
1 

Near-sensor and in-sensor computing 1 

Feichi Zhou1 and Yang Chai1, * 2 

1Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 3 

Kowloon, Hong Kong, P. R. China 4 

*Corresponding author: E-mail: ychai@polyu.edu.hk (Y.C.)5 

6 

Abstract 7 

The number of nodes in sensory network is rapidly growing, and generates a huge 8 

amount of redundant data, which forces frequent data exchange in sensory terminals 9 

and computing units, occupies large computation, memory and communication 10 

resources, and consumes substantial energy during data transfer. To efficiently process 11 

massive data and decrease power consumption, it is quite necessary to develop new 12 

computing paradigms that are close to or inside sensory networks, and can reduce the 13 

redundant data movement between sensing and processing units for enhancing speed, 14 

power efficiency and integration density. Here we propose near-sensor and in-sensor 15 

computing paradigms for moving part of computation tasks to sensory terminals. We 16 

classify their functions into low-level and high-level processing, and discuss the 17 

implementation of near/in-sensor computing for different physical sensing systems. We 18 

also analyse the existing challenges and provide possible solutions for hardware 19 

implementation of integrated sensing and processing units using advanced 20 

manufacturing technologies.  21 

22 

This is the Pre-Published Version.
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use 
(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect 
post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41928-020-00501-9.



2 

 

     The ever-increasing and ubiquitous sensor nodes distributed in the Internet of Things  23 

generate large volume of data, which are continuously growing at a rapid pace. The 24 

number of sensory nodes is predicted to reach 75 billion by 2025 and surge to 125 25 

billion by 2030.1 In these sensory nodes, a large portion of generated raw data are 26 

unstructured and redundant. In typical designs, the sensory systems are physically 27 

separated from computing units because of different requirements and manufacturing 28 

technologies of sensing and computation units, where sensing functions are realized in 29 

noisy analogue domain, and computing is usually executed in digital format with von 30 

Neumann architecture. As a result, voluminous quantities of raw data are locally 31 

acquired from sensor terminals, and transferred between sensing and computation units 32 

or cloud computing, which poses significant challenges for energy consumption, 33 

response time, data storage, communication bandwidth, and security.  34 

     The data proliferation from ubiquitously distributed sensors gives rise to massive 35 

increases in information processing demands, especially for the sensor-rich platforms 36 

(e.g., intelligent vehicles, autonomous and micro robots, mobile medical, wearable 37 

electronics) and the applications with strict delay requirements (e.g., real-time video 38 

analysis, cooperative autonomous driving), and makes the computing architecture more 39 

data-centric instead of computation-centric. This data-centric computing paradigm has 40 

a number of new characteristics that are dramatically different from conventional 41 

computing, and thus demands new computational paradigms, which in turn require new 42 

hardware platforms to match such characteristics for achieving high performance and 43 

energy efficiency. To process information more efficiently using the same or less power, 44 

we need to develop new computing paradigms to shift some of the computational tasks 45 

close to the sensory devices, which reduces redundant data movement, and generates, 46 

collects and consumes the data locally. 2 47 
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Near-sensor and in-sensor computing paradigms emerge as effective alternatives for 48 

efficient sensory data processing by residing computing units at sensor endpoint or 49 

equipping sensors with computing capabilities to reduce or eliminate data transfer and 50 

conversion at the sensor/processor interface. Fig. 1 illustrates the comparison of 51 

conventional sensory, near-sensor and in-sensor computing architectures. In 52 

conventional architecture, the analogue sensory data are firstly converted to digital 53 

signal through analogue-to-digital conversion (ADC), temporally stored in a memory 54 

unit, and then fetched from memory to processing units, in which the data transmission 55 

and conversion result in inefficient power use and high latency. In the near-sensor 56 

computing architecture, the processing units or the accelerators locate beside sensors 57 

to execute specific computational tasks at the sensor endpoints, which can resolve the 58 

bottlenecks between sensors and processors by optimizing sensor/processor interface, 59 

minimizing data transfer and conversion, and reducing redundant data. In the in-sensor 60 

computing architecture, individual self-adaptive sensor or multiple connected sensors 61 

