This is the peer reviewed version of the following article: Zhang, N., Zheng, F., Huang, B., Ji, Y., Shao, Q., Li, Y., Xiao, X., Huang, X., Exploring Bi2Te3 Nanoplates as Versatile Catalysts for Electrochemical Reduction of Small Molecules. Adv. Mater. 2020, 32, 1906477, which has been published in final form at https://doi.org/10.1002/adma.201906477. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

DOI: 10.1002/((please add manuscript number)) Article type: Communication

Exploring Bi₂Te₃ nanoplates as versatile catalysts for electrochemical reduction of small molecules

Nan Zhang⁺, *Fangfang Zheng*⁺, *Bolong Huang*⁺, *Yujin Ji, Qi Shao, Youyong Li, Xiangheng Xiao, Xiaoqing Huang*^{*}

N. Zhang, Dr. Q. Shao, Prof. X. Huang

College of Chemistry, Chemical Engineering and Materials Science, Soochow University,

Jiangsu 215123, China

E-mail: hxq006@suda.edu.cn

N. Zhang, Prof. X. Xiao

School of Physics and Technology, Wuhan University, Hubei 430072, China

F. Zheng, Y. Ji, Prof. Y. Li

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China

Prof. B. Huang

Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Abstract: The electroreduction of small molecules to high value-added chemicals is considered as a promising way to the capture and utilization of atmospheric small molecules, such as O₂, CO₂ and N₂. Discovering cheap and efficient electrocatalysts with simultaneously high activity, selectivity, durability and even universality is particularly desirable yet challenging. Herein, we first demonstrate that ultrathin Bi₂Te₃ nanoplates (NPs), cheap and noble metal-free electrocatalysts, can be adopted as highly universal and robust electrocatalysts, which can efficiently realize the reduction of small molecules (O₂, CO₂ and N₂) into targeted products simultaneously. They can achieve high activity and selectivity, as

well as excellent durability of O₂ reduction reaction with almost 100% H₂O₂ selectivity, CO₂ reduction reaction with up to 90% Faradaic efficiency (FE) of HCOOH as well as N₂ reduction reaction with 7.9% FE of NH₃. We found that, after electrochemical activation, an obvious Te dissolution happened on the Bi₂Te₃ NPs, which is the key to the creation of a large amount of Te vacancies in the activated Bi₂Te₃ NPs. Theoretical calculations revealed that the Te vacancies on the Bi₂Te₃ surface enable the modulation of the electronic structures of Bi and Te. The Bi and Te are playing the opposite role, in which Bi-6p atoms are the electron suppliers while the Te atoms the electronic depletion center, respectively. Such a highly electroactive surface with a strong preference in supplying electrons for the universal reduction reactions to improve the electrocatalytic performance of Bi₂Te₃. Our experiments and theoretical work demonstrated a new class of cheap and versatile catalysts for the electrochemical reduction of small molecules with potential practical applications.

Keywords: Bi₂Te₃ nanoplate • Universality • Oxygen reduction reaction • Carbon dioxide reduction reaction • Nitrogen reduction reaction

In the past years, the utilization and conversion of earth-abundant, atmospheric molecules, such as O_2 , CO_2 and N_2 , have been received many research interests, since it is an efficient way to generate value-added chemical intermediates and fuels. While several typical industrial processes, such as Haber-Bosch process, anthraquinone process etc., are the main routes to produce the important intermediates and fuels (i. e., H_2O_2 , HCOOH and NH_3), it still comes with many problems, such as extreme energy dependence, explosion dangers, environmental pollution, limited efficiency and so on.^[1-3] The electrochemical approach, being milder, cleaner and more efficient, has emerged as a versatile route for yielding the important chemical intermediates and fuels *via* these electrochemical conversions.^[4-8] In electrocatalysis, while the electrocatalysts play a vital role in reducing the activation energy of

the reaction and driving the reaction, developing highly efficient electrocatalysts is of great significance.

H₂O₂ is one of the 100 most important chemicals.^[1] Industrially, H₂O₂ is prepared by direct oxidation of H₂, which is however with the danger of explosion.^[9,10] O₂ reduction reaction (ORR) represents an attractive alternative to prepare H₂O₂ with the feature of environmentally friendly and safe, but electrocatalysts suffer from high cost, limited selectivity and/or low activity.^[1,2,11,12] Besides H₂O₂, HCOOH, an important intermediate in industry and the chemical fuel in direct HCOOH fuel cells, is a common CO₂ reduction reaction (CO₂RR) product,^[13-15] but developing the active, selective, durable and cheap electrocatalysts for CO₂RR is also very challenging.^[16-21] NH₃, another highly value-added chemical, is one of the most widely-used chemicals because it is a source of N₂ for fertilizer and potential transportation fuel.^[22-25] While N₂ reduction reaction (N₂RR) into NH₃ represents an attractive prospect for the fixation of N_2 ,^[22, 26-30] it suffers from a low yield rate of NH₃ over reported electrocatalysts.^[31,32] Based on the above considerations, although small molecules electroreduction is indeed a promising route to obtain value-added chemicals, it is still very challenging to simultaneously reach desirable activity, selectivity and cost. As the electrocatalysts are the key for those reductions, it is particularly urgent to explore low-cost, high-performance catalysts with enhanced efficiency. In particular, it would be a formidable challenge to discover universal electrocatalysts to simultaneously realize high performance for the electroreduction of various small molecules.

