The following publication Wang, J., Cheng, C., Huang, B., Cao, J., Li, L., Shao, Q., ... & Huang, X. (2021). Grain-boundary-engineered La2CuO4 perovskite nanobamboos for efficient CO2 reduction reaction. Nano Letters, 21(2), 980-987 is available at https://doi.org/10.1021/acs.nanolett.0c04004. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © 2021 American Chemical Society after peer review and technical editing by the publisher.

Grain boundary-engineered La₂CuO₄ perovskite nanowires for

efficient CO₂ reduction reaction

Juan Wang,^{†,‡} Chen Cheng,[§] Bolong Huang,["] Jianlei Cao,[‡] Leigang Li,[‡] Qi Shao,[‡] Liang Zhang,[§] and Xiaoqing Huang^{*,†}

[†]College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

[‡]College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu,

215123, China.

[§]Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based

Functional Materials and Devices, Soochow University, Jiangsu, 215123, China.

"Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong SAR, China.

E-mail: hxq006@xmu.edu.cn

Abstract: Electroreduction of carbon dioxide (CO₂) has been regarded as a promising approach to realize the production of useful fuels and decrease of the green-house gas level simultaneously, whereas highefficiency catalysts are required to achieve this goal. Herein, we create a series of La₂CuO₄ perovskites with modulated grain boundaries as efficient electrocatalysts for CO₂ reduction. The La₂CuO₄ nanobamboos (La₂CuO₄ NBs) with rich twin boundaries show a high Faraday efficiency (FE) of 60% towards ethylene (C₂H₄) synthesis, while bulk La₂CuO₄ exhibits a FE of 91% towards CO generation. Xray absorption spectroscopy (XAS) reveals that the Cu in La₂CuO₄ NBs is in an unsaturated Cu²⁺ state, which can improve the adsorption of intermediate species to enhance FE_{C2H4}. No obvious change can be observed before and after the catalytic reaction as well as during the catalytic process as revealed by the *in situ* XAS studies. Density functional theory calculations reveal that the superior performances of La₂CuO₄ NBs towards CO₂RR originate from the active (113) surfaces with intrinsic strain. The formation of gap states in (113) surface annihilates the electron transfer barrier of C-C coupling for C₂ products, which is responsible for achieving the high FE of C₂H₄ over La₂CuO₄ NBs. This work provides a new perspective for developing efficient perovskite catalysts via grain boundary engineering.

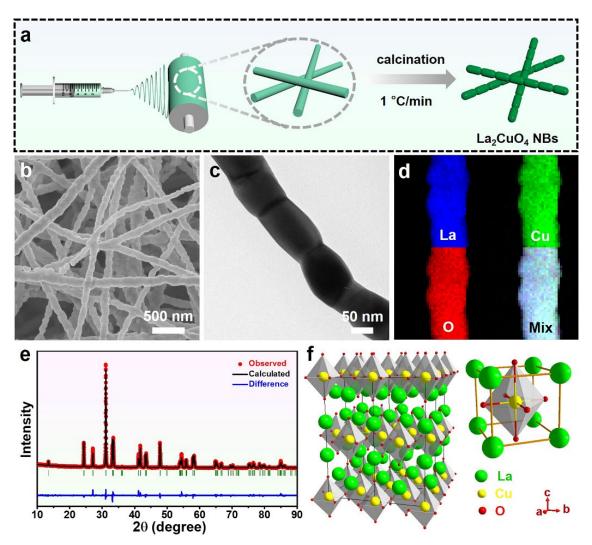
Keywords: La₂CuO₄ perovskite • Nanowire • Twin boundary • Ethylene • CO₂ reduction

Electrochemical reduction of carbon dioxide (CO₂) into value-added chemicals and fuels is of paramount significance for alleviating the serious environmental issues and energy crisis.¹⁻⁴ Up to date, high Faraday efficiency (FE) for C₁ products (i.e., carbon monoxide and formate) has been realized over many electrocatalysts by CO₂ reduction reaction (CO₂RR).⁵⁻⁹ However, the efficient production of highly value-added C₂ products (i.e., ethylene and ethanol) via CO₂RR still faces enormous challenges due to the complex electron transfer process and poor selectivity.^{10, 11} Since copper (Cu) was discovered to have the unique ability to produce hydrocarbons by Shin *et al.*, a substantial amount of Cu-based materials have been designed and employed as electrocatalysts for CO₂RR, but the inferior corrosion resistance, low FE and the nature of being easily reduced limit their further applications.¹²⁻¹⁵ Therefore, developing unique Cu-based electrocatalysts for producing hydrocarbons at high FE and selectivity is extemely desired.

To enhance the selectivity of hydrocarbon, diversified strategies, including crystal plane control, construction of core-shell nanostructures and reconstruction of the ensemble of nanoparticles, have been proposed to tune the energetics of intermediate species on catalysts during CO₂RR.¹⁶⁻¹⁸ Unfortunately, the

FE of these electrocatalysts is still unsatisfactory because the weak adsorption of the CO intermediate on the active site makes it difficult to promote C-C coupling.¹⁹ To this end, regulating electronic structures and creating coordinatively unsaturated environment for enhanced interaction between intermediate species and catalysts would be a potential way of obtaining highly efficient electrocatalysts for CO₂RR. Perovskites are widely used as catalysts for electrochemical conversion of H₂O, NO_x and CO due to their chemical versatility, easy regulation of electronic and crystal structure, earth-abundancy and low cost.^{20-²³ For example, Zeng, *et al.* provided an effective strategy to modify the electronic structure of LaCoO3 perovskite for achieving a highly active OER electrocatalyst by varying the particle size.²⁴ Although great progress has been achieved, expanding their application scope of perovskites, such as CO₂RR, remains a significant goal for solving environment problems and energy shortages.^{25,26} SrSnO₃ perovskite nanowires were reported to catalyze the conversion of CO₂ to formate.²⁷ However, the lack of C-C coupling capacity makes it impossible to obtain high-energy-density hydrocarbon products. Therefore, designing and constructing unique Cu-based perovskite electrocatalysts for CO₂RR is attractive yet challenging.}

