1	Revised Ms. CARBPOL-D-20-00317
2	Submitted to:
3	
4	(Original Research Manuscript)
5	Molecular properties and gut health benefits of enzyme-hydrolyzed konjac
6	glucomannans
7	
8	Jun-Yi Yin ^{a,b} , Lu-Yao Ma ^a , Ming-Yong Xie ^a , Shao-Ping Nie ^a , Jian-Yong Wu ^{b,*}
9	
10	
11	^a State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of
12	Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East
13	Road, Nanchang, Jiangxi Province, 330047, China
14	^b Department of Applied Biology and Chemical Technology, The Hong Kong
15	Polytechnic University, Kowloon, Hong Kong
16	
17	*Corresponding authors:
18	Jian-Yong Wu, E-mail: jian-yong.wu@polyu.edu.hk

20	Abstract: Konjac glucomannan (KGM) with a molecular weight (MW) of 823.4 kDa
21	was partially degraded by endo-1,4- β -mannanase. Two hydrolyzed KGM fractions
22	(KGM-M-1: 147.2 kDa and KGM-M-2: 21.5 kDa) were characterized and applied to
23	the animal tests in comparison with the native KGM. After oral feeding to the mice,
24	KGM-M-1 and KGM-M-2 significantly increased the levels of short chain fatty acids
25	(SCFAs) in the colonic contents and the native KGM increased SCFAs in the cecum.
26	The more significant effect of the native KGM in the cecum may be attributable to its
27	high viscosity, slowing down the movement of intestinal microflora through the cecum,
28	while the lower MW KGM-M-1 and KGM-M-2 could move more easily through the
29	colon to be fermented by colonic bacteria. This new finding may be useful for future
30	research and development of low-MW KGM polysaccharides through enzyme
31	hydrolysis for the desired gut health benefits.

33 KEYWORDS: Konjac glucomannan; Enzyme hydrolysis; Molecular weight;
34 Viscosity; Intestinal microflora; Short chain fatty acids.

35

36 **1. Introduction**

Konjac glucomannan (KGM) from the tuber and roots of *Amorphophallus konjac* C. Koch is a water soluble polysaccharide containing both $(1\rightarrow 4)$ - β -D-glucopyranose and $(1\rightarrow 4)$ - β -D-mannopyranose (Felix da Silva et al., 2019). It is a linear and random copolymer, with approximately 1 in 19 sugar units being acetylated at the side C-6 position. It is slightly branched with side chains consisting of mannose and glucose 42 (Behera & Ray, 2017). KGM is widely applied in food, pharmaceutical and cosmetic 43 products because of its thickening and gelling effects, and biocompatibility (Yang et al., 2017; Cui, Chen, & Yang, 2014; Devaraj, Reddy, & Xu, 2019). It has been widely 44 studied for its various biological activities, including anti-tumor, immunomodulation, 45 wound healing, anti-obesity, anti-hyperglycemic, and prebiotic activities (Behera & 46 47 Ray, 2017). However, the native KGM is highly viscous and forms gels in water due to its high molecular weight (MW) (over 1000 kDa) and long chain. It is envisaged that 48 49 partial degradation of KGM to a lower MW may improve the water solubility and favor the application as health products. 50

Recently, many studies have evaluated various bioactivities of KGM and its partial 51 52 hydrolyzed derivatives, such as hypoglycemic (Chen, Sheu, Tai, Liaw, & Chen, 2003), relieving constipation (Chen, Cheng, Liu, Liu, & Wu, 2006), and regulating cholesterol 53 54 metabolism (Tsuji, Tsuji, & Suzuki, 1975). In addition to the native KGM, the partially 55 degraded products of KGM with lower MW have exhibited improved biological 56 functions, such as immunomoldulation (Onishi et al., 2005), antioxidation (Liu et al., 2015; Jian et al., 2017) and growth promotion of probiotics (Al-Ghazzewi & Tester, 57 2012; Al-Ghazzewi, Khanna, Tester, & Piggott, 2010; Yang et al., 2017). These findings 58 59 have stimulated the research interest in the partial degradation of KGM for new and improved bioactivities and health benefits. A previous study (Yeh, Lin, & Chen, 2010) 60 has shown that the partial hydrolysis of KGM resulted in greater protective effects 61 62 against water-induced DNA damage. In another study (Mao et al., 2018), the partially 63 degraded KGM with power ultrasound has been applied to bifidobacterial cultures for protection against selected antibiotics. 64

65 Among various methods for depolymerization, enzymatic hydrolysis is one of the 66 most widely used in the degradation of high MW polysaccharides including KGM 67 (Albrecht et al., 2011; Jian et al., 2013) because of its biocompatibility, selectivity and 68 effectiveness. This study was to evaluate the process of enzymatic hydrolysis of KGM 69 with β -mannanase and the beneficial effects of native and degraded KGM on the 70 intestinal health.