Herein, we first demonstrate that the ultrathin Bi₂Te₃ nanoplates (NPs) can be adopted as highly universal, cheap, active and selective noble metal-free electrocatalysts for small molecules (i. e., O₂, CO₂ and N₂) reductions. The ultrathin Bi₂Te₃ NPs could simultaneously achieve high activity and selectivity, as well as excellent durability for ORR, CO₂RR as well as N₂RR. Specifically, the Bi₂Te₃ NPs showed nearly 100% H₂O₂ selectivity for ORR, 89.6% Faradaic efficiency (FE) of HCOOH for CO₂RR as well as 7.9% FE of NH₃ for N₂RR. After electrochemical activation, a large amount of Te vacancies were produced on the Bi₂Te₃ NPs because of the obvious Te dissolution. DFT calculations further verified the formation of Te vacancies will significantly optimize the surface electronic distribution for the electroreduction towards small molecule reactions. The Bi₂Te₃ NPs were also stable in the reduction reactions of small molecules with negligible activity decay after the durability tests.

The ultrathin Bi-Te NPs were synthesized through a facile hydrothermal reaction with bismuth chloride (BiCl₃) and potassium tellurite (K₂TeO₃) as precursors, polyvinyl pyrrolidone (PVP, MW = 58000) as surfactant and ethylene glycol as the solvent in the presence of sodium hydroxide (NaOH) (see the supporting information for details). The NPs were initially characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The hexagonal NPs were the dominant product with a monodisperse edge length of about 450 nm (Figure 1a). The thickness of Bi-Te NPs was determined to be around 16.5 nm by atomic force microscope (AFM) (Figure 1b). The Bi/Te molar ratio of the NPs was determined to be 2/3 by scanning electron microscopy energydispersive X-ray spectroscopy (SEM-EDS) (Figure S1a). The powder X-ray diffraction (PXRD) pattern of the products displayed distinct patterns associated with Bi₂Te₃ materials (Figure S1b). In addition, the high-resolution TEM (HRTEM) image of the NP (Figure 1c) showed the lattice fringes with an interplanar spacing of 0.222 nm, corresponding to the (110) plane of the Bi₂Te₃ materials. The Bi₂Te₃ NPs were further characterized by the line scan analysis, where the distributions of Bi and Te were throughout the whole NP (Figure 1d), being consistent with the HAADF-STEM-EDS elemental mapping result (Figure 1e).

The prepared Bi₂Te₃ NPs were then loaded on a commercial carbon (Vulcan XC72R carbon, C) *via* sonication, then thoroughly washed with ethanol for electrocatalysis (**Figure S2**). The commercial Bi₂Te₃ (**Figure S3**) was taken as reference for comparison. The

commercial Bi₂Te₃ were also loaded on a commercial carbon (**Figure S4**). The loading amount of the two catalysts was both 50 wt% based on the inductively coupled plasma atomic emission spectroscopy (ICP-AES). Before the electroreduction, the Bi₂Te₃ NPs/C was activated by cycling in 0.1 M KOH for 500 cycles. The double-layer capacitance (C_{dl}) values of the Bi₂Te₃ NPs/C and the commercial Bi₂Te₃/C were initially tested, which is positively correlated with the electrochemical active surface area (ECSA) (**Figure S5a,c**).^[33,34] As shown in **Figure S5b,d**, the C_{dl} of the Bi₂Te₃ NPs/C was 16.7 mF cm⁻², which was much higher than that of the commercial Bi₂Te₃/C (3.8 mF cm⁻²). Furthermore, the ECSA of the activated Bi₂Te₃ NPs/C was also measured by the Cdl values. As shown in **Figure S6**, the C_{dl} value of the activated one was 20 mF cm⁻², which is higher than the initial one (16.7 mF cm⁻²). The higher C_{dl} value of the activated Bi₂Te₃ NPs/C is beneficial for enhancing the relevant electroreductions.