Here we present a series of La₂CuO₄ perovskites with modulated grain boundaries, where La₂CuO₄ NBs show a fairly high FE_{C2H4} of 60%, surpassing many reported Cu-based electrocatalysts, while bulk La₂CuO₄ achieves a FE of up to 91% towards CO generation. X-ray absorption spectroscopy (XAS) analysis reveals that the presence of strain at twin boundaries (TBs) can increase the bond length of Cu-O and Cu-La, and create a coordinatively unsaturated environment, resulting in improved intermediate adsorption and thus enhanced FE_{C2H4} . It is worth mentioning that the changes of the La₂CuO₄ NBs before and after the catalytic reaction or during the catalytic process are negligible as comfirmed by the *in situ* XAS monitoring. Density functional theory (DFT) calculations have unraveled the distinct activities of (113) and (111) surfaces of La₂CuO₄, which gives rise to the different CO₂RR reduction products and FEs. The highly electroactive (113) surface with the facilitation of strain dominates the efficient reduction of


CO₂ to C₂H₄. This work provides a new insight for constructing efficient perovskite catalysts with coordinatively unsaturated environment for CO₂RR and beyond.

Results. The La₂CuO₄ NBs perovskites were prepared by electrospinning followed by calcination at 700 °C for 2 h under air atmosphere (Figure 1a). The initial electrospun naofibers exhibit interconnected three-dimensional (3D) network structure with smooth surface (Figure S1). The heating rate was found to have significant influence to the surface morphology of La₂CuO₄. Interestingly, nanobamoos (NBs) morphology was observed by simply tuning the heating rate to 1 °C/min during calculation processs. Contrary to the initial smooth surface, the calcinated La₂CuO₄ NBs exhibit rugged surface and still remain the 3D network structure (Figure 1b and Figure S2a). Transmission electron microscopy (TEM) images reveal that the La₂CuO₄ NBs consist of a series of single grain connected by distinct grain boundaries (GBs), forming a bamboo-like morphology (Figure 1c and Figure S2b). The atomic ratio of La/Cu is about 2:1, as determined by scanning electron microscopy energy-dispersive X-ray spectroscopy (SEM-EDS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) (Figure S3 and Table **S1**). It is found that the elements of La, Cu and O distribute homogeneously on the La₂CuO₄ NBs, as revealed by the STEM-EDS elemental mappings (Figure 1d). To investigate the strucutre and phase of La₂CuO₄ NBs, powder X-ray diffraction (PXRD) analysis was performed. As shown in Figure 1e, all the diffraction peaks match well with orthorhombic-type perovskites of La₂CuO₄ with a space group of *Fmmm*. The crystal structure of La₂CuO₄ is displayed in **Figure 1f**, where the CuO₆ octahedra regularly locate in the structure and La atoms are inserted into octahedral space. The unit cell parameter was obtained from PXRD by using the Rietveld refinement (Table S2). For comparison, La₂CuO₄ nanorods (La₂CuO₄ NRs) and bulk La₂CuO₄ were obtained by tuning the heating rate from 1 °C/min to 5 °C/min and 10 °C/min,

respectively. (**Figure S4-6**). Compared with La₂CuO₄ NBs, the length of La₂CuO₄ NRs is shorter and the 3D network structure is destroyed because the higher heating rate during the calcination process results in fracture of nanostructure. As revealed by TEM image of La₂CuO₄ NRs, single grains are randomly arranged. The GBs of La₂CuO₄ NRs are obviously different from these of La₂CuO₄ NBs. For bulk La₂CuO₄, single grains of various sizes stack disorderly with no distinct grain boundaries. SEM-EDS, ICP-AES, STEM-EDS elemental mapping and PXRD analysis of La₂CuO₄ NRs and bulk La₂CuO₄ show similar results to those of La₂CuO₄ NBs, indicating that the heating rate only changes the morphology and grain boundaries without affecting their chemical compositions and crystalline structures.

To investigate the formation process of La₂CuO₄ NBs, thermal gravimetric (TG) and corresponding derivate thermogravimetry (DTG) curve were collected and shown in Figure S7. Apparently, two significant weight losses occurred at 100 °C and 300 °C, respectively. The two weight losses are attributed to the evaporation of moisture and residual solvent as well as the decomposition of PVP and nitrate, respectively, being consistent with the results of fourier transform infrared (FTIR) spectroscopy (Figure **S8**).^{28, 29} It is speculated that the pure perovskite nanofibers are fully formed when the temperature reaches 600 °C because no further mass loss ocuurs. To verify this conjecture, detailed characterizations were further carried out. Apparently, a small amount of nanoparticles will precipitate on the smooth surface of the nanofibers as the temperture increases. Subsequently, the nanopartciles disappear and the surface of the nanofibers becomes rough. The bamboo-like morphology is formed once the temperature reaches 600 °C (Figure S9-14). However, this unique structure and morphology can be destroyed at higher tempertures (Figure S15). PXRD analysis shows that the intensity of diffraction peaks gradually increases with the increase of temperature, indicating enhanced crystallinity. The perovskite phase starts to be formed when the temperature reaches 400 °C and pure perovskite phase is obtained at 600 °C (Figure **S16**). The calcination treatment only affects the morphology and phase, but has hardly influence to the