can directly process sensory information, which further eliminates the sensor/processor 62 

interface and combines sensing and computing functions. 63 

In this perspective, we will illustrate the functions of near/in-sensor computing 64 

paradigms, introduce their design strategies, architectures, and representative examples, 65 

and identify key challenges and future research directions. We will also provide 66 

possible ways for the hardware deployment of the near/in-sensor computing 67 

architectures. 68 

Near/in-sensor computing for low-level sensory processing  69 

    Integrated sensory/computing systems are featured with hierarchical and 70 

feedforward nature, ranging from low-level sensory information to high-level abstract 71 

representation. Low-level information processing involves selectively encoding 72 



4 

 

spatiotemporal features from unstructured sensory signals and provides essential 73 

information to complicated circuits for high-level processing. At this stage, the outputs 74 

of low-level processing are still the representations of the sensory signals. The low-75 

level processing can preliminarily and selectively extract useful data from large volume 76 

of raw data by suppressing unwanted noise or distortion, or enhance the feature for 77 

further processing, which are important processing steps in data-intensive applications. 78 

The low-level sensory processing, such as noise suppression (filtering), background 79 

extraction, feature enhancement, motion extraction, etc., can effectively reduce the 80 

computational load and improve the efficiencies for high-level processing tasks, and 81 

can serve as the interface between sensing and other high-level processing units, 82 

enabling parallel and real-time processing for delay-sensitive applications. Low-level 83 

sensory processing units typically include sensor arrays, readout circuits, ADCs and 84 

processing units. The sensor arrays are usually connected with clock multiplexed 85 

circuits, and one processor handles all the sensory data in series. Fig. 2 schematically 86 

illustrates low-level processing for visual, auditory, and olfactory signals before and 87 

after processing.  88 

    Among various sensors, image sensors can be fabricated with CMOS-compatible 89 

process over a large scale. With the increase of image pixel and frame rate, the image 90 

processing has become a typical data-intensive computing. Low-level image processing 91 

involves edge and contrast enhancement, noise reduction (Fig. 2a). The image 92 

processing with pulse-domain based algorithms only requires simple logic operation 93 

and circuit implementation.3,4 A vision chip by planar system-on-chip (SoC) integration 94 

consists of photodiode arrays, pulse frequency modulation circuits, and simple 1-bit 95 

ADC. Compared with conventional spatial filtering algorithms, e.g., 96 

Gradient/Laplacian methods or Gaussian filtering (for edge enhancement) and 97 



5 

 

histogram processing methods (for contrast enhancement) that require complex circuits 98 

with adders and multipliers,5,6 the pulse domain algorithm eliminates the use of adders 99 

or multipliers, thus reducing circuitry complexity and improving the fill factor.  100 

   Compared with digital processing, analogue computing can directly process analogue 101 

signals without ADC. Conventional sensors usually compute a linear function of signal 102 

intensity, while analogue processing circuits connected with the sensors can perform 103 

nonlinear mapping functions, spatiotemporal filtering, and adaption. For example, 104 

adaptive image sensors can employ logarithmic output respect to light illumination, 105 

making the image contrast independent on background change. Additionally, they can 106 

serve as filters to output a low gain for static and low-frequency stimuli, and a high gain 107 

for transient and high-frequency stimuli. 7-9 108 

Emerging sensors can be used for low-level image processing with in-sensor 109 

configuration. Different from near-sensor approach that alters the output using external 110 

circuits, the sensors in-situ respond to external stimuli and output different 111 

characteristics. We designed and demonstrated an optoelectronic memory for 112 

neuromorphic vision sensor with both light-intensity-dependent and time-dependent 113 

plasticity, which allows to directly perform low-level processing for analogue sensing 114 

data. We utilize self-adaptive characteristics of the sensor, which adaptively reduces 115 

the amplitude in dark pixel, and retains the features in bright pixel. In this approach, the 116 

sensor array presents in-situ image pre-processing, including image contrast 117 

enhancement and background smoothing, which is also proved to improve image 118 

recognition efficiency. 10 Wang et al. developed a vision sensor with gate-tuneable 119 

positive (ON) and negative photo-responses (OFF) to emulate the characteristics of 120 

bipolar cells in human retina. The reconfigurable sensor array is constructed to extract 121 

the edges in the image through the combination of excitatory and inhibitory interactions 122 
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between neighbouring pixels.11 The in-sensor configuration can greatly simplify the 123 

circuitry of sensory processing and eliminate the sensor/processor interface.  124 

