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Abstract Catalytic C–N bonds formation is one of the major research topics in 
synthetic chemistry owing to the ubiquity of amino groups in natural products, 
synthetic intermediates and pharmaceutical agents. Paralleling with the well-
established metal-catalyzed C–N bond coupling protocols, photocatalytic 
reactions have recently emerged as one of the efficient and selective 
alternatives for C–N bonds construction. In this short review, recent progress 
of photocatalytic C–N bonds coupling reactions starting from 2012 to 2020 
(Feb) are summarized. 
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1. Introduction 

Due to the ubiquity of carbon–nitrogen bonds in functional
materials, natural products and pharmaceutical agents, 
development of efficient and selective methodologies for facile 
construction of carbon–nitrogen bonds remains a major research 

topic in synthetic chemistry.1 While the traditional C–N bonds 
formation approaches often require forcing conditions and 
tedious synthetic steps, metal-mediated C–N bond formation has 
enabled a powerful synthetic platform with regard to efficiency 
and applicability.2 Ever since the seminal reports by Ullmann and 
Goldberg on the Cu-catalyzed amination of aryl halides,3 major 
breakthroughs have been accomplished. Most notable works 
include Buchwald-Hartwig coupling and Chan-Evans-Lam 
coupling reactions, which have now become “household” 
protocols for C–N bond coupling reactions.4 Despite these great 
accomplishments, development for more sustainable and easily 
scalable protocols is still in demand. One of the viable approaches 
to construct C–N bonds is the direct functionalization of 
hydrocarbon substrates by C–H insertion or C–H activation.5 

A newly emerging strategy in direct C–H amination is to 
employ photoredox catalysis. Upon photoirradiation, the 
photocatalyst may effect the formation of organoradical species 
via a single-electron transfer pathway. The radical would react 
with coupling partners to furnish aminated products.6 Indeed, 
the integration of light energy with chemical transformations 
emulate photosynthesis in the natural systems for chemical 
synthesis. Photons can be regarded as traceless reagents, which 
can reduce the concomitant by-products and simplify the work-
up procedures. The photocatalytic reactions allow organic 
transformations to occur at milder conditions with manageable 
set-up cost.7 Photocatalytic reactions are likely to be a promising 
platform for practical C–N coupling reactions. 

In the field of C–N coupling by photoredox catalysis, a good 
diversity of Ru/Ir-based polypyridyl complexes and organic dyes 
are available as photoredox catalysts to match the redox 
potentials of various substrates.8 This chemistry can be 
ameliorated with the help of air or oxygen as terminal oxidant. 

Photochemical aminations are usually categorized 
according to the nucleophiles used or the reaction types 
involved.9 In this short review, we herein summarize the recent 
progress of photocatalytic C–N bond coupling reactions 
according to the nature of the C–N bond formed (Scheme 1). 
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Scheme 1 The scope of this short review 
 
1.1 General Mechanisms for Photoredox Catalysis 

Most photoredox reactions are initiated by irradiation of the 
photocatalyst [cat] to generate an excited state photocatalyst 
[cat*]. The cat* would then react by donating an electron to the 
substrate [sub] or an oxidant [ox]. Alternatively, it may accept an 
electron from sub or a reductant [red]. The oxidized [cat]+ and 
reduced [cat]- would react with either the substrate, reaction 
intermediate or an external redox-active reagent to regenerate 
the active catalyst (Scheme 2). 
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Scheme 2 General mechanisms for photoredox catalysis 
 
1.2 Pioneering Works 

In 2012, the research groups of Fu and Peters pioneered the 
photoinduced Ullmann C–N coupling reaction catalyzed by the 
copper carbazolide catalyst (Scheme 3).10 Lithium carbazolides 
were used to couple with aryl iodide leading to the C–N bonds 
formation. Experimental studies suggested that a carbon-based 
radical is involved for the copper-mediated C–N bond formation 
is ensured. This work demonstrated the possibilities for 
photoinduced C–N bond formations and pioneered further 
development, including N-arylation and N-alkylation reactions. 
Peters, Fu & co-workers (Science 2012, 338, 647)
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Scheme 3 Cu-catalyzed photoinduced Ullmann C–N coupling 
 

Another inspiring work was reported by Zheng’s group. A 
cascade aromatization of styryl anilines to the tethered alkene 
was achieved with [Ru(bpz)3(PF6)2] catalyst under an 18 W white 
LEDs irradiation (Scheme 4).11 The N-centered radical cation 
generated from styryl anilines would undergo electrophilic 
addition to the tethered alkene. The following aromatization or 
C–C bond migration would give the indole products. 

Zheng & co-workers (Angew. Chem. Int. Ed. 2012, 51, 9562)
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Scheme 4 Photocatalytic oxidative C–N aromatization 
 

In 2013, the MacMillan and co-workers developed the 
enantioselective amidation of enamines by the combination of 
photoredox and organocatalysis (Scheme 5).12 
Dinitrophenylsulfonyloxy (ODNs) group was employed as a 
traceless activation handle to generate N-centered radicals. 
Enantioselective α-addition to the in situ formed chiral enamines 
would then give the N-substituted α-amino aldehyde product. 
The incorporation of chiral organocatalyst enables this reaction 
to be one of the few examples generating enantioenriched C–N 
coupling products. 
MacMillan & co-workers (J. Am. Chem. Soc. 2013, 135, 11521)

[cat]  HOTf (30.0 mol%), 2,6-lutidine

DMSO:MeCN, -15 oC, 26 W CFL

catalyst

H

O

R1

+ N
CO2R3R2

ODNs

Et

HN
N

O

H

O

R1

N
CO2R3

R2

H

O
N

Bn
CO2Me

79%, 92% ee

H

O
N

Bn

C4H9

CO2Me

76%, 90% ee

H

O
N

CO2Me

76%, 90% ee

H

O
N

Bn
Fmoc

73%, 89% ee

H

O
N

CO2Me

67%, 94% ee

16 examples,
up to 79% yield, 94% ee

Ar

NN

O

R1
N

CO2R3

R2

ODNs = dinitrophenylsulfonyloxy
selected examples

Scheme 5 Photoredox enantioselective α-amination of 
alkedhydes 
 

Sanford and co-workers also explored the reactivity of 
N-acyloxyphthalimides under visible light to generate 
phthalimide radicals to add on arenes (Scheme 6).13 The N-
centered radical is generated without excessive amount of 
oxidant under mild conditions. A broad substrate scope was 
presented, including a meta selective C–H amination of pyridine 
derivatives. 
Sanford & co-workers (J. Am. Chem. Soc. 2014, 136, 5607)
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Scheme 6 C–H amination of arenes and heteroarenes by 
N-acyloxyphthalimides 
 

A novel radical oxidative decarboxylative coupling of α-keto 
acids with amines was reported by Lei, Lan and co-workers 
(Scheme 7).14 [Ru(phen)3]Cl2 was employed as the photocatalyst 
with oxygen as terminal oxidant. Detailed mechanistic studies 
revealed that a SET process between the excited photocatalyst 
and aniline played an important role, suggested that the 
decarboxylation was facile and irreversible. 