The activated Bi₂Te₃ NPs/C was initially evaluated as electrocatalyst for ORR. The ORR activity for Bi₂Te₃ NPs/C was tested with a rotating ring disk electrode (RRDE) setup at 1600 rpm in O₂-saturated 0.1 M KOH. The commercial Bi₂Te₃, carbon and the glassy carbon electrode (GC) were used as the references. The ring electrode was Pt and held at 1.2 V *vs*. reversible hydrogen electrode (RHE) to oxidize H₂O₂ formed on the disk electrode, allowing for ORR product quantification. The collection efficiency (N) is an important parameter to calculate the H₂O₂ selectivity. The value of N was experimentally determined to be 0.29 by using a standard ferricyanide system (**Figure S7**).^[35] **Figure 2a** shows O₂ reduction disk currents and the simultaneously measured peroxide oxidation ring currents for the activated Bi₂Te₃ NPs/C, the commercial Bi₂Te₃/C, carbon and GC. The amount of H₂O₂ produced was monitored at the ring electrode, where a positive current was measured once H₂O₂ was produced at the disk. The H₂O₂ selectivity of the activated Bi₂Te₃ NPs/C reached more than 95% at a potential between 0.2 V_{RHE} and 0.6 V_{RHE} (**Figure 2b**), indicating that a high yield of

H₂O₂ was achievable. As for the commercial Bi₂Te₃/C, the H₂O₂ selectivity was only around 80% at a smaller potential range (0.2 V_{RHE} - 0.4 V_{RHE}). It should be noted that the H₂O₂ selectivity of the activated Bi₂Te₃ NPs/C is the highest in the reported materials, which is even better than many noble-metal catalysts such as Pd-Au,^[11] Pt-Hg,^[36] Pd-Hg,^[37] Au-Pt-Ni^[38] and so on (**Table S1**). Furthermore, the number of the transferred electrons (*n*) (**Figure 2c**) for the activated Bi₂Te₃ NPs/C was calculated to be around 2.0 during 0.2 V_{RHE} from 0.6 V_{RHE}, suggesting a dominant 2-electron O₂ reduction pathway. To further confirm that the ring and disk currents were produced by the reduction of O₂ based on the activated Bi₂Te₃ NPs/C by O₂ saturation, where the electrolyte was initially saturated by Ar. The ring and disk current densities of the activated Bi₂Te₃ NPs/C were close to that in the electrolyte initially saturated by N₂, indicating that no N₂RR happens during the ORR process (**Figure S8**). The activated Bi₂Te₃ NPs/C is also durable since both the ring and disk currents can maintain over 10 h, as revealed by the potentiostatic measurement (**Figure 2d**).

We next investigated the CO₂RR performance of the activated Bi₂Te₃ NPs/C in an H-cell containing 30 mL 0.5 M NaHCO₃. As shown in **Figure 3a**, the activated Bi₂Te₃ NPs/C showed a remarkable enhancement of the CO₂ reduction. The polarization curve of the activated Bi₂Te₃ NPs/C in CO₂-saturated 0.5 M NaHCO₃ showed a cathodic current onset at around -0.7 V_{RHE}, and then its current density continued to increase. When the potential reached to -1.1 V_{RHE}, the activated Bi₂Te₃ NPs/C could reach a current density of about 31 mA cm⁻², significantly higher than that of the commercial Bi₂Te₃/C. The reduction reactions of Te²⁺ and Bi³⁺ caused the reduction peaks at -0.5 V_{RHE} and 0.35 V_{RHE}, respectively.^[39,40] In the control experiment, the polarization curves in the Ar-saturated 0.5 M NaHCO₃ of the activated Bi₂Te₃ NPs/C and the commercial Bi₂Te₃/C showed that the current densities were significantly reduced. To identify and quantify the reduction products, gas chromatography

and ¹H NMR spectroscopy were performed to quantify the gaseous and liquid products, respectively. The product in CO₂RR included HCOOH, CO, and H₂ over the activated Bi₂Te₃ NPs/C and the commercial Bi₂Te₃/C. We found that HCOOH was the major product, along with a small amount of CO and H₂. FEs of HCOOH, CO and H₂ at various potentials were calculated and summarized in Figure 3b and Figure S9. We can see that the activated Bi₂Te₃ NPs/C showed more than 70% FE_{HCOOH} over a wide voltage range. When the potential was increased to -0.9 V_{RHE}, the FE_{HCOOH} reached up to 89.6% (Figure S10). In addition, the FE_{CO} was less than 3% at the wide range of applied potentials. The FE_{H2} underwent a significant decrease with increasing potential, where only small FE_{H2} was detected at the high potentials. For the commercial Bi₂Te₃/C, the FE_{HCOOH} reached the peak value of only 58.1% at -0.8 V_{RHE} (Figure 3b). Therefore, the FE_{HCOOH} for the activated Bi₂Te₃ NPs/C was higher than the most state of the art catalysts for HCOOH productions in CO₂RR (Table S2). The FE_{HCOOH} for the activated Bi₂Te₃ NPs/C was even comparable to the value for the partially oxidized Co layers reported in Nature.^[41] Furthermore, the partial current densities of HCOOH for the different catalysts were further calculated and plotted against the working potential (Figure 3c). The activated Bi₂Te₃ NPs/C delivered a maximum value of $j_{HCOOH} = 24.2$ mA cm⁻² at -1.1 V_{RHE}, whereas that of the latter was only 5.2 mA cm⁻². The activated Bi₂Te₃ NPs/C also showed enhanced durability with maintaining high FE_{HCOOH} of 88.7% after 10 h potentiostatic test at -0.9 V_{RHE} (Figure S11).

