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STOCHASTIC LOGARITHMIC SCHRODINGER EQUATIONS:
ENERGY REGULARIZED APPROACH"
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Abstract. In this paper, we prove the global existence and uniqueness of the solution of the
stochastic logarithmic Schrodinger (SlogS) equation driven by either additive noise or multiplicative
noise. The key ingredient lies in the regularized SlogS (RSlogS) equation with regularized energy
and the strong convergence analysis of the solutions of the RSlogS equations. In addition, temporal
Hélder regularity estimates and uniform estimates in energy space H!(Q) and weighted Sobolev space
L2 (0) of the solutions for both the SlogS equation and RSlogS equation are also obtained.
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1. Introduction. The deterministic logarithmic Schrodinger equation has wide
applications in quantum mechanics, quantum optics, nuclear physics, transport and
diffusion phenomena, open quantum systems, Bose-Einstein condensations, and so on
(see, e.g., [5, 16, 18, 22, 23, 24, 25]). It takes the form of

Opu(t, ) = iAu(t,z) + idu(t, =) log(|u(t,z)|*) + iV (t, =, |u(t,z)|*)u(t,z), t >0,

u(0, ) = ug(x),

where A is the Laplacian operator on @ C R? with O being either R? or a bounded
domain with homogeneous Dirichlet or periodic boundary condition, ¢ is time, x is the
spatial coordinate, A € R/{0} characterizes the strength of nonlinear interactions, and
V is a real-valued function. While retaining many of the known features of the linear
Schrédinger equation, Bialynicki-Birula and Myecielski show that only such a logarith-
mic nonlinearity satisfies the condition of separability of noninteracting systems (see
[5]). The logarithmic nonlinearity makes the logarithmic Schrédinger equation unique
among nonlinear wave equations due to its connection with nonlinear wave mechanics
and nonlinear optics (see [7]). For instance, the longtime dynamics of the logarithmic
Schrédinger equation is essentially different from the Schrédinger equation. There is
a faster dispersive phenomenon when A < 0 and the convergence of the modulus of the
solution to a universal Gaussian profile (see [7]), and no dispersive phenomenon when
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A >0 (see [8]). The logarithmic Schrédinger equation with a quadratic potential has
also been recently studied (see [6] and references therein).

In this paper, we mainly focus on the well-posedness of the following stochastic
logarithmic Schrodinger (SlogS) equation

(1.1) du(t) = iAu(t)dt + idu(t) log(|u(t)|?)dt + G(u(t)) xdW (t), t >0,
u(0) = uyp,

where W(-) is a standard Q-Wiener process with a bounded, self-adjoint, positive
semidefinite operator @ € L(H,H). The Karhunen-Loéve expansion yields that
W(t) = > pent Q%ekﬁk(t) with {ex}ren+ being an orthonormal basis of L? :=
L?(0;C) and {Bk}ren+ being a sequence of independent Brownian motions on a
probability space (2, F, (F¢)i>0,P). Here g is a continuous function and g(u)xdW (¢)
is defined by

Gl *dW ()=~ 3 |@exf? (lo(lu))Pun))
keN+t
=i Y g(Ju®)P)g (u)) ) Pu) Im(Q? ex)Q* exdt
keN+
+ig(lu(D)u()dw (1)

if g(z) =ig(|x|?)x, and by
g(u(t)) x dW (t) = dW (t)

if g =1. We would like to remark that when W(-) is L?(O;R)-valued and g(z) =
ig(|z|?)z, g(u) *dW (t) is just the classical Stratonovich integral.
Introduce the weighted L?-space

L2 :={vel®lz— (1+z)*)2v(x) € L*}, ac(0,1],

with the norm |Jv[[zz = [[(1 + |z|2)%v(z)||z2. Denote H := L? equipped with the L2-
norm ||ul|? := [, |u[*dz and the product (u,v):= [, Re(uv)dz for u,v € H. Through-
out this paper, we assume that

o Yo+ 1Q%eillrz +[|Q3e]|2 < oo for some I € N and a € [0,1] when §=1;

® > e+ HQ%eiH%U + ||Q%ei||‘2/vlm < oo for some [ € N when g(z) =ig(|z|*)z,
where H! and W are standard Sobolev spaces.

The SlogS equation (1.1) could be derived from the deterministic model by us-
ing Nelson’s mechanics ([20]). By applying the Madelung transformation w(t,z) =
p(t,z)el¥®) [19] obtains a fluid expression of the solution as follows,

DS (t, ) = —|VS(t,a)[* - Z%pu,x>>+Mog<p>+V<t,x,p<t,x»,

Op(t,x) = —2div(p(t,x)VS(t,xz)), S(0,x) = So(x), p(0,2) = po(x),

where I(p) = [, [Vlog(p)|*pdz is the Fisher information. If V is random and fluc-
tuates rapidly, the term iVu can be approximated by some multiplicative Gaussian
noise ﬁ(u)W, which plays an important role in the theory of measurements continuous
in time in open quantum systems (see, e.g., [4]). Then we could use the inverse of the
Madelung transformation and formally obtain the SlogS equation

dyu(t,z) = iAu(t, z) 4+ ilu(t, z)log(Ju(t, z)[?) + G(u(t,z))W (t,x), z € O, t >0,
uw(0,z) =ug(z), z€O.
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The main assumptions on W and g are stated as follows.

Assumption 1. The diffusion operator is the Nemystkii operator of g. W and g
satisfy one of the following conditions:
Case 1. {W(t)}4>0 is L*(O;C)-valued and g =1;
Case 2. {W(t)}+>0 is L*(O;C)-valued, g(x) =ig(|z|*)z, and g € CZ(]0,00)) satis-
fies the growth condition

sup |g(z)|+ sup |¢'(z)x|+ sup |g"(x)x? < Cy;
z€[0,00) z€[0,00) z€[0,00)

Case 3. {W(t)}i>0 is L*(O;R)-valued, and g(z) = ig(|z|*)z, g € C}([0,00)) satis-
fies the growth condition

sup |g(x)|+ sup |g'(x)z] < Cy.
IE[O’OO) 16[0,00)

Here C, is a positive constant.

Assumption 2. Assume that g satisfies

(1.2) (z +y)(g(jzl*) = g(ly*)) < Cylz —yl, 2,y €[0,00).

When {W(t)};>0 is L?*(O;C)-valued, we in addition assume that g satisfies the fol-
lowing one-sided Lipschitz continuity

13) @ —2)(g' (2P g(|=[H)|zlz — o' (ly*)g(ly*)ly1*y)| < Cglz —yf*,  z,yeC.
Here Cy is a positive constant.

A typical example is g(u) = iu, and then (1.1) becomes the SlogS equation driven
by linear multiplicative noise in [3]. We would like to mention that the current study
does not provide a specific physical motivation for our choice of g and that studying
(1.1) is probably a purely mathematical question at this stage.

There are two main difficulties in proving the well-posedness of the SlogS equa-
tion. On the one hand, the random perturbation in the SlogS equation destroys a lot
of physical conservation laws, like the mass and energy conservation laws in Cases 1
and 2, and the energy conservation law in Case 3. A similar phenomenon has been
observed in the stochastic nonlinear Schrodinger equation with polynomial nonlinear-
ity in R? (see, e.g., [15]) and the one with cubic nonlinearity in T? (see, e.g., [9]).
On the other hand, the logarithmic nonlinearity in the SlogS equation is not locally
Lipschitz continuous. The contraction mapping arguments via Strichartz estimates
or the Fourier restriction norm method for the stochastic nonlinear Schrodinger equa-
tion with smooth nonlinearity play an important role in [2, 9, 15, 17] and references
therein, but it cannot be applied directly here. Recently, when the driving noise is
a linear multiplicative noise in Case 2 (g(u) = iu), [3] used a rescaling technique,
together with maximal monotone operator theory, to obtain a unique global mild so-
lution in some Orlicz space. However, it is unclear that such an approach could work
for general g. As far as we know, there are no results concerning the well-posedness
of the SlogS equation driven by additive noise or general multiplicative noise. This is
one main motivation of the current study.

To show the well-posedness of the considered model, we introduce an energy regu-
larized problem inspired by [1] where the authors use the regularized problem to study
error estimates of numerical methods for the deterministic logarithmic Schrodinger
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equation. The main idea is first to construct a proper approximation of log(|z|?)
denoted by fc(|z|?). This induces the regularized entropy F. which is an approxima-
tion of the entropy F(p) = [, (plog(p) — p)da, where p = |u|?>. The regularized Slogs
(RSlogS) equation is defined by

(14)  dus(t) = 1IAus(t)dt + iu (DN (Jus (£)2)dt + Gus(t) * dW (£),  u(0) = up.

The corresponding regularized energy is 1[V()[|? + 3F.(|(-)|?). Our approach to
showing the well-posedness of the SlogS equation lies in two aspects. First, we show
the local and global well-posedness of the RSlogS equation by using truncation argu-
ments in [15]. To deal with the singularity caused by the logarithmic coefficient near
the vacuum, we adopt the stochastic version of the functional setting in [7] where the
well-posedness of the deterministic logarithmic Schrodinger equation with A < 0 is
established. More precisely, we prove an e-independent estimate in H! := W2 and
the weighted L2-space of the RSlogS equation (1.4). Then we are able to prove that
the limit of {u®}.~¢ is convergent to a unique stochastic process « which is shown to
be the unique mild solution (see Appendix A for its definition) of (1.1). Furthermore,
the sharp convergence rate of {u}.~¢ is obtained when O = R%, or a bounded domain
in R? equipped with homogenous Dirichlet or periodic boundary condition. From
this viewpoint, the functional setting and estimates introduced in [7], together with
their stochastic version in this study, allow for a more robust approach to investi-
gate the well-posedness for general SlogS equations. Our main result is formulated as
follows.

THEOREM 1. Let T > 0, Assumptions 1 and 2 hold, and ug be H' N L2 -valued
and Fo-measurable with any finite pth moment, i.e., E[||uolfy] +E[\|u0||p%] < oo for
any p € NT. Assume that Y, .+ ||Q%ei||2L2 + ||Q%ei||]%Il < oo when g =1 and that
Y ien+ ||Q%ei||§ﬂl + HQ%eiH%Vl,w < oo when g(x) = ig(|z|*)x. Then there exists a
unique mild solution v € C([0,T];H) a.s. of (1.1). Moreover, for p > 2, there exists
C(Q, T, \,p,up) >0 such that

E| sup [[u(®)f] +E| sup Ju()ll}, | < CQ.T,A,p,u0).
te[0,T] te[0,T) o

When W (t) is L?(O;R)-valued, the well-posedness of the SlogS equation with a
superlinearly growing diffusion coefficient, e.g., g(z) = ilog(|z|? + ¢)x, is also proven
(see Theorem 2).