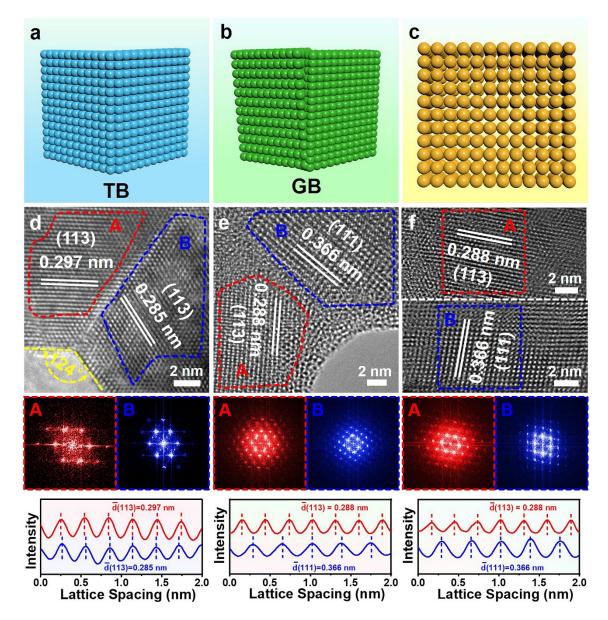

composition (Figure S17).

Figure 1. (a) Schematic illustration of synthetic process of La₂CuO₄ NBs. (b) SEM image, (c) TEM image, (d) STEM-EDS elemental mappings, (e) PXRD pattern and (f) crystal model of La₂CuO₄ NBs.

Considering the different morphologies and grain boundaries of La₂CuO₄ perovskites, the type and structure of grain boundaries were carefully investigated. As schematically shown in **Figure 2a**, TBs are formed by planar defects separated by the twin plane, where the arrangement of atoms on both sides is mirror symmetrical. On the other hand, ordinary GBs are interfaces formed by planar defects in which atoms on both sides are arranged randomly, as shown in **Figure 2b**. Atoms tend to be in a regular arrangement in the absence of GBs (**Figure 2c**). As GBs are observed in La₂CuO₄ NBs and La₂CuO₄ NRs,

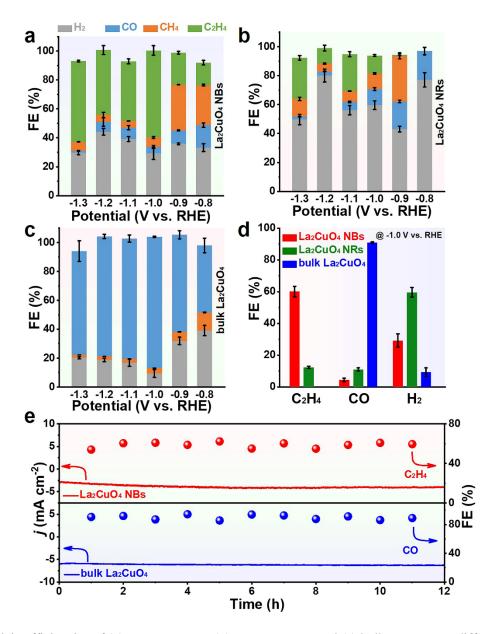

high-resolution TEM (HRTEM) analysis was conducted to further explore the type of GBs. TBs were clearly observed at the bamboo joints of La₂CuO₄ NBs and the angle between the two sides of the TBs is 124° (Figure 2d). Interestingly, compared with the interplanar spacing (0.288 nm) of (113) facet, the different interplanar spacing (0.297 nm and 0.285 nm) of (113) facets on both sides of TBs indicates that one side of the TB is stretched and the other side is compressed, demonstrating the existence of strain at TBs (Figure S18). Fast Fourier transforms (FFTs) for La₂CuO₄ NBs on both sides of TBs were obtained and the different patterns of FFTs indicate the deformation of crystal facets on both sides of TBs. With respective to La₂CuO₄ NRs, many GBs are observed. As revealed in Figure 2e and Figure S19, (113) facet with an interplanar spacing of 0.288 nm is observed on one side of GBs and (111) facet with a crystalline interplanar spacing of 0.366 nm is revealed on the other side. The FFTs patterns on both sides of GBs are different, further demonstrating different crystal planes on both sides of GBs. Figure 2f shows the HRTEM of bulk La₂CuO₄ and distinct lattice fringes are observed, where interplanar spacing of 0.288 nm is ascribed to that of (113) facet and interplanar spacing of 0.366 nm is ascribed to that of (111) planar of La₂CuO₄ perovskite. No GBs exist in bulk La₂CuO₄ and areas A and B in Figure 2f exhibit the different FFTs patterns.

Figure 2. (**a-c**) Schematic illustration of different grain boundaries. HRTEM images of (**d**) La₂CuO₄ NBs, (**e**) La₂CuO₄ NRs and (**f**) bulk La₂CuO₄. Corresponding FFTs of A (red dashed box) and B (blue dashed box) areas are shown below. Intensity profiles taken along the atomic layers from A and B areas in (d-f).