The low-level auditory processing includes frequency decomposition, noise 125 

suppression and signal enhancement, which are vital to extract clean signals for 126 

subsequent high-level processing (Fig. 2b). Similar to near-sensor analogue processing 127 

in visual signals, researchers adopted analogue circuits near auditory sensor to emulate 128 

the functions of cochlea.12-14 Multiple auditory sensors are sampled and connected with 129 

analogue spatiotemporal and adaptive bandpass filtering circuits for frequency 130 

decomposition and noise suppression. 12,13,15 Spike-coding-based processing with 131 

address event representation can benefit real-time and event-based auditory 132 

processing.16 The sensors and processing circuits are usually integrated through printed 133 

circuit board (PCB) or planar SoC. 16,17 134 

For olfactory sensing, an essential step is to cancel the DC baseline in a 135 

heterogeneous chemosensor array (Fig. 2c), which usually has a large variation in 136 

baseline among different types of sensors. Olfactory chips have been fabricated with 137 

planar SoC integration, in which the olfactory sensors are connected with adaptive 138 

circuits for baseline cancellation. 18 The adaptive elements enable the sensors to be self-139 

adapted within a working range of the circuit for different odours.  140 

For other low-level sensory processing, thermal artificial nociceptor was 141 

demonstrated by connecting a thermoelectric module to a diffusive memristor with 142 

threshold switching, which can respond to damaging stimuli by sending “warning” 143 

signals. 19 The low-level processing, e.g., base cancellation, filtering and noise 144 

suppression, can be also extended to other sensory processing, such as 145 

electroencephalography, electrocardiography, tactile sensing, etc.  146 
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In-sensor computing allows feature enhancement through self-adaptive 147 

characteristics of individual sensors, while near-sensor computing processes sensory 148 

signals by transferring data to adjacent computation units with short distance. In term 149 

of circuitry complexity, the in-sensor computing design is simpler, but it is restricted 150 

by limited functions and specific application scenarios. 151 

Near/in-sensor computing for high-level sensory processing  152 

Low-level sensory processing is responsible for optimizing the features in raw and 153 

unstructured data that are difficult to be identified; while it also requires high-level 154 

processing for abstract representation of sensory data, e.g., recognition, classification, 155 

and localization (Fig. 3a). High-level sensory processing involves the cognitive 156 

processes that enable to identify “what” or “where” of the input signals.  157 

The accelerators based on deep neural network (DNN) and convolutional neural 158 

network (CNN) have been extensively used for image/speech recognition or 159 

classification. The accelerator efficiency is limited by dynamic random-access memory 160 

(DRAM) accesses for inputs and outputs. Several near-sensor approaches have been 161 

proposed for efficient processing with optimized sensor/accelerator interface. A near-162 

sensor CNN accelerator for image recognition (ShiDianNao) can dramatically reduce 163 

the energy costs and shift processing close to the sensor. 20 In this approach, all the 164 

shared weights are directly stored in small on-chip SRAM, exhibiting 60× more energy 165 

efficient and approximately 30× faster than previously reported neural network 166 

accelerator.21 However, the accelerator based on digital processing units restricts the 167 

performance because of the ADC interface.  168 

The convolutional operation can be directly implemented at the sensor endpoint 169 

without ADCs for matrix-vector multiplication (MVM) and multiply-and-accumulation 170 
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(MAC) operations, which can accelerate the computing and reduce the workload of 171 

ADC, because convolutional operations consume substantial computation resources 172 

and dominates the running time. 22-24 In RedEye design24, MVM and convolutional 173 

operations are implemented in analogue domain through charge-sharing tuneable 174 

capacitor. The energy consumption per frame is 44.3% and 45.6% lower than GPU and 175 