71

72 **2. Materials and methods**

73 2.1 Materials

74 Konjac glucomannan (KGM) (Catalogue number KJ30) was kindly provided by Hubei Konson Konjac Gum Co., Ltd (Wuhan, China). Endo-1,4-β-mannanase 75 (Aspergillus niger) was purchased from Megazyme (Ireland), which was supplied as an 76 77 ammonium sulphate suspension in 0.02% sodium azide with an enzyme activity of 600 U/mL. Monosaccharide standards including fucose (Fuc), rhamnose (Rha), arabinose 78 79 (Ara), glucose (Glc), galactose (Gal), xylose (Xyl), mannose (Man), fructose (Fru), galacturonic acid (GalA) and glucuronic acid (GlcA) were from Merck Corp. 80 (Darmstadt, Germany) or Sigma Chemical Corp. (St. Louis, USA). Xylose (Xyl) was 81 from Shanghai Aladdin Biochemical Technology Co. (Shanghai, China). Short chain 82 fatty acids (SCFAs) including acetic, propionic, butyric and i-valeric acid over 99% 83 purity from Shanghai Aladdin Biochemical Technology Co. (Shanghai, China) were 84 85 used to as standards. All other reagents were of analytical grade.

86

87 **2.2 Enzymatic degradation of KGM**

2.2.1 Degradation of KGM with different amounts of enzyme

89	Mannanase was used to degrade konjac glucomannan according toa previous study
90	(Chen et al., 2012). Firstly, 4 g of the native KGM was dissolved in 200 mL distilled
91	water (at concentration of 2% w/v) with stirring magnetically until full swelling.
92	Various amounts (1, 10, 20, 100 μ L) of endo-1,4- β -mannanase were then added to the
93	KGM solution and incubated at 37 °C for 40 min for evaluation of the enzyme amount
94	on the KGM hydrolysis. The hydrolysis reaction was stopped by heating the solution at
95	95 °C in a water bath for 20 min to inactivate the enzyme. After cooling to room
96	temperature, the solution was mixed with pre-cooled ethanol (4 °C) at a final
97	concentration of 20%, and kept at 4 °C for 6 hours. The supernatant was removed by
98	high-speed refrigerated centrifugation (10000 \times g, 4 °C, 15 min) and the precipitate was
99	lyophilized, yielding the degraded KGM fraction.

100 2.2.2 Degradation of KGM for different time periods

101 As in the last section, the native KGM was completely dissolved in distilled water 102 at 2% (w/v). Then, 20 μ L of endo-1,4- β -mannanase was added into 200 mL of the KGM 103 solution and incubated at 37 °C for 1, 5, 20 or 40 min. After the given reaction period, 104 the enzyme was inactivated and the degraded KGM product was recovered with the 105 same methods and conditions as mentioned in the lasted section.

106

107 2.3 Preparation of partial degraded polysaccharides for animal tests

108 Two degraded KGM fractions were prepared, KGM-M-1 and KGM-M-2, by

hydrolysis of the native KGM for 20 min with 2 μ L and 20 μ L of endo-1,4- β -mannanase, respectively. The procedures and conditions for the enzyme hydrolysis of native KGM and the subsequent recover of the degraded KGM products were the same as described in section 2.2.1.

113

114 2.3.1 Analysis of composition and molecular weight

Total sugar content was determined by phenol-sulfuric acid with mannose as a standard (Dubois, Gilles, Hamilton, Rebers, & Smith, 1956). Protein content was determined by Coomassie brilliant blue method with bovine serum albumin as a standard (Bradford, 1976). Uronic acid content was measured by carbazole-sulfuric acid method with galacturonic acid as a standard.

The polysaccharide sample (5 mg) was firstly hydrolyzed by 12 M H₂SO₄ (0.5 mL) in an ice bath for 0.5 h, then diluted with ultra-pure water for another 2 h of hydrolysis at 100°C according to literature (Liu et al., 2017). The hydrolysate was diluted and applied to monosaccharide analysis using a Dionex ICS-5000 System (Therom Scientific, CA, USA), which was equipped with a CarboPacTM PA20 guard column (3 mm×30 mm) and a CarboPacTM PA20 analytical column (3 mm×150 mm) in series connection

127 The molecular weight (MW) of polysaccharides was determined by high 128 performance size exclusion chromatography (HPSEC) with an instrument system 129 consisting of a multi-angle laser light scattering (MALLS) detector (wavelength of 130 663.6 nm, eighteen angles) (Dawn Heleos II, Wyatt), a refractive index (RI) detector

131	(OPTILAB T-rEX, Wyatt) and a viscometer (Visco Star II, Wyatt). Three SEC columns
132	in series were used, including an Ohpak SB-G guard column (8×50 mm), an Ohpak SB-
133	806 HQ column (8×300 mm) and an Ohpak SB-804 HQ column (8×300 mm) from
134	Showa Denko K.K. (Tokyo, Japan). The solution (0.1 mol/L NaNO ₃ containing0.02%
135	NaN ₃) was used as mobile phase (0.6 mL/min), and sample injection volume was 100
136	μ L. The column temperature was kept at 35.0 °C. Data were analyzed using the ASTRA
137	software (Version 6.1.1.84).