The reminder of this article is organized as follows. In section 2, we introduce
the RSlogS equation and show the well-posedness of the RSlogS equation driven by
either additive or multiplicative noise. Section 3 is devoted to the e-independent
estimate of the mild solution in H! and L? of the RSlogS equation. In section 4,
we prove the main result by passing the limit of the sequence of the regularized mild
solutions and providing the sharp strong convergence rate. Several technique details
are postponed to Appendix A. Throughout this article, C' denotes various constants
which may change from line to line.

2. Regularized SLogS equation. In this section, we show the well-posedness
of the solution for (1.4) (see Appendix A for the definition of the solution). We

would like to remark that there are several choices of che regularization function
fe(Jx|?). For instance, one may take f.(|z|?) = log(%) (see Lemma 1 for the

necessary properties) or fe(|z|?) = log(|z|*> + €) (see, e.g., [1] and references therein
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for more choices of regularization functions). If the regularization function f. enjoys
2
the same properties of log( fi‘eﬁﬁ ), then one can follow our approach to obtain the
well-posedness of (1.1). In the following, we first present the well-posedness of (1.4),
and then derive global existence and a uniform estimate of its solution. For simplicity,

we always assume that 0 <e < 1.

2.1. Well-posedness of Regularized SLogS equation. In this part, we give
the detailed estimates to get the well-posedness in H of (1.4) by using the regular-
ization function like f.(|z|?) = log( Jiljlj‘g ). We would like to mention that one may
also follow the approach in this section and the Sobolev embedding theorem, and use

log(|z|? + €) to get the local well-posedness in H? when d < 3 and ug € H?. Below we
[ETRER: )
1+e€|x|? /"

summarize the useful properties of f.(|z|?) = log(
LEMMA 1. Let e € (0,1). Then f.(|z|?) = log( o+ ) satisfies

Thefa]?
(2.1) [fe(Jz )] < [log(e)],

2(1 — )|
(2.2) |d|x\fs(|z|2)|§ (€+|m|2)(1+6‘$|2)’
@3 mfllenP)er — folra)an) @ — )] <401 - Dl — ol

Proof. The proof of the first and second estimates are derived by the prop-
erty of log(:). The last estimate is proven by similar arguments as in the proof of
Lemma 8. 0

Denote by MZ.(2; C([0, T]; H)) with p € [1,00) the space of process v : [0,7] x Q —
H with continuous paths in H which is F;-adapted and satisfies

IE[ sup HU(t)”ﬁl} < o0.

”vHZ:Mg_.(Q;C([O,T];Hl)) =
te[0,77]

Let 7 <T be an F;-stopping time. And we call v € M%(Q; C([0,7); H)), if there exists
{7 }nen+ with 7, /7 as n — oo a.s., such that v € M%.(Q; C([0,7,,]; H)) for n € NT.
Next we show the existence and uniqueness of the local mild solution (see Definition
1 in Appendix A).

For the sake of simplicity, let us ignore the dependence on € and write ug :=u%,
where upg is the solution of the truncated equation

(2.4) dup = iAupdt +iNOg(ur, t)upf(|up|?)dt
1 .
— 50nr(unt) Y Qs (lg(unl®) Pur ) dt

keNt

—iOr(up.t) Y g(lurl®)g (Jur?)urPurIm(Q? er)Q? erdt
keN+

+ Or(ur, t)ig(|ur|*)urdW (t).

Here, Og(u,t) := H(HMHC(%), R >0, with a cutoff function 6, that is, a positive C>
function on Rt which has a compact support and satisfies

0(x) = 0 for z>2,
YTV for x€[0,1].

In the following, adopting the truncation arguments in [15], we study the local and
global well-posedness of RSlogS equations.
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LEMMA 2. Let Assumption 1 hold, and f.(|x|?) = log( 1‘:”_‘6'7«'62) and ug be H-valued

and Fo-measurable with any finite pth moment, p € NT. Assume that Zlew 1Qze; |

< oo when g =1 and that Y, 1Q2 ;|2 < 00 when §(z) =ig(|z|?)z. Then there
exists a unique global solution to (2.4) with a continuous H-valued path.

Proof. We only present the proof of the multiplicative noise case since the additive
noise case is similar and simpler. Let S(t) = exp(iAt) be the Cy-group generated by
iA. For fixed R > 0, we use the following notations, for ¢ € [0, 77,

T2 u(t) _1/ S(t = 5) (O, )Afc(|u(s)*)u(s) ) ds,
T u(t): =~ / S(t—s)(Onus) 3 IQfejIQ(Ig(IU(S)IQ)\QU(S)))dS

jEN+

/S (t—s) @R (u, s Zg lu(s) (Ju(s )|2)|u(s)|2u(s)lm(Q%6j)Q%ej)ds

jENT
()= [ 50— 5)(Ontuss)a(u) Pyu(s))aw (s).
We look for a fixed point of the following operator given by
DRu(t) == S(t)uo + Tapu(t) + Trmpqu(t) + Tpou(t), u € M2 C([0,7]; H)),
where 7 will be chosen later. The unitary property of S(-) yields that
15 (-)uollme ;0 ((0,r:m) < lluollm-

Now, we define a stopping time 7 = inf{t € [0,77] : ||ulc([0,g;m) > 2R} Ar. By (2.1) in
Lemma 1, the definition of O and 7, and Assumption 1, we have that

ITE ull o) < ClAlog(e)] / O (1, 3)u(s) | ds < C|Alog(e)| / lu(s)ds
< ClM\log(e)|[TR<C(\ e)rR

and
P satlcqons <C@) Y 1Q%ali~ [ lulds
keNt
Y QbR
keNt

Integrating over ) yields that

IT i sullez ic o) + 1T moattllve (sc o)

<Cnveg)r (1+ 3 |Qzej||m)

jENT

The Burkholder inequality, the definition of O and 7, as well as Assumption 1 yield
that for p > 2,
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P
2

=

| Z@%m,s>||g<\u<s>\2>u<s>c2%ej||%Hds)

Uz
(/ 3 lglu(s) Pu()Qbes ds) '])”

JENT

(T HQQeJHLW)%

jENT

/)

12 sl cucio.nzn) <C (B

<c(e]

P
2

Therefore, I'f? is well-defined on M (€; C([0, 7]; H)).

Now we turn to the contractivity of I'®. Let ui,us € M%(;C([0,r];H)), and
define stopping times 7; = inf{t € [0,T7] : [Ju;||¢(jo,r);m) > 2R} Ar,i=1,2. For a fixed
w € Q, let us assume that 7 < 75 without loss of generality. Then a direct calculation,
together with (2.1) in (2.2) in Lemma 1, leads to

T2y — Fc?etu2||0([0,T];H)
)| (©nuz. )~ On(ur,)) fellus P |
OO |[Ontur, ) (Fellur s = felfus Y

CN)rllur — uallco,mm | feluzl*Yuallcgo,mm)
CNr| felluz|* uz — fe(lual®)urlleo,m )
< O\ e)rflur — uz|leo,mm) (1 + R)

C([0,r];H)

)HC(O’I‘] ;H)

and

ITE qur — TR sl cqorm < Cla) Y 1Q%e;13oerllur — uallo(o,mm (1 + R)-
jENT

By applying the Burkholder inequality and Assumption 1, we obtain

IT§;0u1 — T §ou Iz (@icio.0:m))

< C||@rur, gl = glfual?)ua)|

Lr(Q;L2([0,r]5L3))
+ 0H<@R<u1, )= O, )gfuzl*)us|

L (L2([0,r]LY))

o) X 10¥es1B) 1 s = vl oty (1+ )

JENT

where L9 is the space of Hilbert—Schmidt operators from Uy = Q% (H) to H. Combining
all the above estimates, we have

T ur — T sz (s (o,
1 1
<Ceg)(1+ 3 1Q4es 13 ) (r} +1)llur = wallag @i (1 + B),

jEN+

which implies that there exists a small r > 0 depending on @, R, \, e such that I'%
is a strict contraction in M%(Q;C([0,r];H)) and has a fixed point u>! satisfying
FR(URJ)::URJ.
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Assume that we have found the fixed point on each interval [(I — 1)r,lr], | <k,
for some k > 1. Define

uftk = S(-)up + I‘getuR’k + FﬁoduR’k + FﬁouR’k

on [0, kr]. In order to extend uf** to [kr, (k + 1)7], we repeat previous arguments to
show that on the interval [kr, (k+1)r], there exists a fixed point of the map I'?* defined
by

TRu(t) == S)u* (kr) + TEFu(t) + TRE w(t) + TE u(t), w e ME(Q; C((0, r); H)).

Here we use the following notations,
TREu(r) : = i/t S(t = 5) (O nlu, k)M (lu(s)*)uls) ) ds,
0 t
Pt == [ 5(t=9)(Brtuk.s) 3 1% P (o)) Pu(s)) )ds

JEN+

=i [ (=9 (Brtuks) 3 allule)Plg (uls)) ule) Puls) T Qe ) Qe ),

JjENT
TEEu(r): =i /0 S(t = 5) (O, k. 5)g(u(s)P)u(s) ) dW(s),

where t € [0,7], WF(s) =W (s +kr) — W(kr), u e M, (2;C([0,7];H)), and

R,k
Or(u, k,s)=0 (”“ ||O([07kr];1f2+ ||uC'([0,s];]HI)> |

For any different vy, v € M%_ (€;C([0,7];H)), we define the stopping times 7; =
inf{t € [0, T — kr] : [|u™*| (0, k) + villc(o,q:m) = 2R} Ar, i=1,2, and assume that
71 < 7o for convenience. Then the same procedures yield that this map is a strict
contraction and has a fixed point w***! for a small » > 0. Note that here r > 0
is actually the same as above. Now, we define a process u® as uf(t) := uf*(t) for
t €[0,kr] and uf(t) := uf*+1(¢t — kr) for t € [kr, (k + 1)r]. It can be checked that uf?
satisfies (2.4) by the induction assumption and the definition of I'®. Meanwhile, the
uniqueness of the mild solution can be obtained by repeating previous arguments. 0

PROPOSITION 1. Let the hypotheses of Lemma 2 hold. There exists a unique local
mild solution to (1.4) with a continuous H-valued path. Furthermore, the solution is
defined on a random interval [0,7)), where 17 := 7 (up,w) is a stopping time such
that 77 = 400 or limg 7« [|u(t)||m = +o00.