Inspired by the excellent performance of the activated Bi_2Te_3 NPs/C for ORR and CO₂RR, the performance of the activated Bi_2Te_3 NPs/C for N₂RR was further investigated. The polarization curves of the activated Bi_2Te_3 NPs/C and the commercial Bi_2Te_3/C in both Ar-saturated and N₂-saturated 0.1 M KOH were first tested (**Figure 3d**). For the activated Bi_2Te_3 NPs/C, the current density in N₂-saturated electrolyte was higher than that in the Ar-saturated one from -0.3 V_{RHE} to -0.8 V_{RHE}, indicating that activated Bi_2Te_3 NPs/C had potential response toward N₂RR. By contrast, the commercial Bi_2Te_3/C exhibited similar polarization curve in both Ar-saturated and N₂-saturated electrolytes, suggesting its low activity toward N₂RR. The potentiostatic tests were further conducted in N₂-saturated 0.1 M KOH solution at different potentials for 2 h (Figure S12). The FEs of NH₃ were calculated by the detection of different potential liquid products based on UV spectrophotometer. As shown in Figure 3e, the FE_{NH3} for the activated Bi₂Te₃ NPs/C was higher than that of the commercial Bi₂Te₃/C at all applied potentials. Remarkably, the FE_{NH3} for activated Bi₂Te₃ NPs/C reached 7.9% at -0.4 V_{RHE}, which was 1.82-fold higher than that of the commercial Bi₂Te₃/C (4.3%). The FE_{NH3} for the activated Bi₂Te₃ NPs/C was higher than many non-noble metals-based catalysts and even outperformed several typical noble-metal catalysts, such as Au nanorods^[22] (**Table S3**). Moreover, the yield rates for NH₃ of the different catalysts were further investigated. As shown in Figure 3f, the rate increased as the negative potential increased until -0.4 $V_{RHE},$ where an average value of NH_3 is 3.9 $\mu g_{NH3}\ h^{-1}\ cm^{-2}.$ As the potential reached below -0.4 V_{RHE}, the hydrogen evolution reaction becomes the major reaction, as revealed by the polarization curve shown in Figure 3d. In control experiments (Figure S13), when N_2 was replaced by Ar, while keeping other reaction parameters unchanged, NH₃ could not be identified in the electrolyte. The same was observed when the activated Bi₂Te₃ NPs/C was replaced by a carbon paper or carbon. These control experiments confirmed that NH₃ was produced from the N₂RR catalyzed by the activated Bi_2Te_3 NPs/C. To corroborate the origin of the NH₃ generated from N₂RR, we designed isotopic labelling study using ¹⁵N₂ as the feeding gases.^[42,43] The obtained ¹⁵NH₄⁺ and ¹⁴NH₄⁺ were measured by ¹H NMR spectroscopy of the reaction solution. The ¹H NMR spectra of the standards and the yielded ¹⁴NH₄⁺ and ¹⁵NH₄⁺ were shown in Figure S14. The isotopic labelled sample exhibited doublets, which correspond to ¹⁵NH₄⁺. When using pure ¹⁴N₂ as a reference, triplets corresponding to ¹⁴NH₄⁺ can be found. Those results confirm that the yielded NH₃ resulted from the activated Bi₂Te₃ NPs/C catalyzed N₂RR. Finally, the durability of the activated Bi₂Te₃ NPs/C was tested by scanning at a constant potential of -0.4 V_{RHE} for 10 h (Figure S15), where the activated Bi₂Te₃ NPs/C maintained almost the same FE_{NH3} as the initial value.

To understand the intrinsic reason for the high performance of the Bi₂Te₃ NPs/C towards small molecules electroreduction, the Bi₂Te₃ NPs/C at the different stages during the catalytic process were characterized in detail. Before the electroreduction, the Bi₂Te₃ NPs/C was activated by cycling in 0.1 M KOH for 500 cycles. We can see that the activated Bi₂Te₃ NPs/C are porous structure (**Figure 4a**) with partial dissolution of Te (**Figure 4b**). The atomic ratio of Bi/Te changed from 40.6/59.4 into 62.3/37.7, as revealed by SEM-EDS, which was in lined with the ICP-AES results (**Table S4**). In addition, the EDS mappings showed that Bi and Te still distributed on the NPs uniformly (**Figure 4c**). HRTEM image revealed that the lattices were discontinuous in the activated Bi₂Te₃ NPs/C (**Figure 4d**). Therefore, the atomic arrangement of the activated Bi₂Te₃ NPs/C showed obvious structure change at the surface, which would affect the catalytic performance.^[44,45] In addition, the discontinuous lattice formed by the obvious Te dissolution could lead to the formation of Te vacancies. The Bi 4f and Te 3d spectra of the activated Bi₂Te₃ NPs/C showed that both the surface Bi and surface Te were in the oxidation state, as revealed by X-ray photoelectron spectroscopy (**Figure S16**).