139 **2.3.2 FT-IR and SEM**

An appropriate amount of polysaccharide sample was ground with KBr powder in the mortar. It was scanned with a Fourier transform infrared spectrometer (Nicolet 5700, Thermo Fisher Scientific, Madison, USA) from 4000 to 500 cm⁻¹, with a resolution of 4 cm⁻¹.

The polysaccharide samples were completely dissolved in ultra-pure water at 1.0
mg/mL, and then placed in liquid nitrogen for 10 minutes. After being freeze-dried,
gold film was evaporated by gold spray treatment. Scanning electron microscope (SEM)
observation was performed on a JMS-6701 F Field Emission SEM (Japan Electronics
Co. Ltd., Tokyo, Japan).

149

150 2.4 Animal tests on KGM and hydrolyzed samples for gut health

151 2.4.1 Animal experiment design

152	Kunming mice, male, weighing 15.0-18.0 g [Grade II, Certificate Number SCXK
153	(Xiang) 2016-0002], were purchased from Hunan SJA Laboratory Animal Co., Ltd
154	(Changsha, China). All animals used in this study were raised according to the
155	Guidelines for the Care and Use of Laboratory Animals published by the United States
156	National Institute of Health (NIH, Publication No. 85-23, 1996). All experimental
157	procedures were approved by the Animal Care Review Committee of Nanchang
158	University. Mice were raised in cages in a room with controlled temperature (25 ± 1 °C),
159	relative humidity (50 \pm 5%), and 12/12 h of light-dark periods. They were treated with
160	ad libitum food and water before starting the experiments.

161 Mice were randomly divided into four groups (12 in each). Mice in the treatment groups received KGM, KGM-M-1 and KGM-M-2 at a dosage of 200 mg/kg bw and the 162 163 control group received an equal dose of physiological saline by oral gavage at 8:30 am every day. The body weight (bw) of mice was recorded every day. On day 14, they were 164 fasted for 24 h with free access to water after the last oral administration. All mice were 165 166 sacrificed on day 15, from which the ceca and colons were aseptically removed and 167 placed on an ice-cold plate. The cecal and colonic contents were collected for the determination of SCFAs level, pH, and moisture and for the measurement of the colon. 168 The colon index was equal to the net weight of colon divided by the body weight of 169 animal (Liu, Wang, Ma, Nie, & Yin, 2016). 170

171

172 2.4.2 Determination of fecal moisture content

The feces were collected on the day 0, day 7 and day 14 of treatment from each two mice combined, and dried to constant weight in an oven at 105 ± 5 °C.

175

176 **2.4.3** Analysis of SCFAs and pH

Sample preparation followed the method as described previously (Hu, Nie, & Xie, 2013). Briefly, colonic and cecum contents were diluted with deionized water (1:14 w/v), mixed intensively on a vortex mixer for 5 min and sonicated for another 5 min. The mixture was then cooled in an ice water bath for 20 min, and centrifuged at 4 °C for 20 min (4800 $\times g$) to retain the supernatant for analysis. The pH was measured directly with pH meter.

The SCFAs in the fecal samples were analyzed by gas chromatography (GC) as reported previously (Hu et al., 2013). The analysis was performed on an Agilent 6890N GC system with a GC column (30 m \times 0.32 mm \times 0.25 µm, HP-FFAP) (Agilent Technologies Inc., California, USA). The fecal supernatant was filtered through 0.22 µm membrane before injection. Nitrogen gas was used as the carrier gas at a flow rate of 12 mL/min with a split ratio of 1:10.

189

190 2.4.4 Statistical processing of experimental data

The results of animal experiments were represented as mean ± standard deviation
(SD). Statistical analysis of experimental data was performed using SPSS 22.0
statistical software (SPSS Inc., Chicago, United States). One-way analysis of variance

194 (ANOVA) was adopted to compare the significant differences among all of groups 195 using Tukey's analysis. Differences were considered to be significant at P < 0.05.

196

197 3. Results and Discussion

198 3.1 Effects of enzymatic treatment on molecular properties of KGM

Fig.1 shows effects of endo-1,4-β-mannanase treatment on the MW and yield of
degraded KGM products. The MW showed a steady decrease with the amount of
enzyme (Fig. 1A). The molecular weight of KGM decreased sharply in the initial period
of 10 minutes and only slightly in the later period. The results indicated that KGM could
be effectively degraded by this enzyme in a short period of time. The yield of degraded
products also decreased steadily with the reduction of molecular weight.

Fig.1. Molecular weight change of KGM and yield of degraded KGM product with (A)
different amount of endo-1,4-β-mannanase and (B)various time.