The catalytic performance of the three La₂CuO₄ perovskites towards CO₂RR was investigated. We perform linear sweep voltammetry (LSV) measurements for these catalysts in a CO₂-saturated 0.1 M KHCO₃ electrolyte using an H-type cell, where bulk La₂CuO₄ exhibits the strongest current response (**Figure S20**). Chronoamperometry measurements were carried out in a CO₂-saturated 0.1 M KHCO₃

solution for 2 h to reduce CO₂, and the gas products were quantified by gas chromatography while liquid products were analyzed by nuclear magnetic resonance (NMR) spectroscopy (Figure S21-24). The histogram of product FE for the three La₂CuO₄ perovskites at various applied potentials are shown in Figure 3. It is worth noting that La₂CuO₄ NBs, La₂CuO₄ NRs and bulk La₂CuO₄ exhibit significantly different selectivity toward C₁ and C₂ products, indicating that the GBs play a crucial role in influencing the obtained products of CO₂RR. Significantly, La₂CuO₄ NBs show a fairly high FE_{C2H4} of 60 % at -1.0 V versus reversible hydrogen evolution electrode (vs. RHE), surpassing those of most reported Cu-based CO₂RR electrocatalysts (Figure 3a and Table S3). La₂CuO₄ NRs show lower FE_{C2H4} and higher FE_{H2} than that of La₂CuO₄ NBs at all applied potentials (Figure 3b). For bulk La₂CuO₄, no C₂H₄ was detected during the CO₂RR process. Interestingly, CO FE of up to 91% was obtained for bulk La₂CuO₄ at -1.0 V vs. RHE (Figure 3c). To further investigate product variation of these La₂CuO₄ perovskites, the FE of major products at the same potential of -1.0 V was compared. As shown in Figure 3d, La₂CuO₄ NBs exhibit the highest FE_{C2H4} of 60%, which is 4.8 times of that of La₂CuO₄ NRs (12.4%), while no ethylene was detected for bulk La₂CuO₄ NRs. With respect to CO production, bulk La₂CuO₄ shows the highest FEco of 91%, which was 8.2 and 20.2 times of those of La₂CuO₄ NRs (11.1%) and La₂CuO₄ NBs (4.5%), respectively. Subsequently, chronoamperometry measurements were performed on La2CuO4 NBs and bulk La₂CuO₄ to evaluate their CO₂RR stabilities. As shown in Figure 3e, the total geometric current density of both catalysts remains stable for up to 12 h during the stability test and only subtle fluctuation was observed for the FE_{C2H4} of La₂CuO₄ NBs and the FE_{C0} of bulk La₂CuO₄. To investigate the variation of La₂CuO₄ NBs during CO₂RR, detailed characterizations were carried out after chronoamperometry test. As shown in **Figure S25**, La₂CuO₄ NBs still keep the 3D interconnected network with TBs. PXRD pattern, SEM-EDS spectrum and STEM-EDS elemental mappings show that the crystal structure, atomic ratio and element distribution are largely maintained, indicating the high stability of La₂CuO₄ NBs during CO₂RR.

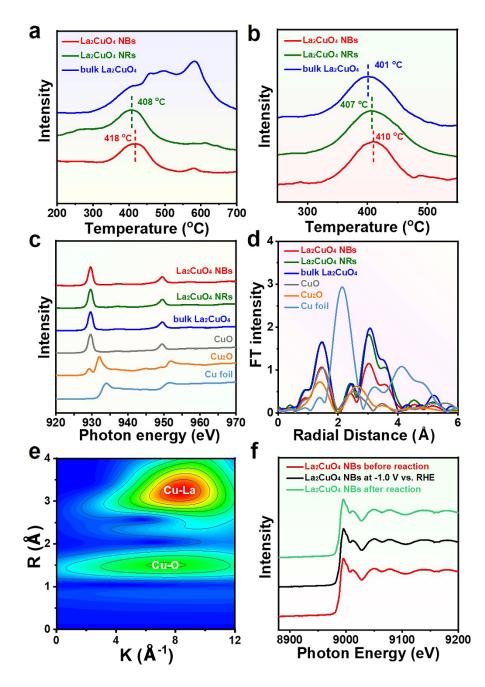
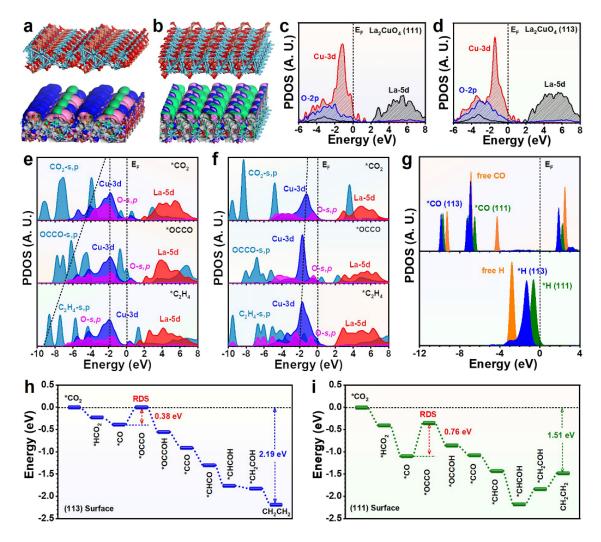


Figure 3. Faradaic efficiencies of (**a**) La₂CuO₄ NBs, (**b**) La₂CuO₄ NRs and (**c**) bulk La₂CuO₄ at different potentials. (**d**) Histograms of C₂H₄, CO and H₂ Faradaic efficiencies for La₂CuO₄ NBs, La₂CuO₄ NRs and bulk La₂CuO₄ at -1.0 V vs. RHE. (**e**) Stability test for C₂H₄ and CO production over La₂CuO₄ NBs and bulk La₂CuO₄.

