column frequency of the fused image respectively. Le is the overall gray level and pi is 

the occurrence probability of pixel i. NR x NC is the size of the image, QGF (QHF) means the relative strength between the 

source image and fused image, and wG (wH) is the edge strength function which reflects the importance of QGF (QHF). 

Notably, the subjective visual analysis for image fusion mainly depends on the human visual system (HVS) which refers to 

several factors, such as image category, observers’ preference, mission requirement, and so forth. Especially, for the cases when 

the visual difference is small (as shown in Figs. 12(a), 12(c), 12(e) ~ 12(f) and 12(h)), it is difficult to provide the precise 

analysis and sensible judgment for the final fusion effect. Hence, a series of objective image quality assessment indexes are 

introduced in Table 2, and the specific objective analysis for the final fused images is described as below. 

Table 3: The objective performance evaluation of the fused images under different fusion algorithms 
 MI MSSIM SF IE QGH/Fu 

Proposed method 5.9825 0.9089 23.1608 7.1402 0.7077 

Classical PCNN 5.2313 0.9071 21.8151 7.1216 0.6567 
Improved PCNN 5.1426 0.9034 23.0320 7.1237 0.6774 

m-PCNN 4.0998 0.7479 20.4400 7.1269 0.4505 

WBCT+PCNN 5.7831 0.8847 23.0103 7.1192 0.6602 
NSCT+PCNN 5.1098 0.9028 23.1093 7.1328 0.6842 

PCA 4.7985 0.9217 20.6202 7.0872 0.6316 

DWT 4.3618 0.8896 23.1562 7.1423 0.6682 
Averaging method 4.7459 0.9215 20.5814 7.0865 0.6445 

Ratio pyramid 4.6211 0.9066 20.9133 7.1205 0.6398 

FSD pyramid 4.2631 0.9005 21.0699 6.9577 0.6233 
Gradient pyramid 4.2874 0.9031 21.0038 6.9731 0.6229 

Based on Table 3, the algorithm presented in this paper has the largest mutual information (MI=5.9825) among the twelve 

fusion algorithms, which means the fused image created by the proposed method acquires the most information from the two 

source images. The presented method does not have the outstanding advantage in terms of mean structural similarity (only lies in 

the third place MSSIM=0.9089), which illustrates that the presented method is inferior to the PCA and averaging method in the 

aspect of maintaining the image luminance, image contrast ratio and image structure. Meanwhile, the specific data shows that the 

presented method keeps its leading position in spatial frequency (SF). However, compared with the improved PCNN, 

WBCT+PCNN, NSCT+PCNN, and DWT method, the competitive superiority is not evident. Furthermore, except for DWT 

method, the fused image generated by the presented method has the largest information entropy (IE=7.1402) among the 

remaining fusion algorithms, which means less information is lost during the entire fusion process. In addition, based on the 

edge-preserving decomposition strategy and the adjustable linking coefficient β, the presented method possesses the largest 

QGH/Fu, which denotes that more texture and edge information is effectively saved into the fused image. 

6. Conclusions 

In this paper, a more practical TiO2/TiO2-x memristor model with its salient features is initially investigated. According to the 

specific theoretical description and formula derivation, the one-to-one correspondence between the switching time for 

memristance variation and the input current can be acquired. Next, taken account of the inherent parameter estimation issues 

occurred in the traditional PCNN model, a novel circuit composed of the memristor crossbar array and the relevant peripheral 



circuits is designed in detail, which is able to simulate the adaptive linking coefficient β varying with the different input signals. 

Particularly, due to the advantages of large-scale parallel processing, the crossbar array construction provides the benefits of 

high-efficiency and time-saving. Meanwhile, the mapping function, as an important component affecting the value of the linking 

coefficient β, should be designed appropriately for the final applications, which makes the presented MPCNN a more general 

network model. For the purpose of verification, the presented MPCNN is further applied into the multi-focus image fusion task 

with a compact network topological structure (multi-channel configuration). An appropriate mapping function representing the 

direct relationship between the input current of the memristive circuit and the input stimuli (the image orientation information) is 

constructed, following by the specific illustration of an improved multi-focus image fusion algorithm. Finally, the experimental 

results demonstrate the high-performance of the presented algorithm in terms of the visual effect and the objective evaluation 

criteria (including MI, MSSIM, SF, IE, QGH/Fu).  
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