211	Table 1 shows physicochemical properties of the native KGM and its degraded
212	products, KGM-M-1 and KGM-M-2. The sugar content of KGM was up to 85.3% (Yin,
213	Ma, Siu, & Wu, 2019), but was decreased to 68.5% for KGM-M-1 and to 65.3% for
214	KGM-M-2. The protein content of KGM was negligible but was detectable in KGM-
215	M-1 and KGM-M-2, which were mainly from the added enzyme. The molecular weight
216	dramatically decreased as the enzyme concentration increased, 21.5 kDa for KGM-M-
217	2 compared to 147.2 kDa for KGM-M-2. Similarly, both intrinsic viscosity and R_h
218	decreased appreciably after the enzymatic hydrolysis.
219	The two degraded KGM fractions were composed of Man and Glc in different ratios.
220	The percentage of Glc and Man in KGM was 44.0% and 33.5%, as the ratio was 1.3:1.0
221	(Yin et al., 2019). In comparison with the literature data, there was a small difference
222	in molar ratio of Man/Glc in KGM (Nishinari, Williams, & Phillips, 1992) due probably
223	to different sources. After the enzymatic treatment, the molar ratio of Man/Glc was
224	1.7:1.0 for KGM-M-1 and 1.3:1.0 for KGM-M-2.

226 Table 1 Physicochemical properties of KGM and its enzyme-degraded products (KGM-

	KGM ^d	KGM-M-1	KGM-M-2
Yields (%) ^a	1	84.0	66.2
Neutral sugar content (%) ^b	85.3±0.15	68.5±2.07	65.3±2.36
Uronic acid content (%) ^c	n.d.	n.d.	n.d.
Protein content (%) ^b	n.d ^c	0.17±0.30	0.30±0.20
M _w (kDa)	823.4	147.2	21.5
M _n (kDa)	540.7	90.8	15.6
$M_{ m w}/M_{ m n}$	1.5	1.6	1.4
[ŋ]	1803.5	229.4	48.6
Rh (nm)	60.0	15.8	5.1

227 M-1 and KGM-M-2 were derived from enzymatic degradation of KGM with 2 μL and

228	20 µL o	f endo-1,4-	β-mannanase,	respectively).
-----	---------	-------------	--------------	----------------

^a mass ratio to native KGM.

^b mean \pm standard deviation (SD) at n = 3.

^c n.d.: not detectable.

^dProperties of KGM from our previous report (Yin et al., 2019).

Fig.2 shows the FT-IR spectra of the three KGM polysaccharides. There was no significant difference in the spectra among them. The absorption peaks near 3354 cm⁻¹ and 2890 cm⁻¹ were the stretching vibration of the hydroxyl and methyl groups, respectively. There was a characteristic peak of acetyl group at 1732 cm⁻¹ (Yu, Huang, Ying, & Xiao, 2007). The peaks of 885 cm⁻¹ and 806 cm⁻¹ were characteristic absorption

of mannopyranose (He, Pan, & Wang, 2009).

Fig.2. FT-IR spectra of KGM, KGM-M-1 and KGM-M-2. Data of KGM was from
literature (Yin, Ma, Siu& Wu, 2018).

Fig. 3 shows the SEM images of KGM and hydrolyzed products. The native KGM appeared like a bundle of rice straws with the stems well oriented in the same direction and the branches randomly cross-linked. However, the enzyme degraded products of KGM, KGM-M-1 and KGM-M-2, appeared as irregular and amorphous fragments of various shapes including planner, fibrous and particulate. These changes in the aggregate morphology of KGM were similar to those for KGM after degradation by power ultrasound in our previous study (Yin et al., 2019).

Fig.3. SEM images of KGM-M-1 and KGM-M-2 (×5000). Data of native KGM was

251 from the literature (Yin, Ma, Siu & Wu, 2018).

3.2 Effects of KGM on intestinal functions

Table 2 summarizes effects of the three konjac polysaccharides on body weight, 254 255 colonic weight, colonic length and colonic index of mice. After 7 days of oral 256 administration, average body weight of the polysaccharide-treated groups was higher than that of the control group, but no significant difference was observed except the 257 258 KGM group. After day 14, there was no difference in body weight among the groups. The group treated with KGM-M-1 had significantly larger colon length and colonic 259 260 index than those of the control group and the groups treated with KGM or KGM-M-2. 261 Colonic length and colonic index are two important indices to describe the health of the 262 colon and bowel disease leads to shorter colon length (Jädert, Phillipson, Holm, Lundberg, & Borniquel, 2014), while the increase of colon length and colonic index 263 indicates improved intestinal function (Min, Wan, Nie, & Xie, 2014). The results 264 265 suggest that moderate but not extensive degradation of KGM could enhance the 266 beneficial effects on the intestinal functions.