Lei, Lan & co-workers (Angew. Chem. Int. Ed. 2014, 53, 502)
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Scheme 7 Decarboxylative/Oxidative amidation of α-keto acids 
 

These pioneering works showcased the concepts of 
photocatalytic C–N bond formations, including Cu-catalyzed 
coupling, cyclization, N-centered radical coupling and 
decarboxylative coupling. 

 
2. C(sp2)–N Bond Formation 

Photocatalytic C(sp2)–N bond formation can be categorized 
into oxidative amination and oxidant-free amination (Scheme 8). 
The coupling reactions are usually initiated by the generation of 
aryl radical cation, nitrogen radical cation or nitrogen radical. 
Some examples showed transition-metal mediated energy 
transfer as a key mechanistic step. 
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Scheme 8 Brief summary for photocatalytic C(sp2)–N formations 
 
2.1. Involving External Oxidant 
2.1.1. Aryl Radical Cation 

In 2015, the research group of Nicewicz reported a visible-
light-mediated arene C–H amination with azoles. The reaction 
was catalyzed by acridinium with TEMPO as the cocatalyst, using 
O2 as terminal oxidant (Scheme 9). para-Selective C–N bond 
formation were achieved regardless of functionalities such as 
free alcohols, esters, halides and alkenes. This pioneering work 
offers an appealing approach for activation of arenes and site-
selective arene C–H amination. In 2017, Nicewicz’s group 
reported a comprehensive study for this reaction and extended 
the amination scope using primary amines.15 
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Scheme 9 Photoredox site-selective aryl C–H amination 

 

The König’s group developed the C2-seletive amination of 
pyrroles with sulfonamides for the synthesis of N-(2-pyrrole)-
sulfonamide. They also reported the related amination reactions 
using carbamates, urea and other N-heterocycles. Lei and co-
workers expanded the substrate scope to thiophenes by using 
2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) as catalyst and 
electron mediator tert-butyl nitrite (TBN) (Scheme 10).16 
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Scheme 10 C2-seletive amination of pyrroles and thiophenes 
 

The use of external oxidants such as Selectfluor, H2O2, 
K2S2O8, etc. were also reported in recent years. In 2017, Pandey 
and co-workers described the amination of some electron-rich 
arenes with various heteroaromatic amines, including imidazole, 
triazole, and tetrazole (Scheme 11).17 The photoexcited Ru 
catalyst would undergo SET to generate an arene radical cation, 
which reacts with an amine nucleophile to give the C–N coupling 
product. 
Pandey & co-workers (Asian J. Org. Chem. 2017, 6, 469)
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Scheme 11 Photocatalytic amination of arenes 
 

Further developed by the Adimurthy’s group, regioselective 
C–H amination of heteroarenes with heteroaromatic amines was 
achieved by using acridinium as photoredox catalyst with K2S2O8 
as oxidant. The Xia’s group also reported the dual-catalyst C–N 
cross-coupling between arylamines and pyrazoles with [NiSO4·

6H2O] and acridinium catalyst. Both reactions are proposed to 
involve an aryl radical cation intermediate which reacts with the 
arylamines to give the C–N bond (Scheme 12).18 



Adimurthy & co-workers (Org. Biomol. Chem. 2017, 15, 9590),
Xia & co-workers (Org. Lett. 2018, 20, 4005)

HN

R3

R2
+

K2S2O8
 (2.0 equiv)

DCE, 12 W blue LEDs

N
ClO4

Acr+-MesClO4
-

X

N
H

R1

O

X

NH

R1

O

N
R3 R2

N

HN

t-Bu
O

N
NN N

HN

t-Bu
O

N
N

71% 61%

N

HN

O

N
N

62%

N
N

N
N

NPh
63%

NiSO4
  6H

2O (15.0 mol %),
H2O2

 (2.0 equiv)

H2O, 12 W blue LEDs

H
NO

N N
N

72%

NH
O

N

N
N

47%

NH
O

N

N
N

N44%

NH
O

N

N
N

37%

Cl

XH
NR1

O

46 examples,  up to 84% yield

23 examples, up to 74% yield

X
H
NR1

O
N
R3

R2

Acr+-MesClO4
- (5.0 mol %)

selected examples

 
Scheme 12 Regioselective C–H amination of quinoline amides 
and imidazopyridines 
 

Recently, Hu and co-workers merged photocatalysis and 
electrocatalysis for non-directed arene C–H amination using 
haematite as photoanode (Scheme 13).19 Under illumination, the 
photogenerated holes in haematite oxidized electron-rich arenes 
to radical cations, which further reacted with azoles to give the 
nitrogen heterocycles. An unusual ortho selectivity was achieved 
due to the hydrogen-bonding interaction between the 
hexafluoroisopropanol (HFIP) and the substrate. This 
photoelectrocatalytic amination also demonstrates potential 
applications for late-stage functionalization. 
Hu & co-workers (Nat. Catal. 2019, 2, 366)
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Scheme 13 Photoelectrocatalyrtic arene C–H amination 
 
2.1.2. Nitrogen Radical and Radical Cation 

Yu (S.), Zhang and co-workers developed an oxidative C–H 
amidation of heteroarenes with sulfonamides via N-centered 
radical. (Scheme 14).20 With NaClO solution as oxidant, a variety 
of heteroarenes including indoles, pyrroles and benzofurans 
were amidated with up to 92% yield. 
Yu (S.), Zhang & co-workers (Chem. Eur. J. 2016, 22, 15669)
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Scheme 14 Oxidative C–H amidation of heteroarenes with 
sulfonamides 
 

Further development on direct arene amidations via N-
centered radicals was reported by Itami, Murakami and co-
workers. An equimolar C–H/N–H coupling of arenes and 

sulfonimides was presented using Ru photocatalyst and 1-
butoxy-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (IBB) as oxidant. 
Itoh and co-workers also developed a similar cross-
dehydrogenative C–H amination of indoles with phthalimide 
using oxygen as the external oxidant (Scheme 15).21 
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Scheme 15 Aromatic C–H amidation with sulfonamide and 
phthalimide 
 

The Xia’s group reported another cross-dehydrogenative 
amination reaction between phenols and acyclic diarylamines 
using persulfate as oxidant (Scheme 16).22 The reaction was 
proposed to undergo a chain propagation pathway to generate a 
phenoxenium radical. Afterwards, a radical-radical cross-
coupling reaction would furnish the product. 
Xia & co-workers (ACS Catal. 2017, 7, 2446)
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Scheme 16 Dehydrogenative amination of phenols 
 

Further explored by Guan, He and co-workers, electron-
poor alkenes were successfully coupled to azoles to form N-
vinylazoles (Scheme 17).23 Radical cation azole intermediates 
and the corresponding N-centered radicals were proposed to be 
the key species of this coupling reaction. 
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Scheme 17 Oxidative C–H amination of alkenes 
 