CPU, respectively. However, the sensors are required to be sampled first without real-176 

time readouts. In addition, the sensors and processors are integrated on PCB. The MVM 177 

operations can be implemented with analogue memory synaptic arrays near the sensors, 178 

corresponding to the synaptic plasticity in the neural network 25-27 (Fig. 3b). The current 179 

through a memory is the multiplication of voltage and conductance following Ohm’s 180 

law; and the resulting currents are summed along a row or column through Kirchhoff’s 181 

law.  182 

Real-time detection and learning for colour-mixed image recognition can be realized 183 

by connecting h-BN/WSe2 photodetector and h-BN/WSe2 synaptic transistor in series.28 184 

The artificial synapse presents distinguishable synaptic weights and plasticity under 185 

lights with different wavelengths. An optical neural network is further constructed for 186 

colour-mixed image recognition. However, the configuration still lacks large-scale 187 

integration and completed processing tasks. Spiking neural network (SNN) provides 188 

another promising solution to enhance the efficiency by processing time-encoded 189 

neural signals in parallel. Fig. 3c shows an illustration of near-sensor SNN based on 190 

memory synaptic array through spiking-time-dependent plasticity (STDP) learning rule. 191 

A near-sensor architecture with image sensors, CMOS neuron circuit and memory array 192 

was integrated on PCB for image recognition. 29  193 

To further accelerate the hardware implementation of deep learning algorithms, 194 

reconfigurable sensor arrays can be constructed for efficient in-sensor MAC operation 195 
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(Fig. 3d). For a sensor array with m×n sensor elements, the stimuli to sensory elements 196 

can be represented as S vector, S = (S1, S2,…,Sm), and Rmn is the responsivity matrix of 197 

sensory array. The output vector I can be expressed as: 198 

𝐈𝐈 = 𝑹𝑹 × 𝑺𝑺 = �
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⋮

In

� = �

𝑅𝑅11 𝑅𝑅12 … 𝑅𝑅1𝑛𝑛
𝑅𝑅21 𝑅𝑅22 … 𝑅𝑅2𝑛𝑛
⋮ ⋮ ⋮ ⋮

𝑅𝑅𝑚𝑚1 𝑅𝑅𝑚𝑚2 … 𝑅𝑅𝑚𝑚𝑛𝑛

� �

S1
S2
⋮

Sm

�         (1) 199 

Depending on the type of external stimuli (light, pressure, chemicals, electromagnetic 200 

field, etc), the responsivity R can be variously physical parameters. The multiplication 201 

of stimulation and responsivity occurs at an individual sensor through sensing process, 202 

and the resulting currents are summed along interconnected sensory elements through 203 

Kirchhoff’s law. The summation of all the currents produced in each sensor element 204 

can be expressed as: 205 

𝐼𝐼𝑛𝑛 = ∑ 𝐼𝐼𝑚𝑚𝑛𝑛 = ∑ 𝑅𝑅𝑚𝑚𝑛𝑛𝑆𝑆𝑚𝑚𝑚𝑚
𝑚𝑚=1

𝑚𝑚
𝑚𝑚=1       (2) 206 

The responsivity of individual sensor is designed to be modulated and updated through 207 

external modulation, which emulates the change of synaptic weight ratios in neural 208 

network during the learning process. 209 

     The in-sensor computing architecture greatly simplifies hardware design, and can 210 

effectively perform high-level information processing, e.g., classification, recognition, 211 

and autoencoding. Researchers used conventional semiconductors or emerging two-212 

dimensional (2D) materials to construct a reconfigurable photodiode array for in-sensor 213 

image processing. 30,31 In the example of a sensory neural network based on 2D 214 

semiconductors, one pixel consists of three interconnected photodiodes as subpixels. 215 

Both photo-sensing and MAC operation can be realized in the sensor array. The polarity 216 

and magnitude of photoresponsivity of WSe2 photodiodes can be modulated by 217 

applying positive or negative gate voltage. Thus, the weight ratios can be tuned during 218 
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the training process. With the rational design of in-sensor computing architecture, an 219 

ultrafast image recognition within nanosecond level can be realized by eliminating the 220 

interface between sensor and computing units. 30  221 

Olfactory sensors and neuromorphic circuits can be integrated on a planar SoC chip. 222 