Discussion. Since electrochemical CO₂RR generally occurs at the gas-solid-liquid three-phase interface, the adsorption of CO₂ on the catalyst is a critical prerequisite. To investigate the interaction between the catalyst and CO₂, CO₂ temperature-programmed desorption (TPD) measurement was carried out. As

shown in Figure 4a, La₂CuO₄ NRs shows the weakest adsorption of CO₂ as the temperature of CO₂ chemical desorption peak is the lowest among the three catalysts, leading to low activity towards CO₂RR, which is consistent with the experimental results. In addition, bulk La₂CuO₄ exhibits a distinct CO₂ desorption peak in a wide high-temperature range, indicating higher CO₂ adsorption capacity.³⁰ Electrolyzing CO₂ to CO intermediate and maintaining strong binding energy of CO on the active site is significant for promoting C-C coupling during CO₂RR process. To this end, CO-TPD was further used to evaluate the adsorption behavior of CO on catalyst (Figure 4b), where the lowest temperature of CO adsorption peak of bulk La₂CuO₄ among these catalysts indicates the strong desorption ability of COrealted intermediates, and consequently, CO is the main detected product.³¹ The significant increase in CO desorption peak temperature indicates a stronger adsorption affinity for CO-related intermediates on La₂CuO₄ NBs and La₂CuO₄ NRs, explaining the enhanced selectivity of C₂H₄. Considering the different binding capabilities for CO₂ and CO, the coordination environment and local atomic structure were analyzed by XAS. Apparently, the feature and position of Cu L-edge soft X-ray absorption fine structure (XANES) spectra for La₂CuO₄ perovskites are similar to that of standard CuO, and no obvious signal of Cu⁰ and Cu⁺ can be observed. The results were also confirmed by Cu K-edge XANES spectra, demonstrating that the Cu in all catalysts is in the state of Cu^{2+} (Figure 4c and Figure S26). The Fourier transform of Cu K-edge extended X-ray absorption fine structure (EXAFS) shows that the peaks of La2CuO4 NBs, La2CuO4 NRs and bulk La2CuO4 are around about 1.9 Å, attributed to the Cu-O bonds (Figure 4d). Compared with standard CuO, obvious peaks of La₂CuO₄ NBs, La₂CuO₄ NRs and bulk La₂CuO₄ at about 3.2 Å can be assigned to the Cu-La bonds. Likewise, no Cu-Cu bonds can be observed for all catalysts, consistent with the results of XANES. To accquire detailed structure information, the EXAFS spectra were fitted and the results are summarized (Figure S27 and Table S4). In detail, the coordination number of Cu-O and Cu-La in La₂CuO₄ NBs are 2.05 and 7.18, respectively, which are

significantly smaller than those of La₂CuO₄ NRs (3.20 and 10.10) and bulk La₂CuO₄ (3.20 and 9.91). Compared with La₂CuO₄ NRs and bulk La₂CuO₄, slight increase of Cu-O and Cu-La bond length can be observed for La2CuO4 NBs, demonstrting that the presence of strain in TBs, which was comfirmed by the results of HRTEM. Based on the above analysis, it is propsoed that the presence of strain in TBs will increase the bond length of Cu-O and Cu-La and create a coordinatively unsaturated environment, resulting in improved intermediate adsorption and enhanced FE_{C2H4}. ____The wavelet spectra of La₂CuO₄ NBs, La₂CuO₄ NRs and bulk La₂CuO₄ contain two distinc intensity of Cu-O and Cu-La coordination, consistent with the curve-fitting results (Figure 4e and Figure S28). To evaluate the evolution of La₂CuO₄ NBs during the electrocatalytic process, in situ XANES spectra were also conducted under the measurement conditions (Figure 4f). Obviuosly, the Cu K-edge XANES spectrum of La₂CuO₄ NBs at open circuit potential in CO₂ saturated 0.1 M KHCO₃ solution shows a similar outline and position to that of the conventional test, indicating that the electrolyte and CO_2 do not change the valence state of the catalyst. Interestingly, the Cu K-edge XANES spectrum is still well maintained when a voltage of -1.0 V vs. RHE was applied. The above results demonstrte that the catalyst is relatively stable before and after the catalytic reaction or during the catalytic process, which can also be confirmed by Cu L-edge soft XANES spectra (Figure S29).


Figure 4. (a) CO₂ and (b) CO TPD profiles of La₂CuO₄ NBs, La₂CuO₄ NRs and bulk La₂CuO₄. (c) Cu L-edge XANES and (d) Cu K-edge EXAFS spectra of La₂CuO₄ NBs, La₂CuO₄ NRs, bulk La₂CuO₄, standard CuO, Cu₂O and Cu foil. (e) Wavelet transform of Cu K-edge EXAFS data of La₂CuO₄ NBs. (f) In situ Cu K-edge XANES spectra of La₂CuO₄ NBs at -1.0 V vs. RHE and open circuit before and after reaction.