Proof. When g = 1, one can follow the same steps as in the proof of [15, The-
orem 3.1] to complete the proof. We only present the proof of the multiplicative
noise case. Let 7' > 0 and {u®}gen+ € ME(€Q;C([0,T];H)) be a sequence of the
solution constructed in Lemma 2. Define a stopping time sequence 7g := inf{t > 0:
|uf]|c(jo,4:1) = R}AT. Then 75 > 0 is well-defined since |[u”*||¢((o,4);m) is an increasing,
continuous, and Fi-adapted process. We claim that if Ry < Rg, then 7, < 7g, and
uf™ =uf2 a.s. on [0,7g,]. Let Try,p, :=inf{t > 0: |[u”||c(jo,qm) > R1} AT. Then it
holds that Tr, g, < Tr, and O, (u?2,t) = O, (uf2,t) on t € (0,7, r,]. This implies
that {(uf2,7g, r,)} is a solution of (2.4) and that uf = uf? a.s. on {t < 7, g, }-
Thus we conclude that 7g, = Tg, g, @.s. and that u** = u®2 for {t <7z, }.
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Now consider the triple {u, (7r)ren+,Too } defined by u(t) := uf(t) for t € [0, 7F]
and T =SUppey+ Tk From Lemma 2, we know that u e M%.(Q,C([0,t]; H)) satisfies
(1.4) for t < 7. The uniqueness of the local solution also holds. If we assume that
(u,7) and (v,0) are local mild solutions of (1.4), then u(t) =v(t) a.s. on {t <o AT}.
Let Ry,Ry € NT. Set Tg, g, :=inf{t € [O 17 : max(||ull¢(o,4;m) s ||v||c (0,4:1)) = R1i} A
ORr, N Tr,. Then we have that on {¢t <7r, r,}, (4,TR, R,); (V;TR,,R,) are local mild
solutions of (1.4). The uniqueness in Lemma 2 leads to w =v on {¢t <7g, g, }. Letting
R1, Ry — 0o, we complete the proof. O

LEMMA 3. Let T > 0. Under the condition of Proposition 1, assume that (u, 1)
is a local mild solution of (1.4) in H. Then for any p > 2, there exists a constant
C(Q,T,)\7p, ’U,O) >0 such that

E[ sup [u(t)]"] < C(Q.TAp.uo).
te[0,7xAT)

Proof. Take any stopping time 7 < 75 A T a.s. Applying the Itd formula to
MP¥(us(t)), where M(uc(t)) := |[u¢(t)||> and k € N* or k > 2, we obtain that for
t €[0,7] and the case g =1,

M’f<u€(t)):M’f(uo)+2k(k—1)/ MF=2(u(s)) 3 (u(s), Q¥ er)ds

€Nt
+k [ MFTY( Q% e;|?ds + 2k [ M= (us(s)) (us(s), dW (s)),
fjuteen 52 |
and for ¢ € [0,7] and the case g(z) =ig(|z|?),
M (uf(t))
= M"(uo) + 2k(k — 1)/0 MF72(u(5)) D (ul(s), ig([u(s)*)u (s)Q7 ;)2 ds
1ENT

ok / DS s (3)) (u (), Rg () 2o ()W () + 2K / M*L (0 (5))
0 0
x <u€<s>,—i 3 Im(@%em%eig'uw(s)|2>g<|u€<s>|2>|uf<s>|2u€<s>>ds.

ieNt
In particular, if W(t,z) is real valued and g(x) = ig(|z|*)z, we have MF(uc(t)) =
MP¥(ug) for t €[0,T] a.s. By Assumption 1, using the martingale inequality, Hélder’s
inequality, Young’s inequality, and Gronwall’s inequality, we achieve that for all
k>1,

E[M’v(@f(t))} < O(T, k,u0,Q).

Next, taking the supremum over ¢ and repeating the above procedures, we have
that

E[;&g | M (ue(t))]

gE[M’“(uw] +CE| / M) T (1 )P s

0 iEN+
]

[N

E[( [ a2+ w1 Y 1kl ds)

ieNt
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where U = H for the additive noise case and U = L* for the multiplicative noise case.
Applying the estimate of E[M*(u¢(t))], we complete the proof by taking p=2k. 0O

The above lemma indicates the global existence of the mild solution, i.e., 7 = 400
a.s.

COROLLARY 1. Let T > 0. Under the condition of Proposition 1, there exists a
unique mild solution u¢ of (1.4). Furthermore, for any p > 2, there exists a positive
constant C(Q,T, A\, p,ug) >0 such that

E[ sup ||u€(t)||p1 <C(Q T, p,uo)-

te[0,T)

3. Uniform estimates of the RSlogS equation. In this section, we present
several a priori estimates in the strong sense. Throughout this section, we assume

that ug € H' has a finite p-moment for all p > 1, d € NT, and f.(z) = log( 1”:2)

We also suppose that ), HQ%eiHQLi + ||Q%ei||]%11 < oo when g = 1 and that
Y ien+ ||Q%ei||§ﬂl + HQ%eiH%,VlW < oo when g(z) =ig(|z|*)z. The introduction of the
weighted Sobolev space in [7] is useful for proving uniform estimates when O =R<.

To simplify the presentation, we omit some procedures like mollifying the un-
bounded operator A and taking the limit on the regularization parameter. More
precisely, the mollifier ©,,,, m € N*, may be defined by the Fourier transformation
(see, e.g., [15])

FGne)(©) =7 (£ ) ate), e re,

where 6 is a positive C* function on R™ and has a compact support satisfying 5(95) =0
for x > 2 and 6(z) =1 for 0 < 2 < 1. Another choice of mollifier is via the Yosida
approximation ©,, :=m(m—A)~! for m € NT (see, e.g., [17]). This kind of procedure
is introduced to make sure that the It6 formula can be applied rigorously to deduce
several a priori estimates. If O becomes a bounded domain equipped with a periodic or
homogenous Dirichlet boundary condition, the mollifier can be chosen as the Galerkin
projection, and the approximated equation becomes the Galerkin approximation or
other spatial discretization (see, e.g., [10, 11, 12, 14]).

3.1. A priori estimates in H'. In this part, we show that the mild solution
u¢ € H! a.s. under suitable conditions on ug and Q. To this end, we introduce the
stopping time 7. g = inf{t > 0[||u®(¢)||m > R} and denote 7 =limp_,o0 Te -

LEMMA 4. Let T > 0 and ug € H' have a finite p-moment for p > 1, d € N*,

and fc(x) = log({5). Assume that Y7,y ||Q%ei||%i + HQ%ein{l < oo when g =1

and that ), ||Q%€i||]%11 + ||Q%.ei||%,vl,oc < oo when g(z) =ig(|z|*)z. Then for every
stopping time T such that T < TX AT a.s., there exists C(Q,T,\,p,ug) > 0 such
that

B[ sup [lu(8)] ] < C(@Q.T.\,p, o).
telo,7)

Proof. Take any stopping time 7 < 7 AT a.s. Applying the Itd formula to the
kinetic energy K (uf(t)) := 3||Vu(t)||?, and using the integration by parts, we obtain
that for k € N* and t € [0, 7],
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:Kk(u0)+k/0 Kkil(ue(s)ﬂVuE(s),i2)\f€’(|u6(s)|2)Re(1_f(S)Vuf(s))ue(s»ds

+ %k(k —1) [ EFu(s) Y (Vus(s), VQEe;)ds

0 €Nt
t
+§/ KR us(s) Y (VQEe;, VQbe;)ds
ieNT
+k/ K1Y “(s), VAW (s))

for the additive noise case, and
K" (uf(1))
— K (ug) + & / BRI (u () (Ve (5), 272 (3)]2) Re (5) T () () ds

gt / K Vu (s), 1V (g(Ju () ]*)u (5)Q 2 es)) ds
Z€N+
+§/ K* () D (Vig(u(8)P)u()Q7 i), V(g(|u(s)]*)u(s)Q2 ) ds
ieN+
Tk / K1 $),19g([u(s) ) (5) WV (5))
+2/ KR (us( ;m@ze\ ()[%))%u(s))ds

- k:/ot KR 1(u(s))

x (Bu(s),1 Y g(u(s))g' (Ju(s)*)us (s)Pu () Im(Q2 e,) Q2 e;)ds

ieNt

for the multiplicative noise case. Applying integration by parts in the multiplicative

noise case, we further obtain
K*(uf(t))

< K" (uo) + k/o K (5))(Vus(s), 1221 (Ju(s)*) Re (@ (s) Vs (s))u(s))ds

0 [ K2 0) 3 (00 (o) gl o) P () 9 Qe )2

i1ENT
+ (Tue(s), ig/([u (3)]2) Re(a (5) Vuu (5))u ()@ €:))? ) ds
+Cy / K’“*1<u€<s>>i€ZN+ (gl ()2 (5) V@ e

+lg(Jut(5) ) Vus()Q e[ + g (1 () ) Re(a(5) Ve (5)u ()@ ]2 ) s

+k [ KN (s) (Vs iVg(Juc(s)[*)u (s)dW (s))
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1

v [ K ) Y (906 v Im@te)te,
0 1ENT

+VQ2eim(Q%er))g ([u(s)1*)g(Ju ()1 |u(s)Pu(s))]

+ [(Vus(s), 1Im(Q* e:) Q2 eig” (Ju (s)*)g(Juc (s)[2) [uc(s) Pu (s) Re (@ (s) Vus ()|

+(Vus(s), iTm(Q7 ) Q7 el (Ju(5)[*) [2[u (5)[*uc(s) Re (@ (s) Vus (s)))|

+ [(Vul(s), iTm(Q% 1) Q2 i/ (Ju(s)[*)g(uc (s)|?) (2Re (@ (5) Vus (s))uc(s)

o+ u (5)[Vuc(s))] ) ds.
By using the property of g in Assumption 1 and conditions on @), and applying Holder’s
and Burkholder’s inequalities, as well as the property x f/(z) <2 derived from (2.2),
we achieve that

E[ sup Kk(ue(r))]
r€0,t]

< E[K*(uo)] + C ME| / sup KL (ue ()] Ve (5)]Pds

relo,s]

t
+Ck]E[/ sup K*=2( Z [V (s) [P (1+ || Vus(s)|?
0

rel0,s] JeN+

+|uf(s>|2>||cz%ez-||%ds]
t

+CkIE[</ K272(uf()) Y [IVus(s)[2(1+ || Vus(s)]|?
0

1€Nt
1

T |u6<s>|2>||vc2%ei|%]ds) }

where [|Qze;||? = HQzeZHHl for the additive noise case and [|Q7e;||3 = ||Q2€Z||H1
Q2 €;]|31, for the multiplicative noise case. From the definition of K (u), Holder’s
and Young’s inequalities, and Corollary 1, it follows that for a small €; >0,

E[ sup K*(u(r))]
re(0,t]

<E[K*(up)] —l—C(l@A,Q)E[/ sup Kk(ue(r))ds}
0 re€lo0,s]

Ok 1)1+ ]E[/Ot e (s) % ds) ) + C(k,)\,Q)IE[(/Ot K2 (uf ())ds) }

< B[R (uo)] +C(k, A, Q) [ / sup K (u <>>ds}+0<k,w,uo>

r€(0,s]

C(k,A,Q)lE[ sup K% / K*(u ]

rel0,t]

< E[K*(uo)] + C(k,\, Q)E [/ sup K" (u ())ds]+0(k,)\,Q,u0)

0 r€[0,s]

C’(k,)\,Q)elE[ sup Kk(ue(r))} +C(k,>\,Q,€1)E{/Ot sup KF(uf(r))ds|.

re(0,t] r€l0,s]
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Applying Gronwall’s inequality and letting C'(k,\,Q)e; < 1, we complete the proof
by taking p = 2k. ]

Thanks to the definition of 7 and Chebyshev’s inequality, by using Lemma 4,
one can get

E[ sup [lu(t)]5:] < C@.T A p,u0).
te[0,T

From the above proofs of Lemmas 3 and 4, it is not hard to see that to obtain e-

independent estimates, the boundedness restriction sup,sq|g(z)| < co may not be

necessary in the case that W (t,x) is real valued. We present such result in the

following which is the key to the global well-posedness of an SlogS equation with

superlinear growth diffusion in the next section.