18,32 The implementation of spiking neural network (SNN) STDP learning enables 223 

simple odour classification tasks. The synapse array based SNN implementation 224 

provides an effective method to simplify the learning circuits and improve the energy 225 

efficiency, which can be further adopted in the near-sensor olfactory processing. A 226 

large number of olfactory sensors can be integrated with processing units in a three-227 

dimensional (3D) configuration with shorter interconnect length, compared with planar 228 

SoC integration.33  229 

     Tactile sensing can be processed with near-sensor computing architectures for 230 

perceptual learning and recognitions.34-36 Pressure sensors are integrated with artificial 231 

neuron and synaptic devices to demonstrate an artificial spiking afferent nerve with 232 

learning capabilities.34 The pressure-dependent spiking-rate-dependent plasticity 233 

(SRDP) and weight updating enable the feature learning, which can be further 234 

employed in SNN for touched pattern recognition and movement detection. This 235 

configuration provides potential hardware design for near-sensor computing with 236 

simplified and efficient circuitry.  237 

Sound localization and speech recognition are two primary functions for high-level 238 

auditory processing. The neural network based on resistive switching memories can be 239 

used for efficient auditory localization and recognition. The SNN implementations 240 

exhibit learning capabilities of spatiotemporal patterns. The localization is determined 241 

by the interaural time difference between left and right ears. 37 The neural network 242 

based on resistive switching memories can be potentially further integrated with 243 
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auditory sensors for efficient sound localization. In addition, the near-sensor 244 

architectures based on neuromorphic computing devices for both olfactory and auditory 245 

processing remain small-scale demonstration with a few devices and lack large-scale 246 

integration for the complete neural network. 247 

Integration technology of near/in-sensor computing 248 

 The manufacturing of sensory and computing units relies on different materials 249 

systems, device structures, circuit design and processing technologies. To implement 250 

the near/in-sensor computing systems, heterogeneous integration of sensory and 251 

computing units is a practical way for the hardware architectures with high performance 252 

and high integration intensity. The integration on PCBs presents long distance between 253 

sensing and processing units and low integration density. To meet the demand of low-254 

power and high-speed near/in-sensor computing architecture, it requires new 255 

integration technologies for sensing and processing units. Depending on the physical 256 

length between sensor and processing elements, there are a few types of integration 257 

technologies. In-sensor computing architecture performs information processing inside 258 

the sensory networks, showing zero physical distance between sensing and computing 259 

elements. For near-sensor computing, the integration approaches include 3D monolithic 260 

integration, planar SoC, 3D heterogeneous integration, 2.5D heterogeneous integration, 261 

etc. In these technologies, the physical length between sensor and computation 262 

functions ranges from hundreds nanometre to millimetre scale.  263 

3D monolithic integration adopts microfabrication process to construct on-chip 264 

interconnects between different device layers on a single substrate, which offers high 265 

integration density and more communication bandwidth. The monolithic system 266 

consists of functional layers (sensor, memory, computing and communication, etc) in a 267 

3D stacked configuration, where each layer is connected through local inter-layer vias 268 



12 

 

with the length of tens to hundreds of nanometres. Short interconnects help to greatly 269 

reduce parasitic resistance-capacitance time delay and power consumption, and largely 270 

increase integration density. Shulaker et al. demonstrated a 3D monolithic chip for gas 271 

sensing, data storage and processing, in which they achieve the connectivity more than 272 

1000 times greater than the conventional 3D stacking chip by through-Si-vias (TSVs). 273 

33 The sensors on the top layer can collect data and pass to the underlying memory layer. 274 

A classification accelerator with carbon nanotube field-effect transistor conducts a pre-275 

identification among ambient vapours. This architecture enables sensory data to be 276 

directly stored into memory in parallel and perform processing at high speed. 277 