Recently, Leonori’s group developed a practical and 
regioselective amination of arenes using alkyl amines with 
[Ru(bpy)3Cl2] as photoredox catalyst with N-chlorosuccinimide 
(NCS) (Scheme 18).24 The direct coupling of amines and arenes 



has been realized to a range of structurally diverse and complex 
substrates in multigram scale. Late-stage functionalization has 
also been applied to substituent such as peptides, chiral catalysts, 
polymers and organometallic complexes. Mechanistic studies 
revealed that the process starts with the in situ conversion of 
amine to N-chloroamine. Subsequent protonation and SET from 
the photocatalyst would generate the aminium radical and 
undergoes highly polarized addition to arenes. 
Leonori & co-workers (Nat. Chem. 2019, 11, 426)
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Scheme 18 Regioselective amination of arenes with alkyl amines 
 
2.1.3. Keto C–H Amination 

In 2014, Leow reported an amidation of aromatic aldehydes 
using phenazine ethosulfate as photocatalyst with O2 as oxidant 
(Scheme 19).25 The phenazinium cation is proposed to undergo 
an overall two-electron reduction to hydrophenazine and 
oxidized by oxygen to generate H2O2. The H2O2 formed would 
then oxidize the hemiaminal intermediate to give the amide 
product. 
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Scheme 19 Amidation of aromatic aldehydes 

 

Wong and co-workers pursued a similar strategy for 
synthesis of tertiary amides, including examples of 
oligosaccharides and endoperoxide artemisinin. Sharma and co-
workers extended the reaction scope to α-keto amides. This 
method is compatible with a large variety of α-keto aldehydes 
and primary/secondary aliphatic amines (Scheme 20).26 
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Recently, Song and co-workers utilized thioacetic acids as 
substrates for the visible light-induced amide bond formation 
(Scheme 21).27 The reaction was triggered by the deprotonation 
of the thioacid with an amine, and a thioacid radical would be 
generated via single-electron transfer from the photocatalyst. 
Diradical coupling would generate a disulfide intermediate, 
followed by aminolysis to furnish the amide bond. This reaction 
offers an excellent synthetic approach to amides with high 
functional group tolerance. 

Song & co-workers (Org. Lett. 2020, 22, 371)

+
Mes-Acr-MeBF4

 (2.0 mol %), O
2

MeCN, blue LEDsR1 SH

O
NH2R2

Ar N
H

O

R2

33 examples, up to 95% yield
selected examples

R1 S

O

R1 S

O

R1S

O
+ NH2R2

N
Ph

BF4

Mes-Acr-MeBF4

N
H

O

95%

Ph
N
H

O

71%

N

HN

O

83%

Ph N
H

O

84%

Ph
H
N

Fmoc N
H

O

84%

Ph
OH

NHBoc
Ph N

H

O

77%

Ph

 
Scheme 21 Oxidative amidation of thioacetic acids 
 
2.1.4. Energy Transfer 

In 2016, the research group of Bhalla developed a 
regioselective amination using copper nanoparticles (CuNPs) 
(Scheme 22).28 Supramolecular aggregates of triazole-appended 
perylene bisimide N-oxide are employed as reactors for the 
generation of copper nanoparticles (CuNPs). This nanoparticle 
exhibited photocatalytic activity for C–H amination under mild 
conditions. An energy transfer mechanism was proposed under 
the irradiation with a tungsten bulb at aerial conditions. 
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Scheme 22 Cu-nanoparticles mediated C–H amiantion 
 

Recently, Miyake, Thorarson and co-workers presented a 
dual catalytic light-driven C–N cross coupling protocol using 
Ni(II) salt with a photocatalyst.29 Results of a detailed 
mechanistic investigation are consistent with Förster-type 
energy transfer from the excited photocatalyst to Ni-amine 



complexes. A diverse selection of amines and aryl halides reacted 
to produce the corresponding C–N coupled products (Scheme 
23). 
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Scheme 23 Ni-amine complexes mediated C–H amiantion 
 
2.2. Oxidant Free 

Photocatalytic C(sp2)–N coupling usually involves the direct 
radical-radical coupling or radical addition to alkenes (Scheme 
24). 
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Scheme 24 Brief summary for oxidant-free photocatalytic C(sp2)–
N formations 
 
2.2.1. Nitrogen Radical Precursors 

Lee and co-workers reported the use of N-
chlorophthalimide as N-centered radical precursor for the C–H 
imidation of (hetero)arenes with Ir photocatalyst (Scheme 25).30 
This Minisci-type C–H functionalization is triggered by the 
reductive scission of the N–Cl bond using visible-light-
photoredox catalyst under mild conditions. 
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Scheme 25 C–H imidation of (hetero)arenes with N-
chlorophthalimide 
 

Yu (S.) and co-workers explored the use of other nitrogen 
radical precursors and found that hydroxylamine derivatives 
show excellent reactivity towards redox-neutral C–H amination 
of heteroarenes (Scheme 26). Regioselective C–N coupling was 
achieved for indoles, pyrroles and furans. In 2016, they extended 
this chemistry for the umpolung amidation of aldehyde-derived 
hydrazones. The corresponding hydrazonamides were formed in 
broad scope.31 

Yu (S.) & co-workers (Org. Lett. 2014, 16, 3504),
Zhu, Yu (S.) & co-workers (Org. Lett. 2016, 18, 5356)

NaHCO3
 (1.2 equiv)

DMF, White LEDs
Ir

N

N

N

[Ir(ppy)3]

+

Ar H

N
Bs

OBs

Ar N
Bs

N
N

Bs

71%

N
N

Bs

98%
Bn

N
N

Bs

47%
O N

Bs

63%

Ph

N
N

Bs

94%
PhN

N
Bs

72%

F

23 examples, up to 98% yield

Na2HPO4
 (2.0 equiv)

DCE,
 5 W Blue LEDs

Ar

N N

R1

R2 N
N N

R1

R2

Ar

Ph N

N
N

O

Bs

78%

N
NNO Bs

S

63%

N

N
N
Ph

Ph
Bs

76%

N

N
N

O

Bs

88%

N
Ph N

N
N
Ph

Et
Bs

82%

N
Bs

29 examples, up to 88% yield

[Ir(ppy)3] (1.0
−

2.0 mol %)

selected examples

Bs = Benzenesulfonyl

Bs

Scheme 26 Redox-neutral C–H amination of heteroarenes 
 

In 2015 Studer and co-workers disclosed the use of N-
aminopyridinium salts as N-centered radical precursors. 
Regioselective C–H amination of arenes and heteroarenes was 
achieved with [Ru(bpy3)]Cl2 as the catalyst (Scheme 27).32 The 
excited photocatalyst reduces the pyridinium salt by SET and 
subsequent fragmentation would generate the N-centered 
radical for the C–N coupling. 
Studer & co-workers (Org. Lett. 2015, 17, 254)
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Scheme 27 Regioselective C–H amination of arenes and 
heteroarenes with aminopyridinium salts 
 