DFT calculations are applied to explore the origins of high performances of CO_2 reduction on the La₂CuO₄ NBs. We have constructed the curvature boundary of three different material systems including the (113)

13

twin boundary, the (111) twin boundary, and (113)/(111) boundary (Figure S30a-c). It is noted that the (113) TB easily form the curvature boundary with subtle lattice mismatch. Meanwhile, both (111) TB and (113)/(111) GB show some mismatch bonding at the interface due to the lattice mismatch during the formation of curvature structure. Therefore, we have compared the stabilization energy of these structures (Figure S30d). (113) TB shows the most stable structure with the lowest energy of -1.30 eV while the (113)/(111) GB demonstrates the highest energy of -1.00 eV, supporting the higher instability of GB than TB. These results confirm that the formation of TB leads to a more stable nanostructure of La₂CuO₄NBs, which is critical for stable and efficient electrocatalysis. The corresponding adsorption energies of the CO₂ on different surfaces have been compared. For the (113) TB, the adsorption of CO₂ prefers the (113) surface sites than the boundary region (Figure S30e). In the (113)/(111) GB surface, the surface still shows the more preferred adsorption of CO₂ on the (113) surface side than the (111) surface and the GB region. Meanwhile, the (113) TB also shows overall lower adsorption energies of CO₂, supporting a more energetically preferred CO₂ reduction on the La₂CuO₄ NBs with abundant twin boundaries. In the end, we also consider the strain effect induced in the TB boundary, which has also been confirmed by the EXAFS results (Figure S30f). With the tensile strain, we notice that the adsorption energies of CO₂ and the energy of CO-CO coupling are both further lowered. Such trends facilitate both the efficiency of CO₂RR as well as the selectivity towards the C₂ product.

For a more detailed look, both surfaces of (113) and (111) are investigated regarding both electronic environment and energetic physicochemical trend. For the (113) surfaces, the bonding and anti-bonding orbitals near Fermi level (E_F) demonstrate the highly electroactive region dominantly concentrates on the surface Cu sites. We also identify the existence of gap states near La sites and O sites (**Figure 5a**). For the (111) surfaces, the Cu site is still playing as the electroactive region while the gap states become narrower than that of (113) surfaces. The evidently different electronic distribution indicates the distinct selectivity of the surface for the CO₂ reduction (Figure 5b). By a further look into the partial projected density of states (PDOSs), the different subtle electronic structure is revealed. For (113) surface, Cu-3d orbitals display a sharp peak near EV-1.5 eV (EV = 0 eV) while the O-2p orbitals exhibit a broad coverage from EV to EV-6.0 eV. The main contribution of La-5d orbitals lies in the conduction band. Notably, the gap states are constructed by the joint contribution of La, Cu, and O sites, which significantly promote the electron transfer by the annihilation of the barriers (Figure 5c). Although the electronic contribution on (111) surface also shows the main contribution of Cu and La for both valence band maximum (VBM) and conduction band minimum (CBM), respectively, the electron transfer barrier still exists, which cannot be alleviated by the gap states. Such a barrier determines the electron transfer efficiency on (111) surface is consequently much lowered, especially for the C-C coupling. The strain induced in the interfacial region of La₂CuO₄ NBs and La₂CuO₄ NRs facilitates the electron transfer, which explains only C₁ product is obtained for bulk La₂CuO₄ (Figure 5d). For the complicated C₂ route of CO₂ reduction, the PDOSs of the key adsorbates are also illustrated. On (113) surface, from the adsorption of the initial reactant to the final product C_2H_4 , we notice a linear correlation on the dominant peak of the in the PDOSs, which guarantees the efficient electron transfer in the reaction coordinates. Meanwhile, Cu-3d orbitals demonstrate a highly stable valence state, which is consistent with the experiment characterizations (Figure 5e). On the contrary, such a linear correlation has been obviously weakened in (111) surfaces, which is attributed to the C-C coupling with a larger electron transfer barrier induced by the overbinding of CO. In addition, a slight downshifting of the Cu-3d band center has been noticed, indicating the local electroactivity on the surface is affected by the adsorption of intermediates (Figure 5f). By comparing the PDOS of both adsorbed CO, (113) surface shows a more evident reduction trend due to the larger downshifting of CO orbitals, facilitating the further C-C coupling. Meanwhile, the (111) surface demonstrates the stronger electron transfer with proton, which leads to the high production of H_2 as the experimental results (Figure 5g).

Figure 5. (a) Structural configurations and real spatial 3D orbital contour plots of (a) (113) and (b) (111) surface of La₂CuO₄. Blue balls= La, Orange balls= Cu and Red balls = O. PDOSs of (c) (113) and (d) (111) surface of La₂CuO₄. PDOSs of key adsorbates of the C₂ route on (e) (113) and (f) (111) surface of La₂CuO₄. (g) PDOSs of CO* and H* adsorbates on (113) and (111) surface of La₂CuO₄. (h) The energetic pathway of CO₂ reduction to C₂H₄ on (113) surfaces. (i) The energetic pathway of CO₂ reduction to C₂H₄ on (111) surfaces.

We also compare the energetic reaction trend of CO₂ reduction on both surfaces. For the (113) surface, the rate-determining step (RDS) is the C-C coupling, which is the key step for the C₂ route in CO₂ reduction. The RDS shows a slight barrier of 0.38 eV. The strain induced within TBs in La₂CuO₄ NBs largely promotes the C-C couplings of the C₂ route. A strong reaction trend is noted for (113) surface by releasing overall energy of 2.19 eV, supporting the high FE of C₂H₄ formation (**Figure 5h**). On the contrary, we notice a much larger energy barrier of RDS (0.76 eV) for (111) surface, which is induced by the overbinding of CO*. The two times higher RDS barrier leads to the distinct selectivity of the surface, which is trapped in the formation of the C₁ product of CO. Moreover, the overall reaction energy also supports the enhanced selectivity of (113) surface on the C₂ product of C₂H₄ (**Figure 5i**). Therefore, the different selectivity of La₂CuO₄ NBs, La₂CuO₄ NRs, and bulk La₂CuO₄ is attributed to the intrinsic electroactivity of the different surfaces. For La₂CuO₄ NBs with high FE of C₂H₄, the main contribution comes from both highly electroactive (113) surfaces and the facilitation of strain-induced between TBs. Meanwhile, the La₂CuO₄ NRs shows less selectivity to the C₂ product due to the less electroactive (111) surfaces. The minute amount of C₂ product is achieved by the strain of GBs, which lowers the energy barrier of RDS and increases the electron transfer efficiency. For bulk La₂CuO₄, the lack of strain cannot overcome the RDS barrier of C-C coupling in C₂ route, which leads to the formation of CO and H₂ in the product. Therefore, our calculations have confirmed the contributions of both high index facets and the twin boundary to the superior performance of CO₂RR in this work.