LEMMA 5. Let T > 0 and u® be a local mild solution in H' for any p > 1.
Assume that ug € H' N L2, for some a € (0,1], is Fo-measurable and has any finite
pth moment, and W (t,x) is real valued with ;. ||Q%ei||€‘,1,oo < oo. Let g(z) =
ig(|z|?)z, g € C}([0,00)) N C([0,00)) satisfy the growth condition, and the embedding
condition,

(3.1) sup |g'(z)z[ < Cy,
z€[0,00)
(3:2) log(lv*)llze < Ca( + ol + [[vllz2 ),

for some q¢ > 2, where Cy >0 depends on g, and Cq >0 depends on O, d, ||v||. Then
it holds that M(uf(t)) = M(ug) for t € [0,7 A T]. Furthermore, for every stopping
time T such that T <75 AT a.s., there exists C(Q, T, \,p,ug) >0 such that

E| sup [lu(t)lf | <CQ.T A puo),
te[0,7)

Proof. The proof is similar to those of Lemmas 3 and 4. We only need to modify
the estimation involved with g. The mass conservation is not hard to obtain since
the calculations in Lemma 3 only use the assumptions that g € C([0,00)) and W (¢, )
is real valued. Therefore, we focus on the estimate in H'. We only show estimation
about E[K*(uf(t))] since the proof on E[ sup K% (u(t))] is similar. Then following

te[0,T)
the same steps in Lemma 4, we get that for % + % = %,
E|K*(u (1))
<E {K’“(uo)]

+ kE| / KR (5))(Va (s), 227 (5) [2) Re(@ (s) V() (5)) ds

B[O [ K20 (9) 3 (1900 (o) gl (6) () VQEe)?

1€ENT
+ (T (), ig/([u (5)|?) Re(@ (5) V' (5) u* ()@ e:))? ) |
+as] [ K1) Y (lollu 9P () VQkel?
0 1€NT
+1lg’(ju (5) [2) Re(a () Vr (3))u () Qe |2 |
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<E [Kk(uo)] + CkE[ /0 t Kk(ue(s))ds}

B[ [ K o) Y (ol 9P Vel

0 iENt

+ IVus()|21QF el ) ds]

Applying the embedding condition (3.2) to g, the mass conservation law, and the
procedures in the proof of Proposition 2, we complete the proof by taking p =2k and

using Gronwall’s inequality. ]
In the rest of this paper, we will frequently use the Gagliardo—Nirenberg interpo-

lation inequality, i.e., for % = % — Jand v €[0,1],

(3.3) lullzs < Cllull' [ Vul].

Here v € [0, %) if d=1and v €[0,1) if d > 2. In particular, we will take ¢ = 2 + 21/
for some 1’ > 0 such that v = #2‘177, €(0,1).

It can be seen that the embedding condition (3.2) depends on the assumption on
Q@ and d. One unbounded example of g which satisfies the embedding condition (3.2)
is g(x) =log(c+ x) for z >0 and ¢ > 0. Let us verify this example on O =R?. If the
domain O is bounded, one can obtain a similar estimate. Applying the Gagliardo—
Nirenberg interpolation inequality (3.3), the properties that log(1+y) < Cpy", n>0
for y > 0, and |log(z)| < Cy2™", >0 for z € (0,1), we get that for ¢ > 2 and small
enough 7 >0,

(3.4)
lg(vl)ol?,
<[ Jlogler pPloptdnt [ log(et o) fol'da
c+|v|2>1 c+lv]2<1
<O+ et (ol + o558, + el )
<1+ e ([l ol + (ol Vo) + (ol ez Vel o))
< O+ ) ([[Tol]0 + [V a0 4 [V (a-omez),

where oy = d(%f),oq = d(¢1221(4{1252)7 and oy = %@{2) satisfy a; € (0,1),7 €
{0,1,2}. The assumption (3.2) on g is indeed satisfied for g(z) = log(c+ x) only for
some ¢ > 2 and 1 > 0 small enough such that all the exponents on the norms in (3.4)
are smaller than q. When ¢ = 2, similar calculations, together with the interpolation

inequality in Lemma 6, yield that

2+2 2—-2
lgClolyel? < 1+ e) (ol + o352, + lol32%, )

dn
(35) <O(1+) (|70 + Vo] C+20% 4 o] 33 ),

where a = % €(0,1)and ap € (Qf—gn, 1). The assumption (3.2) on g is indeed
satisfied for g(x) =log(c+ x) only for some ¢ =2 and 1 > 0 small enough such that

all the exponents on the norms in (3.5) are smaller than 2.
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Remark 1. Tt can be seen that the constant term in (3.4) or (3.5) is uniformly
bounded on (0, 1] with respect to ¢. This, together with similar steps in the proofs of
Corollary 1, Lemma 5, and Proposition 2, implies that for any (c,e) € RT x R*| there
exists a unique mild solution of

(3.6) du®®=1iAu“dt + i u®° f(|u¢

1 \
2 _ = 35 2 2 €,c|2 €,c
Jdt =5 3 1QFenf?(Jlog? (ju[? + cjus ) dt
keN+
+ ilog(|u®* + c)uscdW (t)

with u©¢(0) = up and W (-) being L?(O;R) valued. Meanwhile, it holds that for any
pENT,

E[ sup [[u®“(®)[|72]+E[ sup [[u®“(t)llgn] < C(Q, T, A, p,uo)-
t€[0,T) o t€[0,T]

The above result would be preliminary to studying the singular SLogS equation

1
(3.7) du = iAudt + iulog(|ul*)dt — 5 > Q% ex/?[log” (|ul?)udt
keNt
+ ilog(|u|?)udW (t).

3.2. L?-estimate and modified energy. Beyond the L? and H' estimates,
we also need the uniform boundedness in L2, a > 0, to show the strong convergence
of {u}eso when O = R?. To this end, the following useful weighted interpolation
inequality is introduced. We would like to mention that when O is a bounded domain,
such an estimate in L2, o> 0 is not necessary.

LEMMA 6. Let d e NT and n € (0,1). Then for a > Qf—gn, it holds that for some
C=C(d) >0,

dr __dn
0]l 2-2n < Cllo)| '~ =05 o]l 55477, ve L2 N L2,

Proof. Using the Cauchy—Schwarz inequality and a > %’ we have that for any
r>0,
a(2—2n) 2—2n
e B P
|z|<r |z|>r |33| 77
1 n
- 2-2
<ortful2 s Cllf ([ )
« |z|>r |;p|?
< O p||2=20 4 Crme@-20tdn |y 222
. llv]l 7,2 é
Letting r = (HTHQ) , we complete the proof. 0

PROPOSITION 2. Let T > 0, O = R, d € N*, and up € L2 NH! for some
a € (0,1], and Fo-measurable with any finite pth moment, p € Nt. Suppose that
YNt ||Q%ei||]%11 < oo for the additive noise and ), 4+ ||Q%ei||‘2/vl,oo < oo for the
multiplicative noise. Then the solution u® of the reqularized problem satisfies, for
a€(0,1],

(3.8) E| sup [[u“(t)]|35 | < C(Q.T,\,p,up).
t€[0,T] «
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Proof. We first introduce the stopping time
T..r = inf {t €[0,T]: sup [lu(s)|[zz > R} AT,

s€[0,t]

then show that E[sup,cjo 7, ||u€(t)||ipi] < C(T,u0,Q,p) independent of R. After
taking R — oo, we get 7. g — T a.s., by Chebyshev’s inequality. For simplicity, we
only prove the uniform upper bound when p=1.

Taking 0 < t < t; < 7. g, and applying the It6 formula to ||u6HL2 = fRd

|z|?)*uc|?dx, we get
()12
t
— Jluoll2: +/ 2((1+ [[)u(s), iAuc( ds+/ S+ 227 Qer, Qb er)ds

iENT
t

+/0 2((1+ [7) uc(s), ife(lu(s)]| )u5(8)>d5+/0 2((1 + [2[7)*u(s), dW (s))
for the additive noise case, and
lu (#1172
ol +2 [ {1+ o) (5) 88 () + 15, (9))u (5)) s
0

*/0 (14 2Py s (5), (o () )2 (s) 3 1@ eal?)

1eNT

b3 P ()@ o 5 (5) Qe

1€NT

2 / (1 + 122 u(s),5 3 gl ()P)g’ (s ()P (5)]Pu(5) (@ ¥ ) Q@ ex)ds

i€ENT
+2/0 (L [ ) uc(s), ig(Jus(s)[*)u(s)dW (s))

for the multiplicative noise case. Using the integration by parts, then taking the
supremum over t € [0,#;], and applying the Burkholder inequality and Assumption 1,
we deduce

E[ sup [lu(t))3: ]
te[0,t1]

SEWOHQLi}+CQE[/T‘<(1+|x|2)a_1we(s),ivue(s)>‘ds} / 3 1Q%eill?. ds

ieENT

D=

cO(E[ [ 3 I+ PP + ) T Qb))

€Nt

for the additive noise case, and

E[ sup us(®)l3;] <E[luol: ] —|—C’aE[/T‘((1—!—|x|2)a—1xu€(s),iVuE(s)>’ds}

te[0,t1]
oe[[1 T Int Qi)'

IS\
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for the multiplicative noise case. Notice that for € (0,1],
I+ ) au] < Cluc]l s -

In the additive noise case, Young’s and Gronwall’s 1nequaht1es together with an a
priori estimate of u® in Hl and the assumption ), ||Q2el||L2 < oo yield (3.8).

Similar arguments, together with the assumption ), HQ eil2 < o0, lead to the
desired result in the multiplicative noise case. 0

Similarly, we could also obtain the following a priori estimate when ¢ is not
bounded. We define the stopping time
7)=lim T, p= hm 1nf{t>0 sup [lu(s)|lzz > R}.

R—o00 R—o00 s€[0,4]

COROLLARY 2. Under the condition of Lemma 5, the solution u¢ of the reqularized
problem satisfies, for o€ (0,1],

E[ suwp w07 ] <@ T2 p,u0)

telo,7)
for every stopping time T such that T <7 AT a.s.

From the above uniform estimate, it follows that 7 AT =T a.s. However, it is
not possible to obtain the uniform bound of the exact solution in L2 for o € (1,2] like
in the deterministic case. The main reason is that the rough driving noise leads to
low Holder regularity in time and loss of uniform estimate in H? for the mild solution.
We cannot expect that the mild solution of (1.4) enjoys an e-independent estimate in
H?2. More precisely, we prove that applying the regularization f.(|z|?) = log(|z|? + ¢)
in Proposition 1, one may only expect an e-dependent estimate in H2. We omit the
tedious calculation and procedures, and present a sketch of the proof for Lemma 7
and Propostion 3 in Appendix A.