König’s group disclosed an oxidant-free C–H amidation of 
heteroarenes by using benzoyl azides (Scheme 28).33 This 
reaction offers a mild protocol for photoredox C–N coupling with 
dinitrogen as the only by-product. Heterocycles including 
pyrroles, indoles, furan, benzofuran or thiophene were amidated 
in a single step. 
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Scheme 28 Amidation of heteroarenes with benzoyl azides 
 

Recently, Ritter and co-workers developed an interesting C–
H pyridonation reaction which successfully coupled 2- or 4-
pyridones to arenes (Scheme 29).34 The photoredox catalysis 
generates chloropyridinium radical cations for coupling to 
arenes to furnish the N-aryl-pyridone in excellent yields. Late-
stage modification of natural compounds was also realized by 
this method. 
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Scheme 29 C–H pyridonation of arenes 
 
2.2.2. C–N Cross-Coupling via Hydrogen Evolution 

In 2016, Tung, Wu and co-workers presented a blueprint of 
a dual catalyst system to produce aniline directly from benzene 
and ammonia (Scheme 30).35 They developed the hydrogen-
evolution cross-coupling reaction using the combination of a 
photocatalyst and a Co catalyst accompanied by liberation of 
hydrogen gas. In this design, the Co catalyst capture electrons 
from the substrates and/or reaction intermediates to reduce the 
protons eliminated from the C–H and N–H bonds into molecular 
hydrogen. 
Tung, Wu & co-workers (J. Am. Chem. Soc. 2016, 138, 10080)
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This concept was further explored by Niu, Yi and co-worker. 
Selective C–H amination of arenes using heterocyclic azoles gives 
a wide range of N-arylazoles including biphenyls and anisoles. 
The scope was further expanded by Lei for the coupling of 
imidazo[1,2-α]pyridines with pyrazoles. Photocatalytic 
dehydrogenative cross-coupling of alkenes with azoles was also 
reported (Scheme 31).36 
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The Zhou’s group also described the cooperative catalyst 
system for the C–H amination of arenes with concomitant 
generation of hydrogen. A variety of amines and hydrolytically 
unstable benzophenone imines were converted to the 
corresponding aromatic amines and triarylmethanimines 
(Scheme 32).37 
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Scheme 32 C–H amination of arenes with amine and imine 
 
2.2.3. Other Examples 

The Kobayashi’s group significantly improved the Ullmann-
type and Chan-Lam couplings under visible-light-mediated 
photoredox catalysis (Scheme 33).38 Through the productive 
merger of copper and photoredox catalysis, the substrate scope 
was expanded under mild reaction conditions. 
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Scheme 33 N-arylation of aryl iodides and boronic acids 
 

Recently, Ritter’s groups reported a revolutionary site-
selective late-stage diversification via aryl sulfonium salts. A set 
of four methods enables cross-coupling with a broad range of N-
nucleophiles as well as N-containing heterocycles. The reaction 
was proposed to proceed via single electron reduction of the aryl 
thianthrenium, and sequent generation of an aryl radical, which 
can engage in the copper-mediated redox process for subsequent 
C–N reductive elimination from some high-valent copper species. 
(Scheme 34).39 
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Scheme 34 Site-selective late-stage diversification via aryl 
sulfonium salts 
 
3. C(sp3)–N Bond Formation 

There are four major approaches for photocatalytic C(sp3)–
N bond formations, including the direct radical-radical couplings, 
addition reactions to alkenes and reductive amination of 
carbonyl compounds (Scheme 35). 
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3.1. Direct Radical-Radical Coupling 

 
In 2016, Fu, Peters and co-workers reported a 

groundbreaking visible-light-mediated asymmetric copper-
catalyzed C–N coupling reaction (Scheme 36).40 The combination 
of base-metal catalysis, chiral ligands and photoactivated 
conditions eanbled an enantioconvergent transformation of 
racemic starting materials to single enantiomeric products. 
Carbazole and α-halocarbonyl compounds were coupled in the 
presence of CuCl, a chiral phosphine ligand and Brønsted base 
under blue LEDs irradiation. This method ingeniously employed 
a single catalyst to achieve both photochemistry and 
enantioselective C–N bond construction. 
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The Lei’s group presented an oxidative amination of 
tetrahydrofurans with N-heterocyclic amines. The reaction was 
achieved by using acridinium as catalyst and oxygen as oxidant 
(Scheme 37).41 The excited photocatalyst would undergo SET 
process with pyrazole to generate a N-centered radical for 
subsequent coupling reaction. 
Lei & co-workers (J. Org. Chem. 2017, 82, 10704)
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Fu, Peters and co-workers discovered an intramolecular 
decarboxylative C–N coupling of NHPI esters to give protected 
amines with copper catalyst under blue-LED irradiation (Scheme 
38).42 Copper species are engaged in both the photochemistry 
and the key bond-forming step, which occurs through out-of-cage 
coupling of an alkyl radical. This method provides an alternative 
to the Curtius rearrangement and the C–N bond formation is 
compatible with a wide range of functional groups. 
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Muñiz and co-workers developed a direct amination of 
aliphatic C(sp3)–H bonds with triflamides under a unique iodine-
catalyzed process (Scheme 39).43 Surprisingly, secondary 
methylene positions are selectively functionalized over tertiary 
methine groups. A three-phase catalysis manifold involving the 
C–H iodination, alkyl iodide oxidation and amination by amidyl 



radical was proposed. This work enables a new C–N bond process 
that complements the nitrene chemistry. 
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Recently, our group reported a decarboxylative coupling of 
α-diazoacetates with N-hydroxyphthalimide esters (NHPI esters) 
(Scheme 40).44 By employing Rose Bengal as a photocatalyst 
under yellow LEDs irradiation, we prepared successfully over 60 
N-alkyl hydrazones. Mechanistic studies suggested Hantzsch 
ester serves as both electron donor and proton source for the 
reaction. 
Yu (W.-Y.) & co-workers (Org. Lett. 2019, 21, 8037)
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Scheme 40 Decarboxylative coupling of α-diazoacetates with 
NHPI esters 
 

The reductive N–O bond cleavage for C–N bond coupling has 
been further studied by Cho, You and co-workers. The homolytic 
cleavage of oxime esters in the presence of an Ir complex 
produces acyloxy and iminyl radicals, which would undergo 
decarboxylative cross-coupling to give structurally diversified 
imines (Scheme 41).45 DFT studies with photophysical and 
electrochemical measurements indicated the operation of a 
photocatalytic Dexter-type energy transfer pathway. 
Cho, You & co-workers (ACS Catal. 2019, 9, 10454)
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A similar formal deformylative C–N coupling reaction was 
presented by Hammond, Correia and co-workers (Scheme 42).46 
The procedure employs dihydropyridines for the generation of 
alkyl radicals, which then react with diazonium salts to afford the 
corresponding diazenes. Interestingly, no observed 
tautomerization of the diazenes to the corresponding 
arylhydrazones was observed. 
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3.2. Addition Reactions to Alkene 