The activated Bi₂Te₃ NPs/C after ORR durability test was also investigated in detail. As shown in **Figure S17a**, they could still be well-dispersed on the carbon support, and the atomic ratio of Bi/Te could be largely maintained (69.5/30.5) (**Figure 4b**). Discontinuous lattices could also be observed here (**Figure S17b**). Furthermore, both Bi and Te still distributed on the NPs uniformly (**Figure S17c**). Based on the above experimental results, we further summarized the schematic diagram of the morphology and structural evolution of the Bi₂Te₃ NPs/C during ORR in **Figure 4e**. After electrochemical activation, the NPs changed to be a porous structure due to the partial dissolution of Te. As the reaction proceeds, the NPs maintained a porous hexagonal NP structure after the durability test, except that the degree of

porosity increases slightly with the further minor dissolution of Te. Above all, after the ORR durability test, the activated Bi₂Te₃ NPs/C could largely maintain their structure and composition, showing excellent ORR durability. As for CO₂RR and N₂RR, the activated Bi₂Te₃ NPs/C also exhibited good durability (**Figure S18-19**) with negligible changes in selectivity, composition, morphology and structure. In addition, the performances of the Bi₂Te₃ and commercial Bi₂Te₃ for ORR, CO₂RR and N₂RR have been included (**Figure S20-22**). As we can see, if the materials were not loaded on the carbon, their performances for the electrochemical reduction reactions are much worse.

Especially, Te vacancies formed after the Te dissolution form the Bi₂Te₃ NPs/C during the activation process may play a key role in the reduction reaction. To further confirm that the Te vacancies promote the activities of small molecules reduction in experiment, we compared the performances for ORR, CO₂RR and N₂RR of the Bi₂Te₃ NPs/C before and after electrochemical activation. We can see that the Bi₂Te₃ NPs/C without electrochemical activation exhibits much worse performances (**Figure S23-24**), clearly showing the important role of Te vacancies in the small molecules reduction reaction.

The DFT calculations have been carried out for the insightful understanding of such reduction active materials. To clearly observe the evident effect brought by the surface defect, the electronic distribution of bonding and anti-bonding near the Fermi level (E_F) between the pristine Bi₂Te₃ and defective Bi₂Te₃ with vacancy Te (V_{Te}) is presented. For the pristine Bi₂Te₃, the electronic distribution shows the coupling between the HOMO and LUMO. However, when the surface Te vacancy is introduced to the lattice, the charge density distribution of bonding and antibonding orbitals has obviously turned from delocalized to localized (**Figure 5a-5b**). The formation of the surface defect will significantly reconstruct the surface electronic distribution to activate the electroactivity for molecule reduction. To gain more insight into the origin of the electroactivity, we further interpret the electronic

properties given by different regions of Bi₂Te₃. With the introduction of surface Te vacancy, the Bi-6p has been significantly activated when compared to the pristine Bi₂Te₃. The Bi-6p bands has been boosted up with 0.87 eV towards the Fermi level, confirming the overall enhanced electroactivity (**Figure 5c**). From the deep layer to the surface of Bi₂Te₃, the evolution of the projected partial density of states (PDOS) of Te displays a gradual migration to the higher position close to E_F (**Figure 5d**). The surface Te has been activated from E_F - 1.25 eV to E_F -0.25 eV with a positive 1.00 eV band offset, which is consistent with the electronic distribution change with V_{Te}. Simultaneously, the similar activation of Bi is also noted, in which the dominant Bi-6p bands have been boosted from E_F -1.75 eV to E_F -3.25 eV with a positive (**Figure 5e**). The Bi-bands locates at a lower position than Te-bands supports an electron-rich character. The migration of p-bands of surface metal to the E_F imply an oxidation state that is in a good agreement with the XPS results. Thus, the surface defect V_{Te} has largely promoted the reduction ability of Bi₂Te₃ based on the excitation of surface electron-rich Bi and electron-depletion channel Te to reach the optimal electronic environment for reduction reactions.