LEMMA 7. Let T >0, d=1, f(|z|*) = log(|m|2 +€), and ug € H? have a finite
p-moment for p>1. Suppose that D ient ||(c,22el\|Hz < 0o for the additive noise and
D ient ||Q261||W2,oo < 00 for the multiplicative noise. Then for any p > 2, there exists
a positive constant C(Q, T, \,p,ug) such that

B[ sup [w O] < QT AP w)1+e™).
te[0,T
PRrROPOSITION 3. Let O = R. Under the condition of Lemma 7, assume that
ug € L2 for some a € (1,2] with a finite p-moment for p > 1. Then the solution u®(t)
of the regularized problem satisfies, for a € (1,2],

E[ swp |lu ()7 <C@Q.T A puo)(1+€72).
te[0,T) «

The above results indicate that both spatial and temporal regularity for SLogS
equation are rougher than deterministic LogS equation.

In the following, we present the behavior of the regularized energy for the RSlogS
equation. When applying f.(|z|?) = log(|z|?> + €), the modified energy of (1.4)
becomes

He(u (1)) := K (u"(t) — %Fe(lue(t)F)
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with F(|u]?) = [, ((e + [u]*)log(e + |u[?) — [u‘|* — eloge)dz. When using another
e+|ul?
1+€lul?

regularization function f(|u|?) = log( ), its regularized entropy in the modified

energy H. becomes

€2
FE(|u€|2):/o(|u€|2log(1|1f|_||1;_|266)+elog(|u5|2—|—e)—ilog(due2+1)—elog(e))d;v.

In general, the modified energy is defined by the regularized entropy F.(p) =
Jo J§ fe(s)dsdz, where fc(-) is a suitable approximation of log(-). We remark that
the regularized energy is well-defined when O is a bounded domain. The additional
constant term elog(e) ensures that the regularized energy is still well-defined when
O =R?. We leave the proof of Proposition 4 to Appendix A.

PRrROPOSITION 4. Let T > 0. Under the conditions of Proposition 2, assume that
u is the mild solution in H* N L2 . Then for any p > 2, there exists a positive constant
C(Q, T, \,p,ug) such that

E[ sup |Ho(u(t)] <C(Q.T.Apuo).
t€[0,T]

Below, we conclude the global existence of the unique mild solution for (1.4) based
on Proposition 1, Lemma 7, and Lemma 4, as well as a standard argument in [15].

PROPOSITION 5. Let Assumption 1 hold and (u¢, 7)) be the mild solution in
Lemma 4. Then the mild solution u¢ in H' is global, i.e., 7/ = 400 a.s. In addi-
tion assume that the condition of Lemma 7 holds, then the mild solution u¢ € H?

a.s.

4. Well-posedness for the SLogS equation. Based on the a priori estimates
of the regularized problem, we are going to prove the strong convergence of any
sequence of the solutions of the regularized problem. This immediately implies the
existence and uniqueness of the mild solution for the SLogS equation.

4.1. Well-posedness for the SLogS equation via a strong convergence
approximation. In this part, we not only show the strong convergence of a sequence
of solutions of regularized problems, but also give the explicit strong convergence rate.
The strong convergence rate of the RSLogS equation will make a great contribution
to the numerical analysis of numerical schemes for the SLogS equation. Indeed, this
topic will be studied in a companion paper (see [13]). For the strong convergence
result, we only present the mean square convergence rate result since the proof of the
strong convergence rate in L9(f2),q > 2 is similar. In this section, the properties of
regularization function f. in Lemmas 1 and 8 will be frequently used.

In the multiplicative noise case, Assumption 2 is needed to obtain the strong
convergence rate of the solution of (1.4). We remark that the assumption can be
weakened if one only wants to obtain the strong convergence instead of deriving a
convergence rate. Some sufficient condition for (1.3) in Assumption 2 is

(' (2?92l 212 = g (w29 (y)lyl?) (212 = 1yl)| < Cyle =y, 2,y € C
(9 (22l = o () gy P)lyl) (] + yl)| < Cole — ylz.y eC.

1 x T C"!‘|37|2
Vet et etz IOg( 1+c|z|?

Functions like 1 ) with ¢ > 0, etc., will satisfy Assumption 2.
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The main idea of the proof lies in showing that for any decreasing sequence
{€n}nen+ satisfying lim €, =0, {u"},en+ must be a Cauchy sequence in C([0,7];
n—oo
LP(;H)), p > 2. As a result, we obtain that there exists a limit process u in
C([0,T); LP(; H)) which is shown to be independent of the sequence {u"},en+ and
is the unique mild solution of (1.1).

Proof of Theorem 1. Based on Proposition 5, we can (Zzonstruct a sequence of
mild solutions {u¢"},en+ of (1.4) with f. (|z|?) = log( 1?;““;"2 ). Here the decreasing
sequence {e, },en+ satisfies lim,, o €, = 0. We use the following steps to complete
the proof. For simplicity, we only present the details for p = 2 since the procedures
for p > 2 are similar.

Step 1: {u"},en+ is a Cauchy sequence in L?(Q2; C([0,T]; H)).

Fix different n,m € NT such that n < m. Subtracting the equation of u" from
the equation of u®™, we have that

d(uf™ —u) =iA (U —u)dt +iA(fe,, (Ju™ |$yucm — fe, (Jus |2 )usn)dt
for the additive noise case, and

d(u™ —u)

= GA U = u )t +I(fe, (a2 = fo, (jut [P)u)dt
1 1 . . ) E
—5 2 Qe (lglum ) Pucm — lg(uc ) Pu at

keNt

=i Y Im(QFer)Qben (g (lut P)g(fur [2)fur [Putn

keN+
= g/ (e B)g(ur P)ucs [P ) i
i (gl Pyucm = g(juer [2uc ) dw (2)
for the multiplicative noise case. Then using the It6 formula to ||u€"(t) — u(t)||?,

(2.3) in Lemma 1, the property of logarithmic function log(1 + z) < Cn/x"', 7' >0 for
x >0, we obtain that

(A1) flus () —u ()]

- / 2 (5) — u I fen, (14 ()Y (5) — fon (™ (3)]2)u™ (5))} s
< / AN [ (5) — u ()| 2ds
FAN [0 (5) =0 (5)8CF (i (5)) = o (e () (5) s
. 0
< / 6| [[u™ (s) — ue (s)|2ds

€p — €
log(1 + —————)|u" H d
og(L+ sl ()|, ds

t
4 / um () — uen (3)] o

t € 2
(€n — €m)|u (s)] 2
2|\ log(1 en d
2 [ g1 + G Em T e e (o) s
t

< / 6IA [ (s) — u™ (s) | 2ds
0
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+4|A|/t|u6m<s> o | 2L e s

[

/ m_|_|ue |2
e u ()
2|\ 1 €n d
#23] [ tog(t + G O e 2
< / 61 (5) — u (s)]|ds + 4 \|ek / Jucm 9)lods
0

t
vaNCe [ (9252, ds
0

L2+277
for the additive noise case, and
[Juc (t) = u (1]
t
:/0 2(um (5) — u (s),iA(fe,,, (Ju™ (8)[P)u (5) = fe, (Ju (5)[*)u (s)))ds

- [ o) -6, T @bl (o P s

keNTt

~ lg(fur <s>\2>|2u6"<s>)>ds

~2 [ ()

—u(s),i Y Im(Q2er)Qey (y’(luem(S)lz)g(Wm ()[%)|u (s)[Pus (s)

keNt

— g/ ([u () P)g e (3)2) [u ()P (s) ) s
+2 / (e () = u (3), 3 (g(lu ()2)u () = gl () ) (5) ) dW (s))
u (s)]?)um (s
+/0<g<| () (s)
~ glluc $) 2 Qe (glum ()Pt (5) = glu (5)[2)ur (s) ) s

keNt
t 1 t
< [ O (5) = (o) P+ 4fAled [l (5) = (5) | ads
0 0

t
+2|A|ceg'/ [ucn (s)]|12+27, ds
0

L2+27'

— g(ju ()|"))u (s))ds

-2 [ )

(s Y Im(QEen)Qben (g ([u™ (5) P)g(fu (5)/ ) (9)Pu (s)

keNt

=g (Ju (s)[)g(Ju (s)*) [u (s) [Pu (8)) )ds
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for the multiplicative noise case. By using (1.2) and (1.3) in Assumption 2 and the
assumptions on (), we have

(4.2)
[ucm (t) —u (8)]|?

< / (67 + Cg, @))[u™ (s) — u (s)[[2ds + 4 \|ed / uem () — un (s) | s

t
+2|)\|CeZ/ us (s)|[2F27 ds
0

L2+2n’
[ ) = (9.3 (gl ) (5) = o (5) Py () W (5).

Next we show the strong convergence of the sequence {u},en+ in the following
different cases.
Case 1: O is a bounded domain. By using the Holder inequality |u¢m(s) —
u ()|l <|O|2|Juc (s) —u(s)|| on (4.1) and (4.2), and using Gronwall’s inequality,
we get

sup [Ju (8) —u ()] < COLT, O] (en + € )1+ sup [[u(¢)][7477,)
te[0,T te[0,T]

for the additive noise case. Applying (3.3), Corollary 1, and Lemma 4, it holds that

E[ sup [lu(t) = u (O] < COT 0], u0)(en + €.
t€(0,7]

In the multiplicative noise case, taking the supremum over ¢, then taking the expec-
tation on (4.2), and adopting (3.3), Corollary 1, and Lemma 4, together with the
Burkholder and Young inequalities, we get that, for a small x> 0,

B[ s o (0~ u O]
te[0,T]
<COT 0] Q)en + <)
+CE[ swp | [ )~ w0, )P

tEOT]

= gllu (5) 2 (s >)dW< |
CNT, 0], Q) en +€l) + CE|( / 3 lQbedlde e (s) = ur (s)ds)

€Nt
<C\T,0],Q)(en +€l)

+CE| sup [Ju(s) — u(s)] / > Qb il flu () = u (s) 2ds )

s€[0,T] JEN+

CONT. 101, Q)en + ) + B[ sup_u(®) — e (0) )
S

/ S Qb el i (5) — w (5)]2ds].

IS\
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Taking x < % and applying Gronwall’s inequality, we have that

E[ sup [[u (8) = u ()] < C(QT, A, 10, |0]) (en + € ).
te[0,7T)

Case 2: O =R%. In this case, slightly different from (4.1) and (4.2), we bound the
term 4|A] [y [(ue (s) = u(5),1(fe,, ([u (5)|?) = fe, (|ue (5)[2))uc (s))|ds as follows.