Conventional semiconductor process usually relies on epitaxy at high temperature, 278 

which greatly restricts the selection of materials systems and processing technologies 279 

for the 3D monolithic integration. Thus, it is important to develop new materials and 280 

devices with low-temperature process, reasonably high performance, and compatibility 281 

with existing process technologies for 3D monolithic integration.  282 

Planar SoC with both sensing and processing units on a single substrate has been 283 

extensively applied for near-sensor computing. Various types of sensor chips (visual, 284 

olfactory, and auditory) have been demonstrated with planar SoC technology to 285 

perform feature extraction and learning functions for high-level processing. 18,38 Most 286 

of those chips have a size of millimetre and interconnect length of tens of microns. In-287 

sensor computing is a promising alternative approach in a single planar chip, which can 288 

simplify the circuits and allow high integration density.  289 

In 3D heterogeneous integration scheme (Fig. 4c), sensing and processing units can 290 

be built with different manufacturing processes on different wafers, and are integrated 291 

with advanced packaging technologies (e.g., TSVs, die-to-die interconnects), which 292 

allows to combine incompatible manufacturing on a single chip with relatively larger 293 
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pitch size (a few micrometres to tens of micrometres) compared with monolithic 3D 294 

integration.39,40 Researchers have integrated CMOS image sensors with accelerator for 295 

feature extraction and complete CNN for image classification, respectively. 41 The chip 296 

stacks sensor, memory and computing layers in a vertical structure connected with TSV. 297 

The 3D heterogeneous integration technology can be also extended to flexible 298 

electronics.42,43 The relatively long interconnect length limits the performance of 3D 299 

stacked chip.  300 

2.5D packaging, also called Chiplet (Fig. 4d), is one of special heterogeneous 301 

integration, which enables the integration of different chips side-by-side on silicon, 302 

glass or organic interposer with TSV or redistribution layer technologies. All functional 303 

circuit blocks (Chiplets) are integrated and mounted on an interposer with <1 mm 304 

separation for high-speed communication, as a midpoint between planar SoC and 3D 305 

heterogeneous integration. Chiplets are connected through interposer with shorter 306 

interconnects (<1 mm) and fine pitch (< 4 µm) interconnects.44 It allows to integrate 307 

disparate technologies (e.g., sensor, memory, logic, and communication) with short 308 

development period, low cost, low design complexity and chip failure risks. 309 

Researchers have demonstrated heterogeneous integration for neural sensing with 310 

front-end low-level processing. 45 Interposer carries various circuit chips, which can 311 

increase the system functionality and present a potential integration technology for 312 

near-sensor computing. More importantly, Chiplet technology can be relied on existing 313 

matured chips, exhibiting great advantages of reduced fabrication/design cost, 314 

reasonably high performance, and short time-to-market.  315 

Outlook 316 

     Near/in-sensor computing is an interdisciplinary research, covering materials, 317 

devices, circuits, architectures, algorithms, and integration technologies. Compared 318 
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with near/in-memory computing paradigm, the computing in or near sensors is more 319 

complex, because it needs to handle large amount and various types of signals in 320 

different scenarios. Successful deployment of near/in-sensor computing will need co-321 

development and co-optimization of sensors, devices, integration technologies, and 322 

algorithms. 323 

Multi-modal sensors 324 

     The performance of conventional sensor is normally evaluated through sensitivity, 325 

response time, dynamic range, error tolerance, etc. While the sensory devices in near/in-326 

sensor computing paradigm are required to have self-adaptation and self-identification 327 

characteristics for efficiently processing the information in combination with 328 

algorithms. These sensor devices cannot only communicate information across the 329 

sensor network, but also cooperate together to perform more complex tasks, like signal 330 

processing, data aggregation and compression. The development of these intelligent 331 

sensor devices requires the innovation of device physics and sensing mechanisms.10 332 

     Current investigations mainly focus on single type of sensory processing. Human 333 

perception system can simultaneously sense and process different types of information 334 

in a very small perceptive field and complex environments. Therefore, it is highly 335 

desirable to develop intelligent devices and systems for the fusion of different sensory 336 

processing in a real-time manner, including visual, auditory, olfactory, tactile, etc. 46 337 