The optimal adsorption of key reactants, products and intermediates of ORR, CO₂RR and N₂RR are shown in **Figure 5f-h**. The summary of the adsorption energies and bond length is supplied in **Table S5**. The active bonding between the surface and adsorbates with only slight distortion on the local Bi₂Te₃ structure demonstrates a smooth and stable reduction process depends on the electroactive surface, which confirms the good durability tests. We further analyze the universal reduction reactivity of Bi₂Te₃ from an energetic perspective regarding the free energy of the reaction pathway of ORR, N₂RR in alkaline condition and CO₂RR in acidic condition. To achieve high selectivity of H₂O₂ with 2-electron transfer rather than the conventional 4-electron ORR, the determining step by the formation of the key intermediate [OOH]* become pivotal (**Figure 5i**). Notably, [OOH]* shows much stronger downhill towards the formation of [H₂O₂]* rather than the dissociation of O-H bonding. The further adsorption of the proton from water dissociation to form [H₂O₂]* exhibits a significant drop that is nearly 2 eV larger than the formation of [O]*, which is in a good agreement with the ultra-high selectivity of H₂O₂ during the operation range. Furthermore, the spontaneous desorption of H₂O₂ will ensure efficient 2-electron ORR. Further investigation of CO₂RR also reflects an energetically preferred reaction with total reaction releases heat of 0.35 eV. (Figure 5j). The first adsorption of the proton is prone to the formation of [HCOO]* rather than [COOH]*. The formation of [COOH]* will confront an energy barrier of 0.27 eV that leads to a lower CO₂RR efficiency when compared with the route of [HCOO]*. The transition barrier of the CO₂RR is 0.17 and 0.31 eV, respectively. The continuous downhill physiochemical trend of CO₂RR supports a good reactivity while the appropriate adsorption energy of HCOOH will also ensure a good efficiency. For the N₂RR process, the first protonation process of the N₂ molecule is usually considered as the determining step for the N₂RR.^[46] For the surface defective Bi₂Te₃, the key energy barrier is 0.36 V at zero electrode potential (U = 0 V) (Figure 5k). When U= -0.36 V is applied, the whole N_2RR becomes spontaneous, which is closer to the polarization curve test. As an important indicator to evaluate the N₂RR performance, we calculate the overpotential η according to U(equilibrium) - U(rate-limiting), where the U(equilibrium) is around about -0.16 V for the reaction N_2RR . Thus, the overpotential of N₂RR on Bi₂Te₃ will be (-0.16) - (-0.36) = 0.2 V, which is lower than some previously well-studied systems such as Ru and Re,^[47] indicating the great electroactivity towards N₂RR of the surface defective Bi₂Te₃. Therefore, both the electronic and energetic analysis demonstrates the great electroactivity towards the reduction reactions. The defect-induced optimized surface electronic environment endows Bi₂Te₃ great potential as a promising multi-functional electrocatalyst for facile synthesis of highly valuable small molecules for broad applications in industrials.

In conclusion, we first demonstrated that ultrathin Bi₂Te₃ NPs can be adopted as highly universal and robust electrocatalysts for the reduction of small molecules (O₂, CO₂ and N₂). When the activated Bi₂Te₃ NPs/C was evaluated as the ORR electrocatalyst in 0.1 M KOH, it exhibited excellent ORR selectivity toward H₂O₂ production with almost 100% selectivity between 0.2 V_{RHE} and 0.6 V_{RHE} . When the activated Bi₂Te₃ NPs/C was adopted as CO₂RR electrocatalyst in 0.5 M NaHCO₃, it enabled superior activity with large HCOOH partial current density of 24.2 mA cm⁻² at -1.1 V_{RHE}, as well as excellent selectivity with FE_{HCOOH} of 89.6%. As for the N₂RR, the activated Bi₂Te₃ NPs/C had been demonstrated to serve as a highly efficient electrocatalyst for N₂RR with the FE_{NH3} of 7.9% for at -0.4 V_{RHE} in 0.1 M KOH. They also showed enhanced durability after a long period of electrolysis for all the three electrocatalytic reactions. Detailed characterizations revealed that, after electrochemical activation, an obvious Te dissolution happened on the Bi₂Te₃ NPs, which creates a large amount of Te vacancies in the activated Bi₂Te₃ NPs. Theoretical calculations confirmed that the formation of Te vacancy will completely modulate the surface of Bi2Te3 towards electroactive and reductive feature as the active sites for the universal for the high-valued small molecules via energetically favorbale pathways. This work not only showed that the activated Bi2Te3 NPs/C are universal catalysts for the electroreduction of small molecules, but also provided a powerful material foundation for potential electrocatalysis.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was financially supported by the Ministry of Science and Technology (2016YFA0204100, 2017YFA0208200), the National Natural Science Foundation of China (21571135), Young Thousand Talented Program, Natural Science Foundation of Jiangsu Higher Education Institutions (17KJB150032), the project of scientific and technologic infrastructure of Suzhou (SZS201708), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the start-up supports from Soochow University. Nan Zhang, Fangfang Zheng and Bolong Huang contributed equally to this work.

Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

- [1]. Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T.F. Jaramillo, J. K. Nørskov, Y. Cui, *Nat. Catal.* 2018, *1*, 156.
- [2]. Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, *Adv. Energy Mater.* 2018, *8*, 1801909.
- [3]. Y. P. Zhu, C. Guo, Y. Zheng, S. Z. Qiao, Acc. Chem. Res. 2017, 50, 915.
- [4]. N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J.
- Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S. T. Lee, Y. Li, Chem 2017, 3, 652.
- [5]. Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K. L. Materna, W. Liu, V. S. Batista, G. W. Brudvig, H. Wang, J. Am. Chem. Soc. 2016, 138, 8076.
- [6]. J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg,

P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, *Science* 2018, *360*, aar6611.