In 2015, Akita, Koike and co-workers reported a regio-
aminohydroxylation of alkenes by [Ir(ppy)3] catalyst (Scheme 
43).47 N-Protected 1-aminopyridinium salts were used as amidyl 
radical precursors and vicinal aminoalcohols were successfully 
synthesized under mild conditions. 
Akita, Koike & co-workers (Chem. Eur. J. 2015, 21, 11677)
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Regioselective 1,2-chloramiantion of alkenes was also 
achieved by the Yu (S.)’s group (Scheme 44).48 N-
Chlorosulfonamides were used as both nitrogen and chlorine 
sources for the synthesis of vicinal haloamine derivatives.  
Yu (S.) & co-workers (Org. Biomol. Chem. 2015, 13, 10295)
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In 2017, Knowles’ group reported a catalytic protocol for 
efficient additions of secondary alkyl amines to a wide range of 
alkenes with complete anti-Markovnikov regioselectivity 
(Scheme 45).49 The reaction is proposed to proceeds through a 
key aminium radical cation intermediate generated via electron 
transfer between the excited iridium photocatalyst and an amine 
substrate. This work offers a redox-neutral and atom-economical 
pathway for C–N bond formation with broad functional group 
tolerance. In 2019, they further expanded and optimized the 
reaction scope using [Ir(dF(CF3)ppy)2(4,4'-d(CF3)-bpy)]PF6 as 
catalyst. 
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Scheme 45 Intramolecular hydroamiantion of alkenes 
 

Studer and co-workers developed a three-component 
amido-fluorination of alkenes. α-Amido-oxy acids were used as a 
N-centered radical precursor with sequential CO2 and 
aldehyde/ketone fragmentation. Radical addition to alkene 
would then occur and the adduct would be trapped by Selectfluor 
via fluorine-atom transfer. Recently, they present an 1,2-
amidoalkynylation of unactivated alkenes using an organic 
photoredox catalyst (4CzIPN). Mechanistic studies were also 
performed to support the radical nature of these cascade reaction 
(Scheme 46).50 
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Scheme 46 Amidofluorination and amidoalkynylation of alkenes 
using α-amido-oxy acids 
 

Recently, Gryko and co-workers expanded the use of N-
aminopyridinium salts for the coupling of enol equivalents to give 
α-amino carbonyl compounds (Scheme 47).51 N-
aminopyridinium salts were reduced by Ir complex via SET to 
pyridyl radical for addition reaction to alkenes. Broad synthetic 
utility has been demonstrated, including functionalization of 
ketones, aldehydes, vinyl esters and 1,3-diketones. 

Gryko & co-workers (J. Org. Chem. 2019, 24, 15834)
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Scheme 47 Amination of alkenes with N-aminopyridinium salts 
 
3.3. Reductive Amination of Carbonyl Compounds 

Wenger and Guo unveiled a reductive amination of 
aldehydes and ketones with amines by [Ru(bpy)3]Cl2 
photocatalyst (Scheme 48).52 The reaction was triggered by the 
reduction of iminium ions with ascorbic acid to form a α-
aminoalkyl radical intermediate. Subsequent hydrogen atom 
transfer reaction would furnish the reductive amination 
products. 
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Molander and co-workers developed the reductive 
amination of aldehydes without an external hydrogen/hydride 
source via a distinct radical pathway (Scheme 49).53 The 
generation of α-amino radicals is proposed to go through an 
aminal formation/oxidation/fragmentation pathway. 
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Scheme 49 Reductive amination of aldehydes 
 
3.4. Decarboxylative Amination 

In 2016, Tunge and co-workers reported a straightforward 
photocatalytic aminodecarboxylation of carboxylic acids for the 
synthesis of aliphatic amines using acridinium as photocatalyst 
(Scheme 50). The excited photocatalyst would trigger the radical 
decarboxylation to generate alkyl radicals. The radical would 
then be trapped by the azo compound and furnish the product. 
Guan, He and co-workers also presented a similar 
decarboxylative amination of inoline-2-carboxylic acids with 
Rose Bengal as photocatalyst.54 
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Scheme 50 Aminodecarboxylation of carboxylic acids 
 

In 2018, the Hu’s group presented a decarboxylative C–N 
coupling via synergetic photoredox and copper catalysis using 
redox-active ester with anilines. (Scheme 51).55 In this work, the 
photoredox catalysis allows the use of NHPI esters to generate 
alkyl radicals, whereas copper catalysis enables the C–N cross-
coupling. Rapid functionalization of amino acids, natural 
products and drugs was demonstrated.  
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Jin’s group developed an alternative protocol for the 
decarboxylative C–N coupling reaction using the iron catalyst 
prepared in situ by complexation of Fe2(SO4)3 with di-(2-
picolyl)amine ligand (Scheme 52).56 Azodicarboxylates and 
carboxylic acids were successfully coupled to give aliphatic 
amines. The oxidation of Fe(II) back to Fe(III) by the electron-
deficient radical intermediates is proposed to be the key process 
for the redox-neutral coupling reaction. 
Jin & co-workers (Eur. J. Org. Chem. 2019, 6728)
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Scheme 52 Fe-catalyzed aminodecarboxylation of carboxylic acid 
 

Larionov and co-workers expanded the scope of 
decarboxylative C–N coupling to anilines (Scheme 53). This dual 
catalytic system provides easy access to N-alkylated secondary 
and tertiary anilines, and N-heterocycles. Installation of 
metabolically robust deuterated methyl groups and tandem ring 
formation are also included. DFT study indicated the acridine-
catalyzed photodecarboxylation would generate a Cu(III) 
intermediate and the reductive elimination and hydrogen atom 
abstraction would furnish the product.57 
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Scheme 53 Direct decarboxylative N-alkylation 
 

Recently, Leonori, Sheikh and co-workers presented a 
divergent strain-release amination of [1.1.1]propellane for the 
synthesis of functionalized bicyclo [1.1.1]pentylamines (Scheme 
54).58 N-centered radicals are showed to undergo strain-release 
reaction with [1.1.1]propellane, facilitated by the electrophilic 
nature of these open-shell intermediates. Strong polar effects in 
the transition-state would also enable the C–N bond 
formation/ring opening. This radical amino-functionalization 
provides application in medicinal chemistry programs as p-
substituted aniline bio-isosteres. 
Leonori, Sheikh & co-workers (Angew. Chem. Int. Ed. 2020, 10.1002/anie.202000140)
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Scheme 54 Strain-release amino-functionalization of 
[1.1.1]propellane 
 
4. Cyclization Reactions 

Photocatalytic C–N cyclization reactions are actually some 
of the earliest examples for visible-light mediated C–N bond 
constructions. They can be categorized by C(sp2)–N heterocycles 
formations and C(sp3)–N heterocycles formations (Scheme 55). 
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Scheme 55 Brief summary for photocatalytic C–N cyclization 
 