Using the fact that log(1 +y) < Cky",y > 0, for any x € (0,1], taking k = 4 €
(0, 35575) and £ =n" € (0,1) such that ",12
we have

[0,1), and applying Hélder’s inequality,

@Mlﬁaﬁw@—u%w»ukgm%ww>—ﬂgm%wW»mw@Mw
SMM[;LW%@%WSUm%ﬂ+—f—fﬂﬁm”@wms

€m + |ueﬂ (

t € 2
(€n — €m)[u(s)| 2
2|\ log(1 en d
2 [ tog(1 + G Em T e e (o) s
t
+ﬂM/HwN@—M%®W%
<4‘)\|/ / i [ () (em + [ (5)[2)~F [ur (5) — u (s)|dsde
t
+mM&f/HM" s+ 23] [t (s) = uen (o) s

t
SMMAEMWMSN—M%$MW%SME$MS

t t
+2|)\|C€z /0 Huﬁn(5)||itfgn,d8+2|)\|/0 ||u6m(5) —utn (5)||2d5-

Since ug € L2, € (0,1], using the interpolation inequality in Lemma 6 implies that
for o > 20 dn) ,

e (£) — u (1))
t t 7 1
SA6MWP%$—M%®W%+MMAemw%w%ﬂﬂwwwﬂwmp$ﬂs
t
+ﬂM&ﬂAHM%sEﬁ;@
t t
s/mmewrw%@ww+mM/wa@—w%mﬁ
w2 [ s 2 [ 6122 s
€m €n 2 n €n 2 €n 2727]7M
§A8MWL(ﬁfu($H@+ﬂMC%AHu(@hﬁu(®H “ds

t
+2|)\|Cez// s (s)|2427, ds
0

L2+2n
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for the additive noise case, and
[Jus (t) = u (1)

t €m €n 2 n ' €n D en 2—2p—49n
< ; Cllu(s) = u™(s)[|"ds + Ce} ; [ ()l 22 llu () «ds

t
+2|A|ce:{/ ue ()22, ds
0

L2+2n

+‘/ (e (s) = us (s),i(g(Jus (s)[)u (s) = g(lu™ (s)[*)u (5))dW (s))
0

for the multiplicative noise case. Then taking the supremum over ¢, taking the ex-
pectation, using (1.2), Lemma 3, and Proposition 2, and applying Gronwall’s inequal-
ity, as well as Lemma 6 and (3.3), we have that, for a € (0,1], n € (07%)’ and

9 (0,1),

(4.3)

E[ sup Hum(t)*ue"(t)uﬂ
t€[0,T)

dn _ _dn € ’ ’
< OT,Qu0 B[ sup (Ju (4 Ju (P27 + ()22, )| 2+

s€[0,T]
< C(T,Q,u0, g, a,m)emmnn),

Step 2: The limit process u of {u"},cn+ in M%(;C([0,T];H)) satisfies (1.1) in
mild form. We use the multiplicative noise case to present all the detailed procedures.
It suffices to prove that each term in the mild form of the RSlogS equation (1.4)
converges to the corresponding part in

S(H)uo + A / S(t — s)log(|u(s)[2)u(s)ds

77/ S(t—s)(g(|u(s) Z |Q26k\2ds

keNt

—i / S(t — 5)g' (u(s) P)g([u(s)P)u(s) Puls) 3 Tm(QFex) Qb exds
keNt
+i / S(t— 8)g(u(s) 2)u(s)diV ()
=Stuo+ V1 +Va+ Vs +V,.

We first claim that all the terms V3V, make sense. By Lemma 4 and Proposition 2,
we have that for p > 2,

+supE | sup ||u6"(t)||1£i < C(uo, T, Q).

te[0,T]

supE l sup ||u (t) |5
n te[0,T]

By applying the Fourier transform and Parseval’s theorem, using the Fatou lemma,
and strong convergence of (u"), e+ in M%(€;C([0,T]; H)), we obtain

E[ sup u®)lE] +E| sup fu(®)]i: ]
t€[0,T] t€[0,7]

<suwpE| sup [[u(8)[2 ] +supE[ sup [u(8)]35] < Cluo, T, Q).
n t€[0,7] n t€[0,7]
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Then (3.3) yields that for small n',n > 0,

og(Jul2)ul? = /

lul>>

S/ |u‘2+2n,d$+/ |u|2—27]d$
lul?>1 lul?<1

2421 2-2
< CO(lull iy + llullz2=2)

2_9 dn’ ’ —dn’
< O(lull 222, + IVl 7 [fuf 72747,

1(10t-’;(|u\2))2IUIZdJJ+/ (log([uf*))?|ul*dx

lul?<1

When O =R?, we use the weighted version of the interpolation inequality in Lemma

6 to deal with the term ||uHiﬁ;’,, and have that for small n < %,

’ / g dn 9, dn
[Hog(Jul®)ull® < C(IVu| ™ ul*" 274 4 flull g [|ul*~21="=).

This implies that V; makes sense in M%(Q;C([0,7]; H)) by Proposition 2 and Lemmas
3 and 4. Meanwhile, we can show that Vo-Vy € M%(Q;C([0,7];H)) by using the
Minkowski and Burkholder inequalities due to our assumptions on g and Q.

Next, we show that the mild form of u" converges to S(t)ug + Vi + Vo + V3 + V4.
To prove that

lim sup]H/OtS(ts)i)\fen(|u5”(s)|2)u€”(s)dsVl’ﬁ =0,

n—=00  Liclo,T

we use the following decomposition of f, (Ju¢|?)u* —log(|Ju|?)u. When |u| > [u|,

fen (lu[P)us = log(|ul*)u
= (feu ([ ) = fe, (WP )u + fe, (Jul*) (w =) + (fe, (luf*) = log(|uf*))u,

and when |u| < |uc|,

fen ([us Pyuc —log(|ul*)u
= (log(|u"[*) — log(fu|*))u +log(Ju [*) (u — ) + (fe, (Ju|*) — log(Jus|*))u.

For convenience, let us show the estimate for |u| > |u"|; the other case will be
estimated in a similar way. By using the Hélder inequality, the mean-value theorem,
as well as (2.2), we have that for small v > 0,

e 2) = fo, Qe
<[ ) = e Qe )3 (fe () = fo (e P27
|u€"| ’y(|f€"(|usn|2)|

(en + ure [2)5 72

< C|(Jul = Jur E (] 4 fuse 35

| fen (u?)) 227
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This implies that for small enough 7 >0,
S [l = e
wu|>|ucn

2
<C

|u€n
ul>[uen | (€n + |ucn[2)1=7
X Ju = w1 (ful 4 Ju ) fe, (u P 4 e, (Ju?) D dee

€n |2
SC th_ sn|1—'y
Jul>|uen | en-+Huen2<1 (€n + |ucn[2)177
X (Jul + [ V() fe, (u P+ | fe, (ul®)) 7 da
| €n |2
+C u

lul > ulen enHucn |21 (€n + |ucn[2)177
 Ju— w7 (ful 4 fu ) (e, (Ju P)] + [ fe, (Jul®) ) da

- C |’LL6" 2
T Jjulsunentuen 21 (€n + fus 21
X Ju = [ (] 4 e ) ((en + [us )77 4 (e + [ul?)") da
Jun |? - -
+C = (Jul + Ju ) fu—ut 177 (e + [ul?) " da.

[u]>ulen en+|ucn|2>1 (€n + [ucn]?)

Now choosing 1 —~+2n < 1, using the Holder inequality, and the weighted interpola-
tion inequality in Lemma 6, as well as the Gagliardo—Nirenberg interpolation inequal-
ity (3.3), we have that for oy € (2224 1), oy € (%, 1), and a3 = 22214 € (0,1),

T+~y—2n° 14+~+2n
/|u>|u€" |

SC/ |72y — w2 PV de
o

2
u*))u | de

n|2) - fen(

(fe (Juf

e / (L4 2w — wn [ ]

1 2 1+ 2
<Cllu— w17 (Jull 5 + 40 ;m 5, )

— —y— _dly=m)
< Cllu—u|* 7(IIuH K “2IIUH +||uHLz IIUIl”” S

+ Hu||(1+’7+2")(1_“3)HVuH(“V“")%).
For the mtegral term of f., (Ju|?)(u" —u), according to the property that log(1+y) <

Coy" 7' € (0,1) for y >0 and |log( < Cpz™, > 0 for z € (0,1), using (3.3) and
Lemma 6, it follows that for €(0,1) and n <

n'd
’+2 2cx+d’

/ o () (e — )P
Ju|>]ucn |

<y [ (e 1) — uf
Ju|>|uen | en+|u|2<1

4

!’
+(Cw)? / (en + [u?) ¥ fu — uf’de
[u]>|uen |, e +|u|2>1

3

2 T 2
+ (Cy) e |ul" Ju —ul*dx
ful>fun |

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/01/23 to 158.132.13.163 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

STOCHASTIC LOGARITHMIC SCHRODINGER EQUATIONS 3069

< Ol = ull (I = ull + ull 22+l 2", )

L2+277

d dan d
< Clfuen = ul (e —wll + [Vl 5 5775 4l 55 a7 0.

For the integral term of (fe, (|u|?) — log(|u|?))u, making use of similar arguments as
above and (3.3) with ¢ =27+ 2 and v = #12 yield that for o’ such that v € [0,1)
and n < 5%,

[ 1062, ) = 0Py
O

! 2n' 42 2-2
<Cep ||ull 73,2 + Cenllull 7222,

dn d
< O (e IVl ful 227 s | g fluc 2720 ).

Combining the above estimates, using the a priori estimate of u» and u in Lemmas 3
and 4 and Proposition 2, and applying the strong convergence (4.3) of u", we obtain
that

lim E[ sup | / S(t = 8) (fer (Jun (5)?)us (s)—log<lu<s>l"’>U<8>>d8H2}:

=00 te[O T)

The Minkowski inequality and Assumption 1 yield that

|- [ st-93060u @R S 1Qtalds v

keNt
< 3 lIQ¥enl3- / lg(Jue (5

keNt

<CT Y HQzek”Lw s ||u5"( ) —u(t)]]

keNt

)?u(s) = g(Ju(s)|*)?u(s)| ds

—i [ (= (e P ygllu () ()P (s) 3 Im(@Fen)QPends —Va

keNt

<C,T Y Q% el ol (® — (o)l

keNTt

The Burkholder inequality and the unitary property of S(-) yield that

sup H / S(t—s)g(lu(s)[*)u(s)dW (s) VZ‘H ]

te[o T)

<cE| / S Q¥ erli3e lg(uer (5)2)u (5) — gllu(s)|u(s)]ds]|
keNt
<CE| sup_[[u(t) - u(®)?].
te[0,T]
Combining the above estimates and the strong convergence of u», we complete the
proof of Step 2.
Step 3: w is independent of the choice of the sequence of {u},,cn+. Assume that

w and u are two different limit processes of two different sequences of {u“"},en+ and
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{um},,en+, respectively. Then by Step 2, they both satisfy (1.1). By repeating the
procedures in Steps 1 and 2, one can verify the uniqueness of the mild solution. 0

The procedures in the above proof immediately yield the following convergence
rate result for u€ in the regularized problem (1.4) and the Holder regularity estimate
of u¢ and u°.