These integrated systems can benefit future applications, such as robotics, intelligent 338 

vehicles, wearable electronics, etc. It requires a dynamic hardware reconfiguration of a 339 

sensor node in a single chip to accommodate a particular sensing method or a universal 340 

hardware platform that can adaptively fit to different sensor conditions, and algorithms 341 

for the same platform.  342 

 343 
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Computing devices 344 

       For computing devices, the hardware needs to intimately work together with 345 

algorithms. Conventional Si CMOS electronics cannot exhibit high efficiency for 346 

neural network algorithms because of their intrinsically digital characteristics. 347 

Emerging neuromorphic computing devices, such as two-terminal resistive switching 348 

memories with analogue multiple resistance states, tuneable plasticity high symmetry 349 

and linearity, high speed, low operation energy, small footprint and high stackability, 350 

are regarding as promising candidates for hardware implementation of artificial neural 351 

network and executing in-memory computing for cognitive tasks (e.g., object 352 

recognition, association, adaptation, and learning, etc.). 47-49 The design of computing 353 

sensors can be utilized for in-memory computing by further integrating sensing 354 

functions in these devices.  355 

Processing and materials 356 

    Disparate manufacturing processes raise grand challenges for the integration of 357 

sensing and computing units for near/in-sensor computing architectures. Both 3D 358 

monolithic and heterogeneous integration are involved with multiple functional 359 

layers/chips and different materials. To avoid adverse effects of high-temperature 360 

process on the functionalities of existing devices, we need to employ low-temperature 361 

process for high reliability of the integrated systems. In 3D stacked chips, high built-in 362 

stresses raise reliability issues, thus requiring the development of highly reliable low-363 

temperature bonding and interconnect process to minimize the coefficient of thermal 364 

expansion mismatch between stacked chips. To reduce the parasitic time delay, it is 365 

also necessary to decrease the thickness of active devices and passive components. One-366 

dimensional carbon nanotubes and 2D layered semiconductors with ultrathin body have 367 

been successfully transferred onto arbitrary substrates at low temperature. However, it 368 
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still remains a challenge for large-scale and high-quality materials growth, and 369 

processing compatibility with existing manufacturing technologies. 370 

Integration 371 

    The location of the processing unit close to individual sensor in a planar 372 

configuration will unavoidably occupy the area that reserved for sensors, reducing the 373 

footprint for sensing external environment and affecting signal-to-noise ratio. For 374 

example, the fill factor of CMOS image sensors is limited by the area occupation of 375 

readout and processing circuits. An ideal solution is to integrate the sensing and 376 

processing or readout functions in a 3D monolithic configuration, where sensors can be 377 

placed on top layer to ensure full exposure to the ambient environment for high 378 

sensitivity, and the processing units are arranged underneath the sensor layer with the 379 

shortest distance to sensors for high communication bandwidth, low latency and high 380 

fill factor.  381 

Algorithms 382 

     The practical implementation requires the development of more efficient algorithms 383 

that can be embedded in near/in-sensor computing systems. The algorithms for sensor 384 

terminals must be extremely simple and efficient given the highly constrained 385 

conditions. For examples, the signals collected from sensory terminals are usually 386 

temporal events, which can be converted to spike trains for direct SNN implementation 387 

and event-driven processing. It also requires algorithms for high-level processing to 388 

classify spatiotemporal pattern with CNN or SNN. 389 

Conclusions 390 

The near/in-sensor computing paradigms represent future trends of hardware 391 

implementation for intelligently sensory processing. To enable low-level and high-level 392 
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processing functions near or in the sensor, it requires advanced hardware architecture 393 

and efficient algorithms. The direct processing at the sensor endpoint is beneficial for 394 

high area-, time- and energy-efficiencies, exhibiting great potentials for real-time and 395 

data-intensive applications. In-sensor processing is especially significant to realize the 396 

real-time processing by eliminating massive data transfer and conversion. Near-sensor 397 

processing is enabled by advanced integration technologies and new computing 398 

algorithms close to sensor. In-sensor processing requires to develop emerging devices 399 

with new functions and mechanisms, and new computing algorithms. Although in-400 

sensor computing shows huge potentials, most of the existing devices still remain on 401 

the investigation stage. A complete processing and large-scale integration with 402 

peripheral control units have rarely been demonstrated, which are of great significance 403 

for future in-sensor processing architectures.  404 
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Figures and captions 551 