Conclusion. In summary, we have successfully created a series of La₂CuO₄ perovskites with controlled GBs as efficient electrocatalysts for CO₂RR by simply changing the heating rate in the calcination process. The optimized La₂CuO₄ NBs exhibit a high FE towards C₂H₄ (60%) while the bulk La₂CuO₄ shows a FE_{co} up to 91%. TPD results reveal that the strong adsorption affinity for CO intermediates improves the selectivity towards C₂ product. XAS results display that the TBs in La₂CuO₄ NBs generate strain leading to increased Cu-O and Cu-La bond length and produce coordinatively unsaturated environment to enhance the adsorption of the intermediate for improved FE_{C2H4}. DFT calculations confirm that the high performance of CO₂RR on La₂CuO₄ NBs is attributed to the high activity of (113) surfaces for electron transfer and the efficient C-C coupling facilitated by the induced strain in TBs. The combination of active

surface and strain determines the selectivity and efficiency of CO₂RR. The present work highlights the important role of grain boundary engineering in the design of high-performance CO₂RR electrocatalysts for hydrocarbon production and beyond.

ASSOCIATED CONTENT

Supporting Information. Experimental details and data. Figures S1-S29 & Table S1-S4. This material is available free of charge *via* the Internet at http://pubs.acs.org.

Corresponding Author

hxq006@xmu.edu.cn

Author Contributions

X.H. conceived and supervised the research. X.H. and J.W. designed the experiments. X.H., J.W., C.C., L.L., Q.S. and L.Z. performed most of the experiments and data analysis. X.H., J.W., C.C., L.L., Q.S., and L.Z. participated in various aspects of the experiments and discussions. B.H. performed the DFT simulations. X.H., J.W., C.C. and B.H. wrote the paper. All authors discussed the results and commented on the manuscript. J.W., C.C., and B.H. contributed equally to this work.

ACKNOWLEDGMENT

This work was financially supported by the Ministry of Science and Technology of China (2016YFA0204100, 2017YFA0208200), Young Thousand Talented Program, the Natural Science Foundation of Jiangsu Higher Education Institutions (17KJB150032), the project of scientific and technologic infrastructure of Suzhou (SZS201708), the Priority Academic Program Development of

Jiangsu Higher Education Institutions (PAPD), and start-up support from Xiamen University.

References

- (1) Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; García de Arquer, C. M. Gabardo. F. P.; Kiani,
- A.; Edwards, J. P.; Luna, P. D.; Bushuyev, O. S.; Zou, C.; Quintero-Bermudez, R.; Pang, Y.; Sinton, D.; Sargent, E. H. CO₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. *Science* **2018**, *360*, 783-787.
- (2) He, L.; Sun, X.; Zhang, H.; Shao, F. G-quadruplex nanowires to direct the efficiency and selectivity of electrocatalytic CO₂ reduction. *Angew. Chem. Int. Ed.* **2018**, *57*, 12453-12457.
- (3) Wang, J.; Ji, Y.; Shao, Q.; Yin, R.; Guo, J.; Li, Y.; Huang, X. Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO₂. *Nano Energy* **2019**, *59*, 138-145.
- (4) Lu, X.; Wu, Y.; Yuan, X.; Wang, H. An integrated CO₂ electrolyzer and formate fuel cell enabled by a reversibly restructuring Pb-Pd bimetallic catalyst. *Angew. Chem. Int. Ed.* **2019**, *58*, 4031-4035.
- (5) Tao, Z.; Wu, Z.; Yuan, X.; Wu, Y.; Wang, H. Copper-gold interactions enhancing formate production from electrochemical CO₂ reduction. *ACS Catal.* **2019**, *9*, 10894-10898.
- (6) Dou, S.; Song, J.; Xi, S.; Du, Y.; Wang, J.; Huang, Z. F.; Xu, Z. J.; Wang, X. Boosting electrochemical CO₂ reduction on metal-organic frameworks via ligand doping. *Angew. Chem. Int. Ed.* 2019, *131*, 4081-4085.
 (7) Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Domino electroreduction of CO₂ to methanol on a molecular catalyst. *Nature* 2019, *575*, 639-642.
- (8) Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; Attenkofer, K.; Wang, H. Isolated Ni single atoms in graphene nanosheets for high-performance CO₂ reduction. *Energy Environ. Sci.* **2018**, *11*, 893-903.
- (9) Jiang, K.; Wang, H.; Cai, W. B.; Wang, H. Li electrochemical tuning of metal oxide for highly selective CO₂ reduction. *ACS Nano* **2017**, *11*, 6451-6458.
- (10) Choi, C.; Cheng, T.; Espinosa, M. F.; Fei, H.; Duan, X.; Goddard III, W. A.; Huang, Y.; A highly active

star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials. *Adv. Mater.* **2019**, *31*, 1805405.