4.1. C(sp2)–N Heterocycles Formation 
4.1.1. Intramolecular Cyclization 

In 2015, Cho, You and co-workers developed a novel 
intramolecular C–N coupling reactions by merging Pd- and 
photoredox catalysis (Scheme 56).59 Spectroscopic and 
electrochemical studies revealed that the reaction was initiated 
by the electron transfer from a palladacyclic intermediate to the 
photoexcited Ir catalyst. This will trigger reductive elimination in 
a Pd(III)-containing palladacycle to produce the carbazole. The 
Pd(I) can then be oxidized by O2 to regenerate the active catalyst. 
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Scheme 56 Intramolecular C–N coupling reactions by Pd- and 
photoredox catalysis 
 

The Muñiz’s group utilized iodine as catalyst for the 
intramolecular C–H amination of arenes (Scheme 57).60 The 
reaction starts from the N-iodination of the sulfonamide. 
Photolytically assisted homolysis of the N–I bond would generate 
the N-centered radical. Subsequent addition to the aromatic ring 
would furnish the product. 
Muñiz & co-workers (Chem. Eur. J. 2016, 22, 9929)
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Scheme 57 Intramolecular C–H amination of arenes by iodine 
catalyst 
 

Hong and co-workers presented an oxidative C–H amidation 
strategy for the synthesis of quinolinones (Scheme 58).61 The 
reaction is triggered by the homolysis of N–H bond of the amide 
precusors via SET process to give an amidyl radical, which will 
lead to the intramolecular C–H amidation.  
Hong & co-workers (Org. Lett. 2018, 20, 240)

Ir[dF(CF3)ppy2](bpy)PF6 (2.5 mol %),
NMeBu3OP(O)(OBu)2

 (50 mol %)

O2, DCE, 14 W blue LEDs

Ir

N

N

N

N

Ir(dF(CF3)ppy)2(bpy)PF6

PF6

CF3

F

FF

F

F3C

35 examples, up to 79% yield

R1 O

N
H

Ar

R2

R1 O

N
Ar

R2
O

N
Ar

ON
Ar

ON
ArO

O

N

O

Ph

81%

N

O

Cl

OMe

NPh

O
70%70%

N
Ph O

60%

N
Ph

O

78%
N

selected examples

 
Scheme 58 Hydrogen atom transfer for phenanthridinones and 
quinolinones synthesis 
 

Intramolecular C–N coupling was also achieved by visible-
light-induced N–O bond cleavage to form iminyl- or amidinyl 
radicals. In 2015, Yu (S.), Zhang and co-workers reported a 
unified approach to pyridines, quinolines and phenanthrisines. 
The reaction is initiated by the reduction of acyl oxime to give an 
iminyl radical intermediate, which then underwent 
intramolecular homolytic aromatic substitution to give the 
product. A similar cyclization methodology was reported by 
Wang (Q.), Liu, Wang (Z.) and co-workers. Substituted 
benzimidazoles were synthesized with amidinyl radicals 
(Scheme 60).62 
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Scheme 59 Intramolecular C–N coupling by N–O bond cleavage 
 

In 2018, the Liu’s group reported an interesting 
photocatalytic C–N coupling reaction for the synthesis of 
medium-sized lactams (Scheme 61).63 A remote radical 
(hetero)aryl migration from C to N under visible light condition 
enables the ring-expansion of 5–8-membered cyclic ketones to 8–
11-membered lactams. Some 13–15-membered marcolactams 
can also be synthesized by an additional one-step manipulation. 
Mechanistic studies suggest an acid promoted amidyl radical was 
involved. 
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Scheme 60 Photocatalytic ring-expansion for medium-sized 
lactams synthesis 
 
4.1.2. Intermolecular Cyclization 

Yu (S.) and co-workers developed an intermolecular one-
pot C–N coupling reactions of aldehydes and O-acyl 
hydroxylamine to give phenanthridines and quinolines (Scheme 
62).64 The in-situ reaction between aldehydes and O-acyl 
hydroxylamine would give O-acyl oxime for the generation of 
iminyl radicals. Further cyclization would then take place and 
furnish the desired aza-arenes. 
Yu (S.) & co-workers (Org. Lett. 2015, 17, 2692)
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Scheme 61 Intermolecular one-pot C–N coupling reactions of 
aldehydes and O-acyl hydroxylamine 
 



The research group of Chu developed a fluorescein-
catalyzed condensation cyclization for the synthesis of 
benzimidazoles (Scheme 63).65 The reaction is initiated by the 
condensation reaction between aromatic aldehyde and o-
phenylenediamine to form an imine intermediate. Subsequent 
intramolecular cyclization would furnish the product. 
Chu & co-workers (Green Chem. 2019, 21, 3602)
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o-phenylenediamines 
 
4.2. C(sp3)–N Heterocycles Formation 
4.2.1. Alkene Cycloaddition 

In 2014, Knowles’ group reported the intramolecular anti-
Markovnikov hydroamination of aryl alkenes to give N-aryl 
heterocycles. The reaction proceeded through sequential amine 
oxidation, turnover-limiting C–N bond formation and reduction 
of a carbon radical resulting in overall redox-neutral C(sp3)–N 
cyclization. This work also presents the use of aminium radical 
cations derived from simple amine to furnish the alkene 
hydroamination products. They further expanded this chemistry 
using a ternary catalyst system for the synthesis of γ-lactams 
(Scheme 64/63??). According to Knowles’ studies, the reactive 
amidyl radical is generated via the concerted proton-coupled 
electron transfer (PCET) mediated by the iridium photocatalyst 
assisted by a weak phosphate base.66 Recently, the same group 
further achieved the PCET-enabled alkene hydroamination 
reaction with N-alkyl amides using the iridium photocatalyst and 
a dialkyl phosphate base.67 
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Xiao, Chen and co-workers reported another intramolecular 
hydroamination example using β,γ-unsaturated hydrazones. The 
photocatalytic generated N-centered hydrazonyl radicals would 
undergo alkene hydroamination and to give the corresponding 
4,5-dihydropyrazoles in good yields (Scheme 65 /64??). The 

protocol involves deprotonation of an N–H bond and 
photocatalytic oxidation to an N-centered radical, thus obviating 
the need to prepare photolabile amine precursors or the use of 
external oxidant.68 
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Meanwhile, Leonori and co-workers developed the metal-
free hydroamination of O-aryl oximes (Scheme 66/65???). This 
new class of O-aryl oximes enabled the formation of iminyl 
radicals owing to their low reduction potentials.69 

N
78%

MeO2C

Leonori & co-workers (Angew. Chem. Int. Ed. 2015, 54, 14017)

Eosin Y (2.0 mol %),
1,4-cyclohexadiene (2.0 equiv)

K2CO3
 (2.0 equiv), acetone, 30 W CFL

Eosin Y

O O

Br

BrBr

-
O

Br
CO2

-

R1

N
OAr

R3

R2 R1
N R3

R2

Ph
N

78%

NO

55%

N

68% 1:1 d.r.