- [7] L. He, X. Sun, H. Zhang, F. Shao, Angew. Chem. Int. Ed. 2018, 57, 12453.
- [8]. W. Qiu, X. Y. Xie, J. Qiu, W. H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang, X. Sun, *Nat. Commun.* 2018, *9*, 3485.
- [9]. D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado, L. Nasi, M. Bevilacqua, C. Tavagnacco, F. Vizza, M. Prato, P. Fornasiero, *Chem* 2018, *4*, 106.
- [10]. T. P. Fellinger, F. Hasché, P. Strasser, J. Am. Chem. Soc. 2012, 134, 4072.
- [11]. J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432.
- [12]. H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, B. D. McCloskey, *Nat. Catal.* 2018, *1*, 282.
- [13]. C. Liu, B. C. Colón, M. Ziesack, P. A. Silver, D. G. Nocera, Science 2016, 352, 1210.

- [14]. M. Schreier, F. Héroguel, L. Steier, S. Ahmad, J. S. Luterbacher, M. T. Mayer, J. Luo,M. Grätzel, *Nat. Energy* 2017, *2*, 17087.
- [15]. S. Enthaler, J. von Langermann, T. Schmidt, Energy Environ. Sci. 2010, 3, 1207.
- [16]. K. Jiang, H. Wang, W. B. Cai, H. Wang, ACS Nano 2017, 11, 6451.
- [17]. J. Wu, Y. Huang, W. Ye, Y. Li, Adv. Sci. 2017, 4, 1700194.
- [18]. L. Zhang, Z. J. Zhao, J. Gong, Angew. Chem. Int. Ed. 2017, 56, 11326.
- [19]. D. D. Zhu, J. L. Liu, S. Z. Qiao, Adv. Mater. 2016, 28, 3423.
- [20] A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem 2018, 4, 1809.
- [21]. Z. Geng, X. Kong, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang, J. Zeng, Angew. Chem. Int.Ed. 2018, 57, 6054.
- [22]. D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M. Yan, Q. Jiang,
 X. B. Zhang, *Adv. Mater.* 2017, *29*, 1604799.
- [23]. S. Licht, B. Cui, B. Wang, F. F. Li, J. Lau, S. Liu, Science 2014, 345, 637.
- [24]. H. Daims, E. V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, N. Jehmlich, M.
- Palatinszky, J. Vierheilig, A. Bulaev, R. H. Kirkegaard, M. von Bergen, T. Rattei, B. Bendinger, P. H. Nielsen, M. Wagner, *Nature* 2015, *528*, 504.
- [25]. C. Guo, J. Ran, A. Vasileff, S. Z. Qiao, Energy Environ. Sci. 2018, 11, 45.
- [26]. Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, *Adv. Mater.* **2018**, *30*, 1803498.
- [27]. S. J. Li, D. Bao, M. M. Shi, B. R. Wulan, J. M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1700001.
- [28]. M. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan, Q. Jiang, *Adv. Mater.***2017**, *29*, 1606550.
- [29]. Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang, J. Zhao, ACS Catal.2018, 8, 1186.

- [30]. J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li, X. Sun, J. Mater. Chem. A 2018, 6, 12974.
- [31]. S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, *Angew. Chem. Int. Ed.***2017**, *56*, 2699.
- [32]. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, *Adv. Mater.* **2018**, *30*, 1800191.
- [33]. A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu, J. Zeng, Angew. Chem. Int. Ed. 2018, 57, 10954.
- [34]. Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan, G.Qian, J. Zou, A. Du, X. Yao, *Adv. Mater.* 2017, *29*, 1700017.
- [35]. S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund, D. Sokaras, T. R. Kim, Y.
- Liu, X. Yan, E. Nilsson, R. Sinclair, J. K. Nørskov, T. F. Jaramillo, Z. Bao, *J. Am. Chem. Soc.* **2018**, *140*, 7851.
- [36]. S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B.
- Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff,
- I. E. L. Stephens, J. Rossmeisl, Nat. Mater. 2013, 12, 1137.
- [37]. A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T. W.Hansen, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, *Nano Lett.* 2014, *14*, 1603.
- [38]. Z. Zheng, Y. H. Ng, D. W. Wang, R. Amal, Adv. Mater. 2016, 28, 9949.
- [39]. Y. C. Ha, H. J. Sohn, G. J. Jeong, C. K. Lee, K. I. Rhee, *J. Applied. Electrochem.* 2000, 30, 315.
- [40]. N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, 9, 1320.
- [41]. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, *Nature* 2016, 529, 68.
- [42]. Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang, H. Zhao, Adv. Energy Mater. 2019, 9, 1803935.