COROLLARY 3. Let the conditions of Theorem 1 hold. Assume that u¢ is the mild
solution in Proposition 5, € € (0,1). For p > 2, there exists C(Q,T, A\, p,up) > 0 such
that for any 2:]’,% €(0,1),

’

E[ sup [lu(t) - u )] < C(QTAp,uo)(ek + ™)
t€[0,T]

when O is a bounded domain, and

E| sup [lu(t) — u()|"] < C(Q,T, A p,uo,a) (¢35 + ')
te[0,7]

when O =R,
COROLLARY 4. Let the conditions of Theorem 1 hold. Assume that uc is the mild

solution in Proposition 5, € € (0,1), and u° is the mild solution of (1.1). For p > 2,
there exists C(Q, T, \,p,ug) >0 such that for e €[0,1),

E[Ju(t) — u(s)[P] < C(Q. T A, p,uo)lt 2.

Proof. By means of the mild form of u¢, e € [0,1), the a priori estimate of u¢
in H! N L2 in Lemmas 2 and 4, and in Step 2 of the proof of Theorem 1, and the
Burkholder inequality, we obtain the desired result. 0

4.2. Well-posedness of the SlogS equation with superlinearly growing
diffusion coefficients. In this part, we extend the scope of g, which allows the
diffusion with superlinear growth, for the well-posedness of the SlogS equation driven
by conservative multiplicative noise. For instance, it includes the example g(z) =
ig(|z)?)x = izrlog(c + |z|?) for ¢ > 0.

THEOREM 2. Let W(t) be L?*(O;R) walued and g € C}([0,+00)) N C([0,400))

satisfy the growth condition and the embedding condition,

sup |g'(z)z| < Cy,

z€[0,00)

[og(Jo[*)]| < Ca(l + [Jolls + [[v]lz2)
for some a € [0,1], where Cy > 0 depends on g, Cq > 0 depends on O, d, ||v||, and
veH NLE. Assume that d=1, up € H* N L2, a € (0,1], with any finite pth moment,

1 1

and Y, ens |Q2 €120 + |Q2 €31, < 00. Then there exists a unique mild solution u
in C([0,T);H) for (1.1) satisfying

E[ swp lu(®)lf ]| +E[ suwp [u®llf,] <C@TAp,u0).
te[0,T) te(0,T) «

Proof. By Proposition 5 and Lemma 4, we can introduce the truncated sample
space

Qgr(t):= {w: sup [[u™(s)||pe <R, sup [[u(s)||re < R} ,
s€[0,t] s€[0,t]
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where n < m. The Gagliardo-Nirenberg interpolation inequality (3.3) with d =1, the
a priori estimate in H', and the continuity in L? of u*» imply that u‘» are continuous
in L*> a.s. Define a stopping time

TR :=1inf{t > 0:min( sup ||[u“"(s)||re, sup |[u(s)||L=)> R} AT.
s€[0,t] s€[0,t]

Then on Qr(T), we have 7 =T Let us take f(x) =log(z+¢€),x > 0, for convenience.
Tt is obvious that Qg(t) — 2 as R — oo and that for any p > 1,

(4.4) P( sup min(ju (6)] o=, [u (8)]12=) = R)
t€[0,T]

<O (B s [ @]+ sup B[l @)f-]).

te[0,T) €[0,T]

Step 1: {u‘"},en+ forms a Cauchy sequence in M%(; C([0,T]; H)). Following
the same steps as in the proof of Theorem 1, applying the It6 formula for ¢ € (0, 7x]
yields that

e (6) = u O
t 1
< [ i) —uem s aeh [ (6) - ) osds

/Z Q2 ex*(g(lu (s)) = g(ju (s)[*))*u™ (s),u (s))ds

keN+
+ / (ur =t i(g(jue ()Pucr (s) = g(lu ()/2)u (5) ) AW (s)).
It follows that
E[[lu () - u (8)]1?]
< [ A [ o) = (6) P ds A B[l () = u ()]s

+ / > 1QF erlF<E[((g(u ()[2) = glluc ()[2)2uc (s),u (5)) ] ds.

0 pen+

Making use of the assumptions on g, we get for ¢ < 7g,
E[llu (t) = u (8)]?]
< [ B[l ) w1+ aieh [ B[ () w0l s
+0(@Qo) [ B[ [ (a6 + eGP (= () 5) - s) ] s
< ANE[Ju (5) — u (5] ds+ 413} / E[Jlun(s) — u ()11 ]ds
+0@o) [ B[+ R (02 as

If O is bounded, then Hélder’s inequality and Gronwall’s inequality yield that

E Lo lue (8) = u (O] < Cluo, Q. T, A, |01,
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On the other hand, the Chebyshev inequality and the a priori estimate lead to
E[Lrsry 0 (1) = u (1)2] < B [Tag o lu (8) = e ()]
1
< (P ())77 (E[llue(6) —usr ()2 ]) "

where p% + q% = 1. Combining the above estimates on Qg (t) and Q%(¢), applying (4.4)
with p>> p1, we conclude that

E[llu () = e (8)]2] < Cluo, Q70,101 p,1) (47 e + B77),

where = L. Then one may take R = (%‘)\log(en)bi for ¢p € (0,1) and get

B [[lue (1) — e (1) ] < Cluo, Q70,10 1) (el + (22| log(en)) ),

By further applying the Burkholder inequality to the stochastic integral, we achieve
that for any x >0,

B[ sup fJur (t) = u (8)]2] < Cluo, Q. T,2, 101, p,p1) log(en)] 75
t€[0,T)

When O =R?, using Lemma 6, we obtain that for 1 € (0, 2§id) and a € (0,1],

E[llue (t) - w (1)

t " “
< [CAE[ e () - wro)P]ds+ ot [ B[ (1 o)

\2*2”*%’} ds

+ 0@ [ B[+ R () o)

By using Gronwall’s inequality and the estimate of P(2%(¢)), we immediately have
that for n € (0, %ﬁrd),a €(0,1], and any & >0,
E[llu () = u (8)]2] < Cluo, QT2 p,p1) (¢ HRIT el + R™).

Taking R = (%Hog(en)\)% for ¢y € (0,1) and using the Burkholder inequality, we
have for 5 € (0, %‘j_‘d),a €(0,1] and any small x> 0,

]E|: sup ||u€m(t)_u€n(t)||2:| SC(u()anTa)\?pvplan)'log(en”_%’
t€[0,T

Step 2: w is the mild solution.

Let us use the same notations and procedures as in Step 2 of the proof in Theorem
1. To show that the mild form u converges to S(t)ug + V1 + Vo + V3 + V4, we only
need to estimate V5 and Vj since V3 =0. Define

Qp, (t) :=={w: sup [[u™(s)[z= < R1, sup [lu(s)|[z= < Ri},
s€[0,t] s€[0,t]

and a stopping time

TR, = Inf{t > 0:max( sup |u(s)|re=, sup |[|[u™(s)|p=)> R} AT.
s€[0,t] s€[0,t]
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Then on Qpg, (T), we have g, =T. The Minkowski inequality and the properties of
g yield that on Qg, (¢),

H;/Ots@s)(guue"(sn? 2 (s) 3 [QbexPds — Vo

keNt

T
<> HQ261€||L°°/ (g (s ()*)*u (s) = (g(u(s)*))*u(s)|ds

keNt
<CT Y NQbexlFe (14 B2) sup fJuc (t) — u(t)].
beN+ te[0,T]
On the other hand, for any ps > 0,
Eiog, 0]~ 3 [ St-a(u @) Y 1Qalds i ]
0

keNt
< C(U’OaQ T pQ)R pz

Taking Ry = 0/(]log(e,)| ) ), k1 < K, we have that

lm sup Ef H/ —fSt—s (g(ju= (5)2)2ue (5) 3 Qb e ds—VQH | =0

N0 ¢c(0,T) reNt

which immediately implies that

lim IE sup ‘—7/ S(t— s)(g(Ju(s)[*))2u( Z |Q2ek| ds—VQH } 0.

n—o0o
tE 0,71 keN+

The Burkholder inequality and the unitary property of S(-) yield that

E[ sup

tE[O TR

<cx[ [ S IQkeul~lgtlu (s)ue (5) - g(lu(s) Prucs)lPds]

0 pen+

/t iS(t = 5)g(|u ()| *)u (s)dW (s) V4H }
0

<cq +R1>E[ts[%pT @) = u]
€|0,

On the other hand, the Chebyshev inequality, together with the a priori estimate of
u", implies that

sup
t>TR

]/ISt—s (juee ()2 ()W () — Vi |

<E[ suwp Io; @ / 15(t — 8)g(|usn (s)|2)un (s)dW (s) V4H ]
te[0,T) 0

S C(’U;O, Q7 T7p)R1_p2 .

Taking R; = &(]log(e,)| EleEry ), k1 < K, we have that

lim IE sup H/ iS(t—s)g(ju(s )| Juc(s)dW (s) V‘lH }

n—00 tE[O T)
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Combining the above estimates and strong convergence of u‘", we complete the
proof. 0

Remark 2. One may extend the scope of g to an abstract framework by similar
arguments. Here the assumption d = 1 lies on the fact that H' is an algebra by the
Sobolev embedding theorem. When considering the case d > 2, one may use H5,s > %,
as the underlying space for the local well-posedness. However, as stated in Lemma 7,
it seems impossible to get the uniform bound of ¢ in H® for s > 2.

Remark 3. As mentioned in Remark 1, to prove the existence of the global solution
of (3.7) with d =1, one could make some modifications to the proof of Theorem 2. For
example, one may need to take a suitable sequence with (e, ¢,) for (3.6), then deduce
the relationship between ¢, and €, to get an explicit convergence rate. However, the
convergence rate analysis of (3.6) is beyond the scope of this current work. We will
study this problem in the future.

Appendix A. The original problem and the regularized problem can be rewrit-
ten into the equivalent evolution forms

(A1) du = Audt + F(u)dt + G(u)dW (t),
u(0) = ug,

where A =1iA, F' is the Nemystkii operator of the drift coefficient function, and G is
the Nemystkii operator of the diffusion coefficient function. Then the mild solution
of the above evolution is defined as follows (see, e.g., [21, Appendix F]).

DEFINITION 1. A continuous H-valued F; adapted process u is a solution to (A.1)
if it satisfies P-a.s. for all t € [0,T],

u(t):S(t)uo+/O S(tfs)F(u(s))der/O G(u(s))dW (s),

where S(-) is the Cy-group generated by A.