Ph
Ph N

70% 3:1 d.r.

N

37%, 1:1 d.r.

20 examples, up to 95% yieldR1

N

R3

R2

selected examples

3

Scheme 65 Hydroamination and iminohydroxylation of O-aryl 
oximes 
 

Schindler and co-workers disclosed an interesting visible-
light mediated Paternò-Büchi reactions (Scheme 67/66???).70 
The Ir-catalyzed coupling of imines and alkenes under blue LEDs 
irradiation would furnish the functionalized azetidines. This 
approach relies on the selective activation of the alkene 
functionality upon energy transfer from a suitable photocatalyst 
to its corresponding triplet state. Overall, this work provides a 
novel strategy for [2+2] cycloaddition involving C–N bond 
formation. 
Schindler & co-workers (Nat. Commun. 2019, 10, 5095)
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Rao, Zhang and co-workers discovered an interesting 
cercosporin-catalyzed [4+2] homocyclodimerizations of 
azoalkenes for the synthesis of 1,4,5,6-tetrahydropyridazine 
derivatives (Scheme 68/67???).71 The reaction is initiated by 
reacting the α-halo hydrazone with a base to generate azoalkene. 
Azoalkene would undergo regioselective [4+2] cycloaddition to 
give a pyridazine intermediate. Attack of the OH radical at the 
acyl carbonyl group, followed by dinitrogen elimination, would 
generate the desired product. 
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Recently, Chen, Xiao and co-workers reported an inverse-
electron-demand [4+2] cycloaddition of 2-vinylanilines with 
1,3,5-triazinanes and Umemoto reagent to give 
perfluoroalkylated tetrahydroquinazolines (Scheme 69/68???).72 
The key intermediate to this reaction is proposed to be the 
photocatalytic radical-mediated generation of aza-ortho-quinone 
methides from 2-vinylanilines. 
Chen, Xiao & co-workers (Chem. Commun. 2020, 10.1039/d0cc00747a)
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Another interesting C(sp3)–N cyclization reaction was 
presented by Zhang and co-workers. An aerobic oxidative [2+3] 
cycloaddition reaction between glycine derivatives and styrene 
oxides catalyzed by hydroiodic acid was disclosed for the 
synthesis of 1,3-oxazolidines (Scheme 70/69???).73 Mechanistic 
studies suggested that an electron donor-acceptor complex is 
formed between glycine derivatives and benzyl iodides is the key 
intermediate for this reaction. 
Zhang & co-workers (Org. Lett. 2020, 22, 1638)
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4.2.2. Iodine-Assisted Cyclization 

Muñiz and co-workers explored the Hofmann-Löffler type 
reaction using visible light. Direct oxidative amination of alkyl 
groups was achieved by iodine catalyst via the iodine(I/III) 
manifold. This reaction is applicable to all primary, secondary 

and tertiary C–H bonds to give the corresponding cyclized aminal 
products. In 2017, the same group further expanded the iodine-
mediated intramolecular amination using 2,4,6-
triphenylpyrylium tetrafluoroborate (TPT) photocatalyst. 
Following a computational study. The group also designed a 
bromine redox catalysis for aliphatic C–H amination. Under the 
photocatalytic conditions, the N-brominated tosylamide would 
be formed and subsequent homolysis would generate the N-
centered radical. A kinetically preferred 1,5-H abstraction 
followed by bromide radical recombination gives the 
intermediary alkyl bromide. Final nucleophilic cyclization would 
furnish the product (Scheme 71).74 

TsN

Ts
NI2

 (2.5 mol %), 
PhI(mCBA)2

 (1.0 equiv)

DCE,
 visible light, mCBA = 3-chlorobenzoate

Muñiz & co-workers (Angew. Chem. Int. Ed. 2015, 54, 8287)

98% 80% 91%

RNHTs
R

NTs
Ph

31 examples, up to 99% yield

N
Ts

Ph
Ph

90%

TsN

81%

TsN
O

Ph

O

N
Ts

Ph

82%

S
N

O O

90%

NHTs

R
I(mCBA)2

N

R
Ts

I N

R
Ts

NH

R
Ts mCBA

O O

Cl

1,5-HAT
selected examples

(Angew. Chem. Int. Ed. 2018, 57, 5166)
Bu4NBr (20.0 mol %),

mCPBA (2.0 equiv)

MeCN,
 day light

20 examples, up to 98% yield

mCPBA

O O

Cl

N
H

S
R3O

OR2

N S R3

O

O
R2R1

R1

OH

N
S

R3

O

O
R1 Br

N
S

R3

O

O
R1 HN

S
R3

O

O
R1 Br

N
Ts

Ph

95%

N
Ts

76%

F
N S

O

O

Ph

82%

N
Ts

79%

N
Ts

OMe

98%
NTs

Ph

94%

selected examples

Scheme 70 Visible-light mediated Hofmann-Löffler type reaction 
 
4.2.3. Nitrogen-Centered Radicals and Radical Cations 

In 2012, Xiao and co-workers reported a simple C–N 
cyclization for the synthesis of isoquino[2,1-a]pyrimidines using 
Ir photocatalysts (Scheme 72/71???).75 The reaction was 
believed to be initiated by the photooxidation to generate a 
nitrogen radical cation intermediate. Subsequent hydrogen atom 
abstraction would generate the cationic intermediate with a C=N 
bond. Intramolecular cyclization would then furnish the desired 
product. 
Xiao & co-workers (RSC Adv. 2012, 2, 4065)
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Yu (S.) and co-workers presented a remote C–H amidation 
from through hydrogen atom transfer by nitrogen radical 
generated from N-chlorosulfonamides to give pyrrolidine 
derivatives (Scheme 73).76 The excited photocatalyst is 
oxidatively quenched by N-chlorosulfonamide to generate a N-
centered radical. An intramolecular 1,5-hydrogen atom transfer 
to generate a carbon-centered radical for the following 
cyclization reaction. 
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In 2017, Leonori’s group developed a divergent platform for 
C–N coupling reaction for the synthesis of functionally diversified 
pyrrolines (Scheme 74). The reaction was proposed to involve 
the photoredox generation of iminyl radicals by oxidative SET of 
a traceless eletrophore and a subsequent cyclization with 
SOMOphiles. Studer and co-workers also developed the 
photoredox carboimination of alkene for pyrrolines synthesis. 
Intermolecular conjugate addition to a Michael acceptor, and a 
single-electron reduction was proposed to complete the 
functionalization.77 
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Scheme 73 Photoredox imino functionalization of alkenes 
 

Sulfonamides can also serve as a N-centered radical 
precursor. Xiao, Chen and wo-workers presented an 
intramolecular alkene hydroamination of unsaturated 
sulfonamides to generate functionalized isoxazolidines (Scheme 
75).78 Hydroxylamine is firstly transformed into the sulfonamidyl 
radical via photocatalytic SET oxidation. Then an intramolecular 
radical 5-exo-trig cyclization, followed by trapping a hydrogen 
atom from CHCl3 would furnish the product. 
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Scheme 74 Intramolecular alkene hydroamination of 
unsaturated sulfonamides 