267

268 Table 2 Effects of three KGM polysaccharides on body weight, colonic weight, colonic

Choun	Body weight	(g)	Colonic	Colonic	Colonic
Group	Day 7	Day 14	weight (g)	length (cm)	index (%)
Control	32.59±1.37ª	38.81±1.94ª	$0.20{\pm}0.04^{a}$	5.9±0.79ª	$0.54{\pm}0.07^{a}$
KGM	$34.23{\pm}1.03^{b}$	38.57±1.71ª	$0.21{\pm}0.06^{ab}$	6.58±1.78ª	$0.54{\pm}0.17^{a}$
KGM-M-1	33.39±1.31 ^{ab}	37.77±1.26 ^a	$0.27{\pm}0.04^{\circ}$	7.68 ± 1.42^{b}	$0.72{\pm}0.08^{b}$
KGM-M-2	33.19±1.40 ^{ab}	38.19±1.68ª	$0.24{\pm}0.03^{bc}$	6.42±0.60ª	$0.65{\pm}0.08^{b}$

length and index of colon in mice.

270 Note: each value was the mean \pm SD (n = 6); values in the same column with different

letters were significantly different (P < 0.05)

272

3.3 Effects of KGM on fecal moisture content

Fig. 4 shows the moisture contents of animal feces on day 0, day 7 and day 14 of 274 275 KGM polysaccharide feeding. At the beginning, the water contents of animal feces in control and the polysaccharide-treated groups were in the range of 57.8%-60.4% 276 277 without any significant difference. After oral feeding of polysaccharides for 7 days, the 278 fecal water contents of polysaccharide-treated group increased significantly ($P \le 0.05$). However, there was only a small increase in fecal water content by day 14. Intake of 279 the native and degraded KGM polysaccharides can increase the fecal water content, 280 especially KGM-M-2 (P < 0.05). The results showed that the intake of KGM 281 282 polysaccharides could accelerate the peristalsis of the intestine and promote the defecation of the mice. 283

284

Fig.4. Effects of three konjac polysaccharides on fecal moisture content of mice. Data was expressed as the mean \pm SD (n =12). Values in each test period with different letters were significantly different (P < 0.05).

288

289 **3.4 Effects of KGM polysaccharides on SCFAs and pH in cecum**

290	Fig. 5 shows the total concentration of short-chain fatty acids (SCFAs) including
291	acetic acid, propionic acid and butyric acid in the cecum of the KGM polysaccharide-
292	treated groups and the control group. Compared with the control (15.96 mmol/L), there
293	was a significant decrease in the total SCFAs in KGM-M-1 (11.45 mmol/L) and KGM-
294	M-2 (13.39 mmol/L), while that of the KGM group increased significantly (20.04
295	mmol/L) (P < 0.05). The pH value from the lowest to highest was KGM group (6.64),
296	KGM-M-1 group (7.32), KGM-M-2 group (7.49) and control group (7.58),
297	successively. Comparing with the control group, the pH of the polysaccharide-treated
298	group decreased in varying degrees. A previous study (Xu, Qin, Wu, & Zhong, 2015)
299	has shown that the carboxymethyl KGM derived from chemical modification of KGM
300	had a lower effect on the SCFAs of caecum contents in mice.

Fig.5. Effects of three konjac polysaccharides on (A) total SCFA concentration and (B)

pH in cecum contents of mice. Data was expressed as the mean \pm SD (n =12). Different

letters in each figure mean significantly different from each other (P < 0.05).

307	Fig. 6 shows the concentrations of four individual SCFAs in the cecum contents
308	of polysaccharide-treated and control group. In comparison with the control group, the
309	concentrations of acetic acid, propionic acid and butyric acid in the KGM group were
310	significantly higher than those of control group ($P < 0.05$), while concentrations of these
311	three acids in the other polysaccharide-treated group were much lower. In the KGM-
312	treated group, acetic acid and n-butyric acid increased more significantly ($P < 0.05$).
313	Butyric acid is an important substance in intestinal fermentation products, and the most
314	important source of energy for human colon and cecum epithelia cells. The results
315	suggest that microorganisms in the cecum of mice can use KGM for production of more
316	butyric acid.

318

Fig.6. Effects of three konjac polysaccharides on the concentration of (A) acetic acid, (B) propionic acid, (C) n-butyric acid, (D) i-butyric acid, (E) n-valeric acid and (F) ivaleric acid in cecum contents of mice. Data was expressed as the mean \pm SD (n =12). Different letters in each figure mean significantly different from each other (P < 0.05).

326 **3.5 Effects of polysaccharides on SCFAs and pH in colon**

327	Fig.7 shows the total SCFA concentration in the colonic contents of
328	polysaccharide-treated groups and control group. The total SCFA concentrations in the
329	polysaccharide-treated groups were significantly higher than those in the control group
330	except for the KGM group ($P < 0.05$). The biological effects of polysaccharides in the
331	animals are dependent on the structural characteristics and physical properties such as
332	monosaccharide composition, molecular weight or degree of polymerization, and
333	solubility. In general, polysaccharides with a lower molecular weight (or degree of
334	polymerization) and a higher water solubility can produce a higher amount of SCFAs
335	during colonic fermentation (Nilsson & Nyman, 2005). Concomitantly, the pH of the
336	polysaccharide-treated groups was significantly lowered (P < 0.05). SCFAs are mainly
337	produced from indigestible carbohydrates in food by anaerobic bacteriolysis in the
338	colon lumen (Chen, Cao, & Liu, 2006). SCFAs have many physiological functions,
339	such as providing energy for intestinal mucosal cells, promoting cell growth and
340	metabolism, reducing the pH value in the colon and inhibiting the growth of harmful
341	bacteria (Bae, Park, Ji, & Park, 2013). Decrease of the colonic pH can create an acidic
342	environment, inhibiting the growth of harmful bacteria and lowering the risk of
343	intestinal dysfunction (Hernandez, Sanz, Kolida, Rastall, & Moreno, 2011).
344	

346

Fig.7. Effects of three kinds of konjac glucomannan on (A) total SCFA concentration and (B) pH in colon contents of mice. Data were expressed as the mean \pm SD (n =12). Different letters in each figure mean significantly different (P < 0.05) from each other.