DEFINITION 2. A local mild solution of (A.1) is (u,7) := (u,7y,T) satisfying
T AT a.s., as n— 00, u € M2 (;C([0,7); H®),s > 0,p > 1, and that

t t
u(t) =S (t)uo + / S(t—s)F(u(s))ds + / S(t—s)G(u(s))dW(s) a.s.
0 0
for t <7, in H? for n € N*. Solutions of (A.1) are called unique if
P(ul(t) = us(t), VL€ [0, 0 A 02)) —1

for all local mild solutions (u1,01) and (us,02). The local solution (u,T) is called a
global mild solution if T=T a.s. and ue ME(Q; C([0, T]; H®).

LEMMA 8. Let e € (0,1). Then f.(z)=1og(|x|? +¢€),z € C, satisfies
[Im(fe(a1)zr — fe(az)za)(@1 — T2)]| < 41 — zof*.

Proof. Without loss of generality, we assume that 0 < |zs| < |x1]. Notice that

Im[(fe(z1)x1 — fe(x2)22)(Z1 — Z2)]

1
= 5(10g(6+ |z1)?) — log(e + |z2|?)) Im(Z120 — Toxy).
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Direct calculation yields that
|Im(.’f11‘2 — .’Z’2$1)| < 2‘1‘2”{)31 — Zo|.
Using the fact that

[log(e + |z1|?) — log(e + |a2[?)| = 2| log((e + |1|?)2) — log((e + |z2|*)2)],

we obtain
[Im[(fe(z1)z1 — fe(z2)22) (1 — Z2)]
<2log((e+ [@1]%)?) — log((€ + [wa[*)?)|[22| 21 — 2.
The mean-value theorem leads to the desired result. 0

Proof of Proposition 4. Due to Lemma 4, it suffices to prove

E| sup (Fe(lu(t)[*)?| < C(uo,T,Q,p).
te[0,7]

Let us take f.(|z|?) = log(|z|? + €) as an example to illustrate the procedure. The

desired estimate in the case that f.(|z|?) = log( l‘j_lel;r;) can be obtained similarly.

Using the property of the logarithmic function, we have that for small > 0,

|Fe(lus (1))
= \/@ ((6 +uc()[?) log (e + [uf (£)]?) — [us(t)|* — elog(e))da:‘

S||u€(t)||2+/O|u5(t)|210g(6+Iue(t)IQ)der‘/06(10g(6+|u€(t)l2)—log(e))dﬂc

€ 21] € 242
< 20w (O + Cllus (D723, + Cllu@)II733,

where we have used the following estimation, for any small enough 7 > 0,

/ Ju (£) [ og(e + [u(£)[P)da
O

/ Fo(u (8) ) ue (8)Pd + / Foju (6) ) [ () Pde

et lus (£)[2>1 etlus (B)[2<1

/ (e lu (O)]2)2 | (£) P + / (e luf (O)]2) 2" |ut ()| 2dz
+luc(t)[2>1 e+|uc(t)]2<1

€ 2-2 € 242
< Cllus(®)|l7227, + Cllu ()15,

IA

Then by (3.3), we have that
E(lu()P)
<[ [ (e (o)) lo(e-+ [ () = u (5)F = cloge) ]

2—-2 € 242
< C(lu ()1 + [lu(s)l[7223, + llu(s)l 252,
€ - € dn
<C(lu ()12 + a5 7222, + 1V ()] 772 [[uc ()]~ 50F),

Taking the pth moment, and applying (3.3) with ¢ =27+ 2, Lemma 4, and Corollary
1, we complete the proof for the case that O is a bounded domain.
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When O = R? we need to control ||u€||;2-2, separately. By using the weighted
interpolation inequality in Lemma 6 with a > 2%7 and @ € (0,1) and Lemmas
4 and 2, we complete the proof by using the Young inequality and taking the pth
moment. |

Sketch Proof of Lemma 7. Due to the loss of the regularity of the solution in
time, we cannot establish the bound in H? through 2 % like in the deterministic case.
According to Lemma 4, it suffices to bound [|Auc(t)||?>. We present the procedures
of the estimation of E[||Au(t)||?] for the conservative multiplicative noise case. One
can easily follow the procedures to obtain the estimate of E[ sup ||Au(t)||?] for both

€[0,7]
additive and multiplicative noises.

By using the It6 formula to ||Auf(t)

|? we obtain that

1 AuE ()2 = || Auo |12 +2/ (Au(s), Tr)ds
. 0
2/0 (Au(8), I moa)ds + 21Ig4,,
where
Ilsy, ::/0 (Au(s),ig(|u(s)[*) Vu (s) VAW (s))
+ / (Aus(s), ig(Ju(s) [2)us(5) AdW (5))
+/0 <Au6(s),ng'(\ue(s)|2)Re(ﬂ6(s)Vue(s))Vué(s)dW(s)
+/O (Auc(s),i2g' (Ju(s)|*) Re(u(s) Vuc(s))u(s) VAW (s))
+/O (Auc(s),idg" (Ju(s)|*) (Re(a(s)Vu(s)))u (s)dW (s)
+/0 (Au(s),i2¢' (|u(s)[*) (Re(u(s) Au(s)))u(s)dW (s))
+/01<Au6(5)729'(|U5(8)|2)|VU|2U€(S)CZW(S)>’
Iger == i0*uC(s) + iMfe(|u(s)[*) Aus(s)dt + 4N fL(Ju (s)[*) Re(u (s) Vu (s)) Vu<(s)

+ NS (Juf(5)]*) (Re(a () Vs (s))) *u(s)

+ B2AfL(Ju(s)|*) Re (@ (s) Auc (s))u(s),
and I1,,,q is the summation of all terms involving the second derivative of the It6
modified term produced by the Stratonovich integral. Here for simplicity, we omit
the presentation of the explicit form for I71,,,4.

Taking the expectation, using (2.2), the fact that f”(z)z® < Cef%, and the

Gagliardo-Nirenberg interpolation inequality ||Vo|s < C||Av|3||Vo||7 in d = 1,
we obtain that

E [l au(0)]?]

< E[au(0) 2] + C(xp)e HE] / A+ [T 3 ar]
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COP)E /nAu (IS AQFe@¥englu (n)I)u(r)]

+1 Z+|vcz2ez g(Juc(r >|22>€>§;E<r>||

+1 Z VQ#eiQteag(u (r) )y (fu () (r) T ()|

+1 zNj (@ eilgJu () (ju (r) )|V (r) Pu ()]

+1 Z (@ eil*(g(u (1) P)g" (1u (7)) + (9 (fu ()2))2) [V () P ()|
+1 % VQéeiQéei(Q(lue(T)|2))2Vu5(7’)||>d7°}

PO / > (gl (r)P)Vu () VQEer]* + flg(fu (r) Phu () AQ2 e

€N
+[lg'(|u(r) ) Vus (1) Pus () Q2 es|* + |9/ (Ju () ) Vas () [u () PQ2 e
g (ue (D) ()P () PQ e |2 + g (u (1) ) W () P (1)@ e |2 i |

= E[Jaw O[] + conpe e | A1+ [T )]

+ OO PE| /0 t |Au ()| AGdr] + OO\ p)E| /O tB(r)dr}.

Now applying the Holder inequality, using the properties of g, using the Gagliardo—
Nirenberg interpolation inequality, we obtain that

< 3 1AQ% e[| Q el = | (g (1)) *u (1) =

iENT

+ 3 IVQ2eillall(gus (1)) (r) | -

€Nt

+ 3 IVQ2 e 4 Q2 eilloe llg(u (r) )| e [V (7) | o

€Nt

+ 3 1Q2eillF [V ()2 llg(u (r))g (Jus ()2 (r) | s

1eNT

+ > Q2 el Vs (M1 Zall (g (Ju () ) g (fus (r)?)

i€ENT
+ (g (Jus (1)) ) s (1) ]|
+ 3 IVQ2 el all Q% exlloc g (ue (r) P13 Ve ()| s

1eNT

1 1 1 1
<> (IVQEeila + IVQEeil~ + 1aQF e + @ eil13~)

iENT

% (14 70l + V|3 )
x (Il ())2u () =+ gl ()2 Lo + lg(u(r) g’ () 2)u ()~
g (g (1)) + (o ()P (r) P Lo + g (1) )3~ )
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1 1 1 1
<0y (”VQQQ‘HQH +IVQzeill i~ +1AQ% 6| + ||Q2€i\|%oc)
i€N+

x (1 IV ()l + VU @)l )

Similarly, we have that

Z(Hg [u ()P [V ()24 V Q2 s 70 + Nlg(u (r) ) (1) 17 < [ AQ €|

€Nt
1l Q) Py [ [V () [ @ i3
! Q) B (1) 23 IV ) 3 @l
g (u () P (P [ V0 () [ @ el
g () Py [ 90 () [ | Q@ 3.
<0 Y (IVQFalt: + IVQ¥el} + 1AQ% e + Qi )

ieNt

% (14 1Vus)l1Ls).

Combining the above estimates, and using the Young inequality and Gronwall in-
equality, we obtain

E[llau®)]?] < Cluo, T,Qup)(1+€72).

Now, taking the supremum over ¢, then taking the expectation, and applying the
Burkholder inequality to the term I, we achieve that

E| sup [ Au(t)]2] < Cluo, T,Q)(1 +¢72). ]
telo,7]

Proof of Proposition 3. We follow the steps in the proof of Proposition 2 to present
the proof in the case of p = 2. For convenience, we present the proof for the multiplica-
tive noise case. Applying the It6 formula to ||u (t) ||L2 Jra (1+|x[*)¥|us(t)[*dz, using
integration by parts, then taking the supremum over ¢, and applying the Burkholder
inequality, we deduce that

E[ sup fu(t)3: <E[Hu0HLz} +2aE[/T]<<1+|x| ) (s), iV (5))|ds|

te[0,T)

oup [ 140 120051 )P 5 )|

tE[O T)
SE[HuOHLz] +C’a]E[/ (L 2 s (5), iV ()| s

Q‘ds}.

+CE| / >[4+ ) (s) g lu ()P (5) @ er)

1ENT

By Holder’s inequality, for « € (1,2], we have that

(1+ IxIQ)a‘lxue(S),VuE(s»’ < Olfu ()22 |1+ |af*) 22 Vus(s)).
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Integration by parts and Young’s and Holder’s inequalities yield that for o < 2 and
small 1 > 0,

11+ [21%) 2 72 Vus(s)[|? = (14 )~ Vus(s), Vus(s))

= —((1+ [2[1)* 7 ut(s), Au(s)) — 2( — D{(1 + [2[*)* 722 Vus(s), u(s))

< fu(s)llzz, 1Aue ()] + Cmla = 1l[u(s)lI72 +nla = 1 Vu(s)ll72

Combining the above estimates, Proposition 2, Lemma 7, and using Young’s inequal-
ity, we achieve that

ax(2a—2,0) x(a—3,0)

E[ sup ||uf(t)||§2} <eCT(1+ e Yifae (1, §}7
te[0,7)] * 2

3
B[ sup u@®)3;] <eT(1+eH)itae [2,2),
t€[0,T) a 2
]E{ sup ||’U/€(t)||%2:| <eT(1+eifa=2. O
te[o, ] °
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