 
Knowles’ group further developed the PCET enabled 

intramolecular anti-Markovnikov hydroamination of alkenes 
with sulfonamides (Scheme 76).79 The reaction was catalyzed by 
an iridium photocatalyst, a dialkyl phosphate base, and a thio 
hydrogen atom donar. The N-centered sulfonamidyl radical is 
generated via proton-coupled electron transfer activation of the 
sulfonamide N–H bond. Anti-Markovnikov addition to alkene 
would furnish the new C–N bond and a vicinal carbon-centered 
radical. Further reduction by the thiol cocatalyst via HAT would 
generate the product. 
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Scheme 75 Intermolecular hydroamination of alkenes with 
sulfonamides 
 

Zheng and co-workers reported a long-lived photoactive 
photoisomer complex for intramolecular C–N coupling reaction 
(Scheme 77).80 More than 50 N-substituted polycyclic 
quinazolinones were synthesized using a catalytic amount of 
phosphoric acid [(R)-binol-phosphoric acid] and 2.0 equiv of 
pinacolborane as reducing agent. Initiated by the coordination of 
(R)-BPA to the starting material through hydrogen bonding, SET 
process can be induced to produce a N-centered radical. Followed 
by the intramolecular 1,6-HAT and the sequential interaction 
with peroxide radical, the polycyclic quinazolinone would be 
formed. 
Zheng & co-workers (Angew. Chem. Int. Et. 2019, 58, 14666)
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Scheme 76 Intramolecular C–N coupling by photoisomer 
complex 
 
5. Other Examples 

Examples involving rearrangements, annulations and other 
reaction manifolds were reported for visible-light-mediated C–N 
and C=N bonds formation (Scheme 78). 
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In 2013, Klussmann and co-workers reported the aerobic C–
H amination of tetrahydrocarbazole via photochemically 
generated hydroperoxides with the use of oxygen and 
photocatalyst (Scheme 79).81 The reaction is initiated by the acid-
catalyzed tautomerization of the imine to the hydroperoxide 
enamine isomer. Protonation of the hydroperoxide would 
generate the allylic cation and react with the N-nucleophile to 
give the product. 
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In 2015, Pandey and co-workers reported a cross-
dehydrogenative benzylic C(sp3)–H amination by employing 
9,10-dicyanoanthracene (DCA) as photoredox catalyst (Scheme 
80). This regioselective protocol covers a broad substrate scope 
requiring no external oxidant. 82 The key reaction process 
includes the generation of aminyl radical and benzylic cation 
from the DCA photocatalytic cycle. 
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Hwang and co-workers reported a highly atom efficient 
oxidative C–N coupling reactions using alkynes and anilines 
(Scheme 81).83 The reaction was induced by CuCl catalyst and 
oxygen was incorporated into the C ≣ C bond to give α-
ketoamides. And the author proposed the reaction to start with 
the formation of Cu(I)-aniline complex. Upon the addition of 
phenylacetylene, Cu(I) phenylacetylide is preferentially formed. 
Photoexcitation of the Cu(I) species and the following SET to 
molecular oxygen would generate Cu(II) phenylacetylide. 
Nucleophilic addition of aniline to the Cu(II) species would 
generate the Cu(III) complex, subsequent reductive elimination 
would form the Cu(I)-coordinated ynamine complex. The 
reaction with molecular oxygen would afford the Cu(II) peroxo 
complex. Isomerization of the resulting Cu(II) peroxo complex to 
a Cu(I) species with concurrent formation of a C–O bond would 
furnish the product. 
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The research group of Masson presented an interesting 
visible-light-mediated C–N bond coupling using benzylic 
thioethers (Scheme 82).84 The reaction is triggered by the 
mesolytic cleavage of the C–S bond in the photoactivated 
thioether. Subsequent coupling with nitrogen nucleophile would 
furnish the C–N bond. The C–S bond cleavage was supported by 
several experimental proofs, including the complete loss of 
enantiomeric excess through the arylation of optically pure 
thioether. 
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Recently, examples involving rearrangements, annulations 
and other reaction manifolds were reported for visible-light-
mediated C–N and C=N bonds formation. Cho, You and co-
workers presented a unique double functionalization of arenes 
facilitated by singlet oxygen (Scheme 83).85 An insertion of the 
photoexcited singlet oxygen at the starting material would 
generate a hydroperoxyl species. Then a homolytic N–O bond 
cleavage would take place to generate an iminyl radical. An ipso 
attack on the N-centered radical would generate the spirocyclic 
species and eventually producing the product. ortho-
Hydroperoxidation followed by a [1,3]-sigmatropic shift is also 
proposed. 
Cho, You & co-workers (J. Am. Chem. Soc. 2019, 141, 10538)
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Scheme 82 Double functionalization of arenes 
 

Other than the construction of C–N bonds, photoinduced 
C=N bonds formations were reported by Pan, Chen and co-
workers. Tertiary amines were effectively coupled with sulfonyl 
azide to give amidine derivatives (Scheme 84).86 The SET to the 
excited photocatalyst would generate a tertiary amine radical 
cation. Subsequent hydrogen radical abstraction by an oxygen 



radical anion and double bond shift results in the formation of 
enamine intermediate. 1,3-Dipolar addition of sulfonyl azide, 
followed by the ring-opening reaction would furnish the product 
by releasing CH2N2. 
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Scheme 83 Photoinduced C=N bonds formations 
 

The research group of Patel also developed a concomitant 
C3 oxidation and C2 amination of indoles using Ir photocatalyst. 
The reaction proceeds via the attack of a singlet oxygen at the C3 
position of indoles, followed by the amination reaction using 
benzohydrazides at the C2 position to give difunctionalized 
indoles (Scheme 85).87 
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6. Conclusion and Outlook 

Utilization of visible light by photocatalysis is a burgeoning 
field in contemporary organic synthesis. Through photocatalysis, 
highly reactive carbon radical and/or nitrogen radical can be 
generated for the subsequent C–N coupling reaction. With the 
judicious pairing of the starting materials and photocatalyst, 
conditions can be designed to tailor for C(sp2)– and/or C(sp3)–N 
bonds under mild conditions. This review showcases some 
important contributions in recent literature, and the examples 
are classified according to the bonding types, reaction modes for 
easy referencing for synthetic application. 

With the current momentum of development, greater 
impact of photocatalytic C–N bond coupling reaction is 
foreseeable as in the late-stage modifications of natural products, 
large-scale synthesis and enantioselective C–N coupling 
reactions. Recent technological advances in flow chemistry is 
likely to popularize photocatalytic C–N coupling reactions in the 
industrial manufacturing settings. The merge of photocatalysis, 
flow chemistry and chiral synthesis will set the pharmaceutical 
industry for new wave of synthetic advances in sustainable 
synthesis. 
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