351 As shown in Fig.8A, the concentration of acetic acid increased notably in the groups treated with KGM-M-1 (4.58 mmol/L) and KGM-M-2 (4.76 mmol/L), which 352 353 were both significantly higher than that in the KGM group (3.94 mmol/L) (P < 0.05). In 354 Fig.8B, the propionic acid concentrations in the KGM-M-1 and KGM-M-2 group increased significantly (P < 0.05). The concentration of valeric acid in the groups treated 355 356 with KGM and KGM-M-1 were lower than the control group. The concentration of n-357 butyric acid in the KGM-M-1 treated group was significantly higher than in the control group. Acetic acid is the main product of protein degradation and amino acid 358 359 fermentation in colon (Bianchi et al., 2011). It is involved in the metabolism of muscles, 360 spleen, heart and brain. Butyric acid can be absorbed by colonic epithelial cells and is 361 preferred as energy source of cecum (Pryde, Ducan, Hold, Stewart, & Flint, 2002).

362 Liver and cholesterol metabolism are affected by propionic acid.

Fig.8. Effects of KGM polysaccharides on the concentration of (A) acetic acid, (B) propionic acid, (C) n-butyric acid, (D) i-butyric acid, (E) n-valeric acid, and (F) i-valeric acid in colonic contents of mice. Data were expressed as the mean \pm SD (n =12). Different letters in each figure mean significantly different from each other (P < 0.05).

371	The fermentation of glucomannans by the anaerobic bacteria in the large intestine
372	results in the production of SCFAs. The above results showed that the native KGM was
373	good for the gut health of mice. Previous studies have shown that hydrolyzed konjac
374	glucomannan was an effective prebiotic in mice (Elamir et al., 2008; Pan, Chen, Wu,
375	Tang, & Zhao, 2009), even better than the native one (Chen, Fan, Chen, & Chan, 2005).
376	In the present study, enzymatic degradation of native KGM at the given conditions
377	mainly caused reduction of the MW but not major structural changes. The intake of
378	KGM-M-1 and KGM-M-2 significantly increased the total concentration of SCFAs in
379	the colonic contents, while the native KGM increased the total concentration of SCFAs
380	in the cecum. The native KGM with a much higher MW may have a more significant
381	impact in the cecum because of its high viscosity and slow movement. KGM-M-1 and
382	KGM-M-2 with a lower MW and a lower viscosity can pass through the cecum quickly
383	to reach the colon, to be fermented in the colon.

385 4. Conclusions

Enzymatic hydrolysis of native KGM was effective to produce low-MW products with similar structure and slightly different chemical composition. The enzyme degradation also caused disruption of the microstructure of KGM from orderly and compact linear structure to loose and amorphous irregular structures. In association with the physiochemical changes, the enzyme-degraded KGM polysaccharides showed functional differences from the native KGM as a dietary fiber and functional 392 polysaccharides in the animal experiments. The high MW native KGM appeared to be 393 active mainly in the cecum, while the low-MW KGM hydrolysates were more active in the colon. This difference was probably attributed to the difference in the MW and the 394 resulting liquid viscosity between the KGM polysaccharides, which determined or 395 396 affected their movement through the large intestine. These findings may be useful for 397 understanding the relationship between the MW of polysaccharides and its gut health 398 promotion activities. It is of interest to examine the MW-dependent effect of KGM 399 polysaccharides on the microbial composition of the gut microbiota in future studies.

400

401 Acknowledgments

The authors are grateful to the financial supports from National Key R&D Program of
China (2017YFD0400104), National High-tech R&D Program of China
(2013AA102102), Postdoctoral Science Foundation of Jiangxi Province (2017KY03)
and Hong Kong Scholars Program (XJ2016058).

406

- 407 **Declarations of interest:** none.
- 408
- 409

410 **References**

- Al-Ghazzewi, F. H., & Tester, R. F. (2012). Efficacy of cellulase and mannanase
 hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. *Journal of the Science of Food & Agriculture, 92*(11), 2394-2396.
- Albrecht, S., van Muiswinkel, G. C., Xu, J., Schols, H. A., Voragen, A. G., & Gruppen,
- 415 H. (2011). Enzymatic production and characterization of konjac glucomannan

oligosaccharides. Journal of Agricultural and Food Chemistry, 59(23), 12658-416 417 12666.