(11) Wang, J.; Gan, L.; Zhang, Q.; Reddu, V.; Peng, Y.; Liu, Z.; Xia, X.; Wang, C.; Wang, X. A water-soluble Cu complex as molecular catalyst for electrocatalytic CO₂ reduction on graphene-based electrodes. *Adv. Energy Mater.* **2019**, *9*, 1803151.

(12) Yoshio, H.; Katsuhei, K.; Shin, S. Production of CO and CH₄ in electrochemical reduction of CO₂ at metal electrodes in aqueous hydrogencarbonate solution. *Chem. Lett.* **1985**, *14*, 1659-1698.

(13) Weng, Z.; Zhang, X.; Wu, Y.; Huo, S.; Jiang, J.; Liu, W.; He, G.; Liang, Y.; Wang, H. Self-cleaning catalyst electrodes for stabilized CO₂ reduction to hydrocarbons. *Angew. Chem. Int. Ed.* **2017**, *56*, 13135-13139.

(14) Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskove, J. K.; Chan, K.; Wang, H. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO₂ reduction. *Nat. Catal.* **2018**, *1*, 111-119.

(15) Vasileff, A.; Zhu, Y.; Zhi, X.; Zhao, Y.; Ge, L.; Chen, H. M.; Zheng, Y.; Qiao, S. Z.; Electrochemical reduction of CO₂ to ethane through stabilization of an ethoxy intermediate. *Angew. Chem. Int. Ed.* DOI: org/10.1002/ange.202004846.

(16) Luc, W.; Fu, X.; Shi, J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y.; Tu, Q.; Hu, X.; Wu, J.; Yue, Q.; Liu, Y.; Jiao, F.; Kang, Y. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. *Nat. Catal.* **2019**, *2*, 423-430.

(17) Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J. J.; Sun, S. Tuning Sn-catalysis for electrochemical reduction of CO₂ to CO via the core/shell Cu/SnO₂ structure. *J. Am. Chem. Soc.* **2017**, *139*, 4290-4293.

(18) Wang, P.; Qiao, M.; Shao, Q.; Pi, Y.; Zhu, X.; Li, Y.; Huang, X. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. *Nat. Commun.* **2018**, *9*, 4933.

(19) Zhu, S.; Jiang, B.; Cai, W. B.; Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO₂ electrochemical reduction reaction on Cu surfaces. *J. Am. Chem. Soc.* **2017**, *139*, 15664-15667.

(20) Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. *Science* **2017**, *358*, 751-756.

(21) Chen, Y.; Li, H.; Wang, J.; Du, Y.; Xi, S.; Sun, Y.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z.
J. Exceptionally active iridium evolved from a pseudocubic perovskite for oxygen evolution in acid. *Nat. Commun.* 2019, *10*, 572.

(22) Kim, C. H.; Qi, G.; Dahlberg, K.; Li, W. Strontium-doped perovskites rival platinum catalysts for treating NO_x in simulated diesel exhaust. *Science* **2010**, *327*, 1624-1627.

(23) Chan, K. S.; Ma, J.; Jaenicke, S.; Chuah, G. K.; Lee, J. Y. Catalytic carbon monoxide oxidation over strontium, cerium and copper-substituted lanthanum manganates and cobaltates. *A Appl. Catal. A Gen.* **1994**, *107*, 201-227.

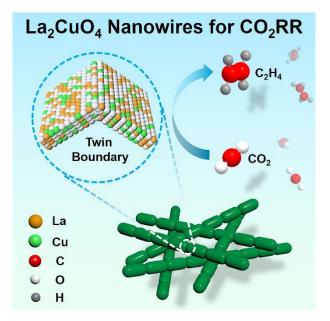
(24) Zhou, S.; Miao, X.; Zhao, X.; Ma, C.; Qiu, Y.; Hu, Z.; Zhao, J.; Shi, L.; Zeng, J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. *Nat. Commun.* 2016, 7, 11510.

(25) Wang, H.; Wang, J.; Pi, Y.; Shao, Q.; Tan, Y.; Huang, X. Double perovskite LaFe_xNi_{1-x}O₃ nanorods enable efficient oxygen evolution electrocatalysis. *Angew. Chem. Int. Ed.* **2018**, *58*, 2316-2320.

(26) Hwang, J.; Akkiraju, K.; Corchado-García, J.; Shao-Horn, Y. A perovskite electronic structure descriptor for electrochemical CO₂ reduction and the competing H₂ evolution reaction. *J. Phys. Chem. C* **2019**, *123*, 24469-24476.

(27) Pi, Y.; Guo, J.; Shao, Q.; Huang, X. All-inorganic SrSnO₃ perovskite nanowires for efficient CO₂ electroreduction. *Nano Energy* **2019**, *62*, 861-868.

(28) Luo, W.; Hu, X.; Sun, Y.; Huang, Y. Electrospun porous ZnCo₂O₄ nanotubes as a high-performance anode


material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 8916-8921.

(29) Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. *Dalton Trans.* **2015**, *44*, 17883-17905.

(30) Lv, H.; Lin, L.; Zhang, X.; Gao, D.; Song, Y.; Zhou, Y.; Liu, Q.; Wang, G.; Bao, X. In situ exsolved FeNi₃ nanoparticles on nickel doped Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} perovskite for efficient electrochemical CO₂ reduction reaction. *J. Mater. Chem. A* 2019, *7*, 11967-11975.

(31) Yin, Z.; Gao, D.; Yao, S.; Zhao, B.; Cai, F.; Lin, L.; Tang, P.; Zhai, P.; Wang, G.; Ma, D.; Bao, X. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO₂ to CO. *Nano Energy* **2016**, *27*, 35-43.

TOC graphic