- [43]. M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, *Nat. Commun.* **2019**, *10*, 341.
- [44]. X. Zhao, L. Zhou, W. Zhang, C. Hu, L. Dai, L. Ren, B. Wu, G. Fu, N. Zheng, *Chem***2018**, *4*, 1080.
- [45]. P. Liu, R. Qin, G. Fu, N. Zheng, J. Am. Chem. Soc. 2017, 139, 2122.
- [46]. J. Zhao, Z. Chen, J. Am. Chem. Soc. 2017, 139, 12480.
- [47]. J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem 2015, 8, 2180.

Figure 1. (a) HAADF-STEM image, (b) AFM images of the Bi₂Te₃ NPs. (c) HRTEM image, (d) line scan analysis, and (e) HAADF-STEM image and STEM-EDS elemental mappings of a Bi₂Te₃ NP.

Figure 2. (a) RRDE voltammograms of the activated Bi_2Te_3 NPs/C, commercial Bi_2Te_3/C , carbon, and GC at 1600 rpm in O₂-saturated 0.1 M KOH with the disk current density and ring current. The scan rate is 10 mV/s. (b) H_2O_2 selectivity as a function of the applied potential. (c) The calculated values of n as a function of the applied potential. (d) 10 h durability test for the activated Bi_2Te_3 NPs/C at 0.4 V_{RHE} for disk and 1.2 V_{RHE} for ring.

Figure 3. (a) Polarization curves of the activated Bi_2Te_3 NPs/C and commercial Bi_2Te_3/C in Ar- and CO₂-saturated 0.5 M NaHCO₃. (b) Potential-dependent FEs of HCOOH, CO, H₂ for activated Bi_2Te_3 NPs/C and FE_{HCOOH} for commercial Bi_2Te_3/C (dashed blue line). (c) Potential-dependent HCOOH partial current density of the activated Bi_2Te_3 NPs/C and commercial Bi_2Te_3/C . (d) Polarization curves of the two catalysts in Ar- and N₂-saturated 0.1 M KOH. Potential-dependent (e) FE_{NH3} and (f) yield rate of NH₃ production for the activated Bi_2Te_3 NPs/C and commercial Bi_2Te_3/C .

Figure 4. (a) TEM image, (b) composition changes of Bi and Te of the Bi₂Te₃ NPs/C during ORR based on SEM-EDS, (c) STEM image and EDS mappings, and (d) HRTEM image of the activated Bi₂Te₃ NPs/C. (e) Schematic illustration of morphology and structural evolution of the Bi₂Te₃ NPs/C during ORR.

Figure 5. (a) The electronic orbital distribution of pristine Bi_2Te_3 . Green Isosurface = HOMO, Blue Isosurface = LUMO. (b) The electronic orbital distribution of surface defective Bi_2Te_3 . Green Isosurface = HOMO, Blue Isosurface = LUMO. (c) The comparison of PDOSs between pristine Bi_2Te_3 and surface defective Bi_2Te_3 (D- Bi_2Te_3). (d) The site-dependent PDOSs of Te from surface regions towards metal Te. (e) The site-dependent PDOSs of Bi from surface regions towards metal Bi. (f) The local structural configurations for adsorption of O₂, H₂O₂, [OOH]* and [O]* in ORR. (g) The local structural configurations for adsorption of CO₂, HCOOH, [HCOO]* and [COOH]* in CO₂RR. (h) The local structural configurations for adsorption of N₂, NH₃, [NNH]* and [N]* in N₂RR. Red Balls = O, Green Balls= H, Blue Balls = N, Grey Balls = C, Brown Balls = Te and Purple Balls = Bi. (i) Free energy pathways for ORR under the alkaline condition. (j) Free energy pathways for CO₂RR under the acidic condition. (k) Free energy pathways for N₂RR under the alkaline condition.

The table of contents entry

The ultrathin activated Bi₂Te₃ nanoplates (NPs) have been demonstrated as highly universal and robust electrocatalysts for the electroreduction of small molecules (O_2 , CO_2 and N_2), where they exhibit nearly 100% H₂O₂ selectivity for ORR, 89.6% Faradaic efficiency (FE) of HCOOH for CO₂RR and 7.9% FE of NH₃ for N₂RR, as well as enhanced durability, showing a new class of robust electrocatalysts for small molecules conversion with potential practical applications.

Keyword: Bi_2Te_3 nanoplate • Universality • Oxygen reduction reaction • Carbon dioxide reduction reaction • Nitrogen reduction reaction

Exploring Bi₂Te₃ nanoplates as versatile catalysts for electrochemical reduction of small molecules

Nan Zhang⁺, Fangfang Zheng⁺, Bolong Huang⁺, Yujin Ji, Qi Shao, Youyong Li, Xiangheng Xiao, Xiaoqing Huang^{*}

ToC figure