                           552 

Fig. 1 | Conventional sensory architecture, near-sensor computing and in-sensor computing 553 
architectures for processing sensory data. In conventional computing architecture, analogue 554 
outputs from the sensors are first converted to digital signals that are stored in memory. Processing 555 
units load data from memory units, and then transmit output signals back to memory for storage. In 556 
the near-sensor computing architecture, individual sensors are connected to front-end processing 557 
units through advanced integrated circuit packaging technologies for real-time readout and 558 
processing. The front-end near-sensor processing units implement a portion of processing tasks, 559 
which are then further transmitted to post-processing units for more complicated processing. In the 560 
in-sensor computing architecture, the processing functions are embedded the sensors for front-end 561 
processing. The sensors can collaborate together to perform information processing, data 562 
aggregation and compression, eliminating data transmission between sensors and processors.  563 

 564 
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 565 

 566 

Fig. 2 | Illustrations of low-level sensory processing architectures and functions. (a) Low-level 567 
image processing: noise suppression, edge extraction and contrast enhancement. For the near-sensor 568 
computing, processing units are directly connected to pixels in an image sensor. For the in-sensor 569 
computing, image sensing and processing are fused in sensor itself. (b) Low-level auditory 570 
processing. The raw auditory signal is filtered through bandpass filters with noise suppression in 571 
each channel to obtain clean signals for further processing. (c) Low-level olfactory processing. The 572 
variation of baseline in the raw sensory data can affect the differentiation of gas types in high-level 573 
processing. During the low-level processing, baseline is removed from the body signals.   574 
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 585 

Fig. 3| Near-sensor and in-sensor high-level sensory processing. (a) Data flow of sensory 586 
processing from low-level processing to high-level processing. Low-level processing generally 587 
involves filtering, noise suppression and feature enhancement, which are local operations. High-588 
level processing is associated with feature extraction and recognition processes for abstract 589 
representation, such as quantitative and qualitative determinations of “where” and “what”. (b) Near-590 
sensor architecture of SNN implementation through STDP learning with memory synaptic array, 591 
where r stands for the synaptic weight. The sensory information is coded into spike trains through 592 
rate-coding, which is further inputted into synaptic arrays. A presynaptic neuron is connected to a 593 
postsynaptic neuron via synapses. (c) Schematic illustrations of in-sensor computing architecture 594 
with reconfigurable sensors for MAC operations in the neural network. S stands for the stimuli to 595 
sensor elements, R is the sensor responsivity, and I is the summation of output currents. The 596 
relationship of S, R and I can be expressed with matrix-vector multiplication. I = (I1, I2,…,In) = 597 
Rmn·S = Rmn·(S1, S2,…,Sm), where Rmn is the responsivity matrix, and I and S are output and input 598 
vectors. (d) Near-sensor architecture of MAC operation with memory synaptic array in CNN. A 599 
vector of voltage outputs V = (V1, V2,…,Vn) from a sensor is directly inputted to the rows of a 600 
memory array. Gmn is the conductance matrix and output vector I = (I1, I2,…,In) = Gmn·V = Gmn· (V1, 601 
V2,…,Vm). 602 
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 603 

Fig. 4 | Integration technologies for near-sensor and in-sensor computing. (a) 3D monolithic 604 
integration system generally connects different functional layers of sensor, memory, and processors 605 
in a 3D stacked configuration via inter-layer vias. (b) The functional units are integrated on a planar 606 
SoC chip with planar wire connection. (c) In 3D heterogeneous integration, different functional 607 
units are fabricated on different wafers, which are further integrated with advanced packaging 608 
technologies (e.g., TSVs, die-to-die, die-to-wafer, and wafer-to-wafer interconnects). (d) 2.5D 609 
Chiplets with specific functions are connected through interposer, which is a midpoint between 2D 610 
and 3D packaging integration.  611 