- 418 Bae, C. H., Park, M. S., Ji, G. E., & Park, H. D. (2013). Effects of phosphorylated cross-419 linked resistant corn starch on the intestinal microflora and short chain fatty acid formation during in vitro human fecal batch culture. Food Science & 420 Biotechnology, 22(6), 1649-1654. 421
- 422 Behera, S. S., & Ray, R. C. (2017). Nutritional and potential health benefits of konjac 423 glucomannan, a promising polysaccharide of elephant foot yam, Amorphophallus konjac K. Koch: A review. Food Reviews International, 33(1), 22-43. 424
- 425 Bianchi, F., Dall'Asta, M., Rio, D. D., Mangia, A., Musci, M., & Scazzina, F. (2011).
- 426 Development of a headspace solid-phase microextraction gas chromatography-427 mass spectrometric method for the determination of short-chain fatty acids from 428 intestinal fermentation. Food Chemistry, 129(1), 200-205.
- 429 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical 430 Biochemistry, 72(s 1-2), 248–254. 431
- 432 Chen, H. L., Cheng, H. C., Liu, Y. J., Liu, S. Y., & Wu, W. T. (2006). Konjac acts as a 433 natural laxative by increasing stool bulk and improving colonic ecology in healthy 434 adults. Nutrition, 22(11), 1112-1119.
- Chen, H. L., Fan, Y. H., Chen, M. E., & Chan, Y. (2005). Unhydrolyzed and hydrolyzed 435 konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. 436 Nutrition, 21(10), 1059-1064. 437
- Chen, Y., Cao, Y. S., & Liu, X. H. (2006). Short chain fatty acids and intestinal 438 microflora. Jiangxi Science. 439
- Chen, J., Liu, D., Shi, B., Wang, H., Cheng, Y., & Zhang., W. (2012). Optimization of 440
- 441 hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β -mannanase by response surface methodology. Carbohydrate 442 Polymers, 93(1), 81-88 443
- Cui, Z., Chen,J. D., & Yang, F. Q. (2014). Konjac glucomannan, a promising 444 polysaccharide for OCDDS. Carbohydrate Polymers, 104(1), 175-181. 445

- 446 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956).
- 447 Colorimetric method for determination of sugars and related substances. *Analytical*448 *Chemistry*, 28(3), 350-356.
- Devaraj, R. D., Reddy, C. K., &Xu, B. (2019). Health-promoting effects of konjac
 glucomannan and its practical applications: A critical review. *International Journal of Biological Macromoleculars*, *126*, 273-281.
- Elamir, A. A., Tester, R. F., Al-Ghazzewi, F. H., Kaal, H. Y., Ghalbon, A. A.,
 Elmegrahai, N. A., & Piggott, J. R. (2008). Effects of konjac glucomannan
 hydrolysates on the gut microflora of mice. *Nutrition & Food Science, 38*(5), 422429.
- Felix da Silva, D., Ogawa, C. Y. L., Sato, F., Neto, A. M., Larsen, F. H., & MatumotoPintro, P. T. (2019). Chemical and physical characterization of Konjac
 glucomannan-based powders by FTIR and 13C MAS NMR. *Powder Technology*.
- Al-Ghazzewi, F. H., Shepherd, S., Tester, R.F., &Piggott, J. R. (2010). The potential
 use of hydrolysed konjac glucomannan as a prebiotic. *Journal of the Science of*

461 *Food and Agriculture, 87*(9), 1758-1766.

- He, K., Pan, Z. D., & Wang, Y. M. (2009). Mechano-chemical effect on de-acetylation
 of konjac glucomannan. *Polymer Materials Science & Engineering*, 25(2), 134137.
- Hernandez, O., Sanz, M. L., Kolida, S., Rastall, R. A., & Moreno, F. J. (2011). *In vitro*fermentation by human gut bacteria of proteolytically digested
 caseinomacropeptide nonenzymatically glycosylated with prebiotic carbohydrates. *Journal of Agricultural and Food Chemistry*, *59*(22), 11949-11955.
- Chen,H. L., Sheu,W. H., Tai, T.S., Liaw, Y. P.,&Chen, Y. C. (2003). Konjac
 supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic
 subjects--a randomized double-blind trial. *Journal of the American College of Nutrition*, 22(1), 36-42.
- Hu, J. L., Nie, S. P., & Xie, M. Y. (2013). High pressure homogenization increases
 antioxidant capacity and short-chain fatty acid yield of polysaccharide from seeds
 of *Plantago asiatica* L. *Food Chemistry*, *138*(4), 2338-2345.

- 476 Jädert, C., Phillipson, M., Holm, L., Lundberg, J. O., & Borniquel, S. (2014). Preventive
- 477 and therapeutic effects of nitrite supplementation in experimental inflammatory
 478 bowel disease. *Redox Biology*, 2, 73-81.
- Jian, W., Sun, Y., Huang, H., Yang, Y., Peng, S., Xiong, B., et al. (2013). Study on
 preparation and separation of konjac oligosaccharides. *Carbohydrate Polymers*,
 92(2), 1218-1224.
- Jian, W., Tu, L., Wu, L., Xiong, H., Pang, J., & Sun, Y. M. (2017). Physicochemical
 properties and cellular protection against oxidation of degraded konjac
 glucomannan prepared by γ -irradiation. *Food Chemistry*, 231, 42.
- Liu, J., Xu, Q., Zhang, J., Zhou, X., Lyu, F., Zhao, P., & Ding, Y. (2015). Preparation,
 composition analysis and antioxidant activities of konjac oligo-glucomannan. *Carbohydrate Polymers*, 130, 398-404.
- Liu, X. Y., Wang, L., Ma, L. Y., Nie, S. P., & Yin, J. Y. (2016). Preparation of beverage
 rich in psyllium polysaccharide and its intestinal functional activity. *China Sciencepaper*.
- 491 Liu, X. Y., Ma, L.Y., Wang, L., Wang, X. Y., Nie, S. P., Xie, M. Y., & Yin, J. Y. (2017).
- Monosaccharide composition analysis of arabinoxylan by high performance anion
 exchange chromatography with pulsed amperometric detection. *Chinese Journal*of Analytical Chemistry.
- Mao, Y. H., Song, A. X., Yao, Z. P., & Wu, J. Y. (2018). Protective effects of natural
 and partially degraded konjac glucomannan on Bifidobacteria against antibiotic
 damage. *Carbohydrate Polymers*, 181, 368.
- Min, F. F., Wan, Y. J., Nie, S. P., & Xie, M. Y. (2014). Study on colon health benefit
 of polysaccharide from *Cyclocarya paliurus* leaves *in vivo.Journal of Functional Foods*, *11*, 203-209.
- Nilsson, U., & Nyman, M. (2005). Short-chain fatty acid formation in the hindgut of
 rats fed oligosaccharides varying in monomeric composition, degree of
 polymerisation and solubility. *TheBritish Journal of Nutrition*, 94(5), 705-713.
- Nishinari, K., Williams, P. A., & Phillips, G. O. (1992). Review of the physicochemical characteristics and properties of konjac mannan. *Food Hydrocolloids,*

506 *6*(2), 199-222.

- Onishi, N., Kawamoto, S., Nishimura, M., Nakano, T., Aki, T., Shigeta, S., et al. (2005).
 Anew immunomodulatory function of low-viscous konjac glucomannan with a
 small particle size: its oral intake suppresses spontaneously occurring dermatitis in
 NC/Nga mice. *International Archives of Allergy & Immunology, 136*(3), 258-265.
- Pan, X. D., Chen, F. Q., Wu, T. X., Tang, H. G., & Zhao, Z. Y. (2009). Prebiotic
 oligosaccharides change the concentrations of short-chain fatty acids and the
 microbial population of mouse bowel. *Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)*, 10(4), 258-263.
- Pryde, S. E., Duncan, S. H.,Hold, G. L., Stewart, C. S., & Flint, H. J. (2002). The
 microbiology of butyrate formation in the human colon [Review]. *Fems Microbiology Letters*, 217(2), 133-139.
- Yeh, S. L., Lin, M. S., & Chen, H. L. (2010). Partial hydrolysis enhances the inhibitory
 effects of konjac glucomannan from *Amorphophallus konjac* C. Koch on DNA
 damage induced by fecal water in Caco-2 cells. *Food Chemistry*, *119*(2), 614-618.
- Tsuji, E., Tsuji, K., & Suzuki, S. (1975). Interaction of crude konjac mannan
 anderitadenine on cholesterol metabolism in rats. *Japanese Journal of Nutrtion*.
- Xu, X., Qin, Q., Wu, Y., & Zhong, G. (2015). Physico-chemical properties of
 carboxymethyl konjac glucomannan and its effect on intestinal fermentation
 environment. *Food Science*, *36*(7), 172-176.
- Yang, J., Vittori, N., Wang, W., Shi, Y. C., Hoeflinger, J. L., Miller, M. J., & Yang, P.
 (2017). Molecular weight distribution and fermentation of mechanically pretreated konjac enzymatic hydrolysates. *Carbohydrate Polymers*, 159, 58-65.
- Yin, J.Y., Ma, L.Y., Siu, K.C., & Wu, J.Y. (2019). Effects of ultrasonication on the
 conformational, microstructural, and antioxidant properties of konjac
 glucomannan. *Applied Sciences*, 9(3), 461.
- Yu, H., Huang, Y., Ying, H., & Xiao, C. (2007). Preparation and characterization of a
 quaternary ammonium derivative of konjac glucomannan. *Carbohydrate Polymers*, *69*(1), 29-40.
- 535 Yang, D., Yuan, L., Wang, X., Mu, R., Pang, J., & Zheng, Y. (2017). A review on

- konjac glucomannan gels: Microstructure and application. *International Journal of*
- *Molecular Sciences*, 18(11).